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a b s t r a c t

We derive an analytical bias correction for two-step fixed effects models with copula-distributed
errors. We work out the approximate bias correction for the Gaussian copula and present a numerical
computation exercise for three other copula families. The results are derived for both n and T large.
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1. Introduction

1 The aim of this paper is to develop an analytical expression
or the bias correction for two-step fixed effects models with
opula-distributed errors. These models can be used to describe
elative mobility, and in particular for studying earnings dynam-
cs (see e.g. Bonhomme and Robin, 2009). There are currently only
few studies which develop an analytical bias correction for two-
tep models (e.g. Fernandez-Val and Vella, 2011, Cattaneo et al.,
019). We extend their results by developing the expressions
or a two-step (parametric) copula model under the asymptotics
hen both n and T are large.

. A model for relative mobility

Let us consider the following linear panel model (see e.g.
ameron and Trivedi, 2005):

it = α + x′

itβ + ηi + λt + εit (2.1)

here yit is the outcome variable (e.g. wage), xit is a vector of
exogenous individual explanatory variables, ηi is the individual
ixed effect and λt is the time fixed effect. We make the following
ormalizations to ensure that the model is identified:

∑T
t=1 λt =
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∑n

i=1 ηi = 0. For the rest of the paper, we rely on the
ollowing Assumptions:

ssumption A.1. Error process (εit ) is stationary and weakly
serially dependent over the time dimension t .

Assumption A.2. Errors εit are independent and identically dis-
tributed across the index i.

Assumption A.3. Explanatory variables and error term are not
correlated.

Assumption A.3 is needed for consistency of β̂ in (2.1). The
parameter of interest is:

θ0 = argmax
θ∈Θ

E[log c(Uit ,Ui,t−1; θ )] (2.2)

where Θ ⊂ Rp and Uit = F (εit ), Ui,t−1 = F (εi,t−1) are the present
and past uniform ranks, which have a dynamics given by the cop-
ula c(·; ·; θ ). F (·) stands for the cumulative distribution function
(cdf). We are interested in the following two-step estimator:

θ̂ = argmax
θ∈Θ

1
nT

n∑
i=1

T∑
t=2

log c(Ûit , Ûi,t−1; θ ) (2.3)

where Ûit = F̂ (ε̂it ), Ûi,t−1 = F̂ (ε̂i,t−1), ε̂it is the OLS residual
estimated in model (2.1) and F̂ is its empirical distribution. We
consider an asymptotics such that both n and T are large. Under
regularity conditions we have θ̂

p
−→ θT where:

θT = argmax LT (θ ), (2.4)

θ∈Θ
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LT (θ ) := plim
n→∞

1
nT

n∑
i=1

T∑
t=2

log c(Ûit , Ûi,t−1; θ ).

Our goal is to derive an expansion for θT when T is large. For
generic copula arguments u, v ∈ [0, 1], where u = Uit and

= Ui,t−1, by applying Taylor approximations we obtain (proof
eported in Appendix A):

LT (θ ) = E[log c(u, v; θ )]  
≡L0(θ )

+
1
T
L1(θ ) + o

(
1
T

)
(2.5)

here:

1(θ ) = −2
∞∑

j=−∞

E
[

∂ log c(u, v; θ )
∂u

f (εit )εi,t−j

]

+ E
[

∂ log c(u, v; θ )
∂u

f ′(εit ) +
∂2 log c(u, v; θ )

∂u2 (f (εit ))2

+
∂2 log c(u, v; θ )

∂u∂v
f (εit )f (εi,t−1)

]
× ω2

+ 2E
[

∂ log c(u, v; θ )
∂u

H(εit )
]
. (2.6)

here f (·) is the probability density function (pdf) and H(ε) =
∞

j=−∞
E[εi,t+j|εi,t = ε]f (ε) +

ω2

2 f ′(ε), and where ω2
=

∑
∞

−∞

ov(εit , εi,t−j). This leads us to the following Proposition:

roposition 1. The vector θT defined in (2.4) is such that for large
:

T = θ0 +
1
T
B + o

(
1
T

)
(2.7)

here θ0 is the true parameter value and the bias term B is equal
o:

= I−1
0

∂L1(θ0)
∂θ

(2.8)

here

0 = −
∂2L0(θ0)
∂θ∂θ ′

= −E
[

∂2 log c(u, v; θ0)
∂θ∂θ ′

]
(2.9)

The derivation of an analytical expression of the bias term has
ome analogies with Hahn and Newey (2004), pp. 1303–1305),
ut the maximization criterion is different. In our case, indeed,
he individual fixed effects are estimated separately via the lin-
ar model in (2.1) and hence do not depend on the parameter
ector θ . In the following, we present the explicit formula for the
pproximate bias correction for the case of a Gaussian copula.

.1. Approximate bias computation for the Gaussian copula

In this part we compute all the terms that appear in Eq. (2.8)
or the case of a parametric Gaussian copula with Gaussian
arginals. The Gaussian copula is such that,

og c(u, v; ρ) = −
1
2
log(1 − ρ2) +

1
2
(x2 + y2) +

2ρxy − x2 − y2

2(1 − ρ2)
,

ith x = Φ−1(u), y = Φ−1(v), Φ−1(·) is the standard normal
uantile function, and Φ(·) is the standard normal cdf. We make
he following assumption.

ssumption A.4. Variables εit and εit−1 are jointly normal dis-
ributed, have both zero mean and unitary variance and have
orrelation coefficient equal to ρ.
2

Assumption A.4 implies that:

(εis|εit = ε) = ρ|s−t|ε (2.10)

ence,

(ε) = ω2εf (ε) +
ω2

2
f ′(ε) + o

(
1
T

)
= −

ω2

2
f ′(ε) (2.11)

By substituting this expression into Eq. (2.6) and simplifying
equal terms we obtain:

L1(ρ) = − 2
∞∑

j=−∞

E
[

∂ log c(u, v; ρ)
∂u

f (εit )εi,t−j

]

+ E
[

∂2 log c(u, v; ρ)
∂u2 (f (εit ))2

+
∂2 log c(u, v; ρ)

∂u∂v
f (εit )f (εi,t−1)

]
× ω2.

he partial derivative wrt ρ is:

∂L1(ρ0)
∂ρ

= − 2
∞∑

j=−∞

E
[

∂2 log c(u, v; ρ0)
∂ρ∂u

f (εit )εi,t−j

]

+ E
[

∂3 log c(u, v; ρ0)
∂ρ∂u2 (f (εit ))2

+
∂3 log c(u, v; ρ0)

∂ρ∂u∂v
f (εit )f (εi,t−1)

]
× ω2. (2.12)

he partial derivatives of the log Gaussian copula density are as
ollows:
∂ log c(u, v; ρ)

∂ρ
=

ρ

(1 − ρ2)
+

1
(1 − ρ2)2

[xy(1 + ρ2) − ρ(x2 + y2)]

∂2 log c(u, v; ρ)
∂ρ2 =

1 + ρ2

(1 − ρ2)2

+
1

(1 − ρ2)3
[2ρ(3 + ρ2)xy − (1 + 3ρ2)(x2 + y2)]

∂2 log c(u, v; ρ)
∂ρ∂u

=
1

(1 − ρ2)2φ(x)
[y(1 + ρ2) − 2ρx]

∂3 log c(u, v; ρ)
∂ρ∂u2 =

1
(1 − ρ2)2(φ(x))2

[xy(1 + ρ2) − 2ρ(1 + x2)]

∂3 log c(u, v; ρ)
∂ρ∂u∂v

=
1

(1 − ρ2)2φ(x)φ(y)
(1 + ρ2)

I0 = E
[
−

∂2 log c(u, v; ρ)
ρ2

]
=

1 + ρ2

(1 − ρ2)2

By inserting the expressions computed above for the partial
derivatives into Eq. (2.12) we obtain:

∂L1(ρ0)
∂ρ

= −
(1 + ρ2

0 )(1 − ρ0)ω2

(1 − ρ2
0 )2

(2.13)

where ω2
=

(1+ρ0)
(1−ρ0)

. Hence, the analytical expression for the bias
is equal to

B = −(1 + ρ0) (2.14)

The bias correction would be equal to −
1
T in case u and v were

independent (i.e. ρ0 = 0). The absolute value of the bias is
increasing in the value of ρ0.

2.2. Numerical computation exercise for other copula families

For copula families different from the Gaussian one, comput-
ing the expectations in Eqs. (2.8) and (2.9) is not straightforward.
For this reason, in this subsection we present numerical com-
putation results for a few popular copulas, namely the Fairlie–
Gumbel–Morgenstern (FMG, Genest and Favre (2007)), the Frank
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Fig. 1. Approximate bias B for different copula families, as a function of the copula parameter. Upper left panel: Gaussian copula, upper right panel: Plackett copula,
bottom left panel: Frank copula, bottom right panel: FGM copula.
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copula and the Plackett copula (Joe, 1997; Nelsen, 2007). Through-
out this subsection, we assume that variables εit and εi,t−1 have
both zero mean and unitary variance, and their marginal distribu-
tion is Gaussian. For each of the copula families under scrutiny,
we simulate 500 observations of the arguments u, v. It is now
asy to replace all the theoretical expectations in Eqs. (2.8)–(2.9)
ith their empirical counterparts (i.e. sample means, sample vari-
nces and sample covariances). In each panel of Fig. 1 we report
he value of quantity (2.8), numerically computed as explained
bove, for different copula families. For the Gaussian copula, we
imply apply Eq. (2.14).
For the Plackett copula, the copula parameter ranges from 0

o ∞. If this parameter is lower than 1, we witness a negative
orrelation between the present and past rank, whereas if the
arameter is greater than 1, the correlation is positive. The lim-
ting case with the parameter of the Plackett copula equal to
corresponds to the case of independence between past and
resent ranks (Joe, 1997). For the Frank copula, the parameter
s θ ∈ {−∞; ∞}\0. There is negative dependence for negative
alues of the parameter and vice versa. The case of independence
ould correspond to θ = 0, which is however not admissible,

as the parameter is at the denominator in the Frank copula cdf.2

2 For the graph, a value slightly above and a value slightly below zero have
een used.
3

For the FGM copula, the parameter is: θ ∈ [−1; 1], where values
smaller than zero stand for negative dependence, values larger
than zero stand for positive dependence and θ = 0 stands for
ndependence (Joe, 1997).

From Fig. 1, we deduce that the bias B has a somehow similar
pattern for all the copula families considered, i.e. for most pa-
rameter values it is increasing in absolute value in the parameter
value. However, whereas for the Gaussian and for the FGM copula
the bias is always either zero or negative, for the Plackett and for
the Frank copula a distinction is needed. In these latest two cases,
indeed, when the copula parameter is small enough (i.e. smaller
than 2 for the Plackett copula and smaller than around −7 for the
Frank copula), the bias is positive and decreasing in the parameter
value.

Note that in general the bias B is not zero in the case of
ndependence between u and v. This is because the bias comes
rom the estimation of the first-step residual in the first stage.
n a simple two-period model, the fixed effects for an individual
s negative in period t = 1 and positive in period t = 2, or vice
ersa, but always summing up to zero for each individual over the
wo periods. In such a case, our model would detect a negative
ssociation between u and v even if there were independence in
he second-stage copula. This would entail a negative bias in the
stimation of the copula parameter, consistently with the results
f our numerical computations reported in Fig. 1.
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ppendix A. Supplementary data

Supplementary material related to this article can be found
nline at https://doi.org/10.1016/j.econlet.2022.110498.
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