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Predicting mortality in the very 
old: a machine learning analysis 
on claims data
Aleksander Krasowski1,2, Joachim Krois1, Adelheid Kuhlmey3, Hendrik Meyer‑Lueckel2 & 
Falk Schwendicke1*

Machine learning (ML) may be used to predict mortality. We used claims data from one large German 
insurer to develop and test differently complex ML prediction models, comparing them for their 
(balanced) accuracy, but also the importance of different predictors, the relevance of the follow‑up 
period before death (i.e. the amount of accumulated data) and the time distance of the data used 
for prediction and death. A sample of 373,077 insured very old, aged 75 years or above, living in the 
Northeast of Germany in 2012 was drawn and followed over 6 years. Our outcome was whether an 
individual died in one of the years of interest (2013–2017) or not; the primary metric was (balanced) 
accuracy in a hold‑out test dataset. From the 86,326 potential variables, we used the 30 most 
important ones for modeling. We trained a total of 45 model combinations: (1) Three different ML 
models were used; logistic regression (LR), random forest (RF), extreme gradient boosting (XGB); 
(2) Different periods of follow‑up were employed for training; 1–5 years; (3) Different time distances 
between data used for prediction and the time of the event (death/survival) were set; 0–4 years. The 
mortality rate was 9.15% in mean per year. The models showed (balanced) accuracy between 65 and 
93%. A longer follow‑up period showed limited to no advantage, but models with short time distance 
from the event were more accurate than models trained on more distant data. RF and XGB were more 
accurate than LR. For RF and XGB sensitivity and specificity were similar, while for LR sensitivity was 
significantly lower than specificity. For all three models, the positive‑predictive‑value was below 62% 
(and even dropped to below 20% for longer time distances from death), while the negative‑predictive‑
value significantly exceeded 90% for all analyses. The utilization of and costs for emergency transport 
as well as emergency and any hospital visits as well as the utilization of conventional outpatient care 
and laboratory services were consistently found most relevant for predicting mortality. All models 
showed useful accuracies, and more complex models showed advantages. The variables employed for 
prediction were consistent across models and with medical reasoning. Identifying individuals at risk 
could assist tailored decision‑making and interventions.

In an ageing population, predicting mortality of elderly individuals is relevant, as such prediction may help to 
address possible sources of mortality, tailor an individual’s end-of-life management or plan healthcare resources 
appropriately. A wide range of prediction models in healthcare have been developed, most of them predicting 
other disease states than death or predicting death from a specific  disease1–3. Often, explicit models, to be applied 
by a medical practitioner using a limited set of social and clinical covariates, have been  developed4; such mod-
els are not able to reflect on the wide range of possible predictors available. Many of these models are also not 
necessarily applicable to the elder, non-hospitalized population, or are developed from small datasets, yielding 
limited stability. Most also use simple logistic regression (LR) models to make predictions.

More advanced machine learning (ML) like random forests (RF) or (extreme) gradient boosting algorithms 
((X)GB) have been suggested to yield higher accuracy, especially when trained on complex and big data (e.g., 
claims data, which harbors a wide range of, at first glance, not necessarily relevant covariates), mainly as they are 
able to more appropriately reflect the complex internal structure of the  data5. However, a range of studies showed 
that advanced ML offered only minimal improvements over LR to predict events like  death6. On a large claims 
dataset involving 2.8 million individuals, for instance, LR was similar or even more accurate than advanced ML 
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both short- and long-term7. A systematic review, focusing on palliative care, yielded a more nuanced picture, 
with advanced ML models outperforming LR to predict death when a sufficiently large and broad dataset was 
used to train the models, while using only basic administrative data did not allow the more advanced models to 
leverage their power. Notably, this review included only 3 studies comparing advanced ML and  LR8. Another 
review corroborates these ambiguous findings, showing that advanced ML models were, in some cases, more 
accurate than LR for predicting myocardial infarction and associated mortality, but that even if such advantage 
was found, the magnitude of it was  limited9.

In the present study, we used claims data from one large insurer, mainly acting in the Northeast of Germany, 
to develop and test differently complex ML prediction models, comparing them for their (balanced) accuracy, 
but also the importance of different predictors (i.e., the consistency of how these models came to their predic-
tion). We further aimed to assess if the period of how long individuals were followed-up before the prediction 
was made (i.e. the amount of data accumulated and used for training) or the time between the data acquisition 
(exposure) and the outcome (death) impacted on prediction (balanced) accuracy. While claims suffer from a 
range of limitations like selection, confounding or misclassification bias, they yield large datasets (where advanced 
ML may be advantageous) on groups which are otherwise hard to assess (like the old, the sick, poor and rural 
living ones) with limited risks of reporting  bias10,11.

Methods
Study design. The investigated cohort was evaluated based on claims data from one large statutory (public) 
health insurance in Germany. Old individuals (75 years or older) from the AOK Nordost were followed over 
6 years (2012–2017). The AOK Nordost is the Northeastern regional branch of national insurer, the Allgemeine 
Ortskrankenkasse (AOK), active mainly in the federal states of Berlin, Brandenburg and Mecklenburg-Vorpom-
mern. ML models of different complexity, notably LR, RF and XGB were used to predict our primary outcome, 
death in one of the years 2013–2017. The reporting of this study follows the RECORD  statement12.

Setting. The AOK Nordost insures around 1.8 million individuals mainly in the German capital, Berlin, and 
two rural states, Brandenburg and Mecklenburg-Vorpommern, with only few larger cities (> 70,000 inhabitants). 
Data for this study was routinely collected and provided under ethical approval in a pseudonymized form using 
a data protection cleared platform via the scientific institute of the AOK Nordost, the GEWiNO.

Participants and sample size. A comprehensive sample of 404,610 statutorily insured very old, aged 
75 years or above, living in the Northeast of Germany in 2012 was followed over the 6 years observational period. 
Hence, no formal sample size estimation was performed. Our feature extraction process needed a patient to 
survive for at least 1 year in order to make a prediction. Out of the total sample, 373,077 survived at least 1 year. 
Predicting their deaths was our target variable (outcome, see below).

The dataset was imbalanced towards survival (89.7–91.7% of individuals survived in the years 2013–2017, 
respectively). To reduce bias in the model by predicting only the majority class (survival), a balanced training 
dataset was constructed by randomly choosing the same number of survivors as deceased patients (which reduced 
the training dataset, yet remaining considerably large, see Fig. 1). Validation- and test-sets remained imbalanced, 
resembling the mortality rate at given years in order to evaluate the models on a correct representation of the 
underlying population. Variable ascertainment was only possible via insurance base data and claims data. The 
database had been curated for plausibility by the GEWiNO.

Variables. Our outcome was whether an individual died in the inspected year (2013–2017) or not. Our 
primary outcome metric was balanced  accuracy13, i.e. accuracy where weighting samples in proportion to the 
sample size of given class results reduced class imbalance; secondary metrics were F1-score, sensitivity, specific-
ity, and positive or negative predictive values (PPV/NPV).

The original dataset contained variables such as utilized services, costs and metadata like age and sex for 
each individual. These were either static (immutable by time) such as sex, or dynamic such as age, and were 
either given for a full calendar year such as annual total costs or given for an exact date each such as received 
treatment. Date variables were combined into intervals of 365.25 days, being counted backwards from death or 
from a random point in the follow-up period in the case of survival.

Overall, 86,326 potential variables were available in the dataset, the highest number coming from the fol-
lowing categories: 41,276 unique prescribed drugs; 20,149 unique operations or procedures and 22,913 unique 
diagnoses. To reduce dimensionality and  complexity14 we chose to extract the 30 most important variables. 
Our feature extraction process followed an iterative process (Fig. S1): (1) We first chose the 140 variables which 
clinical experts found most promising to predict death. On these, feature importance was assessed first using 
Lasso Regression, a Linear Regression model with L1-Regularization, i.e. a term penalizing high coefficients. 
The Lasso Regression removes less useful features, by setting their coefficients to zero, to minimize the L1 term. 
By increasing the regularization value iteratively, forcing the Lasso Regression to drop more features, it is pos-
sible to create an order of importance of respective features before passing them on to a more complex model. 
Afterwards, Random Forest Classification models were trained using all features and iteratively excluding features 
with lesser importance until the classifiers (balanced) accuracy drastically decreased. (2) Then, we repeated that 
process by pooling the variables extracted in step (1) and all others except prescribed drugs, unique operations 
or procedures and diagnoses. We then performed another Lasso Regression and Random Forest Classification 
to exclude variables once more until the classifiers (balanced) accuracy decreased. (3) Afterwards we pooled 
variables extracted before with prescribed drugs, unique operations or procedures and diagnoses and repeated 
the exclusion step once more. Finally, the 30 features with highest Gini importance, i.e. features responsible for 



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17464  | https://doi.org/10.1038/s41598-022-21373-3

www.nature.com/scientificreports/

Figure 1.  Flow of the data. Each combination of follow-up and time distance allowed for different datasets. 
The dataset used for training a model contained the maximum number of patients available who survived 
follow-up + time–distance respectively up to the target year. Training datasets have been created by randomly 
removing surviving patients such that their sample size matched that of deceased individuals. Positive target 
variable values were made up from patients dying during the following year. Validation and test datasets 
consisted of 20% and 10% of samples, including the respective amount of target values, correctly resembling the 
underlying population.
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best splits and high probability of being reached in respective decision trees, in the Random Forest Classifier 
have been extracted. Appendix Table S1 summarizes all retained features, and Appendix Fig. S1 describes the 
variable extraction process.

Follow‑up and time distance. Data was available for years in between 2012 and 2017. In order to evalu-
ate performance gains with an increasing follow-up period, i.e. sampling data from a bigger range of years (e.g. 
collecting data from 3 instead of 2 years for prediction making) and performance losses with predicting death 
further into the future (time distance until potential death, e.g. using data from up to 2015 versus data from up 
to 2017 to predict death in 2017, resulting in a time distance of 2); a time distance of 0 would result in predict-
ing the 1-year mortality. We constructed 15 different datasets containing all possible combinations of follow-up 
periods (1–5 years) and time distances until death (0–4 years).

Data sources and access. As described  before15,16, data used for this study was provided by the GEWiNO 
using a data protection approved platform. Data were pseudonymized and included the described covariates 
among further variables. Comparability of data between different years and data consistency was given.

Bias. Participants and providers were not aware that the claims data will be used for data analyses. Selection 
bias within this study was impossible for the target population (very old individuals insured at AOK Nordost). 
Although it is noteworthy that the cohort included in the dataset differs from the overall population of very old 
Germans and likely suffers from biases of claims data, as discussed later.

Statistical analyses. The following ML models were employed: LR, a model assigning a probability for a 
target variable, which in our case was death, using a linear combination of available  variables17. We trained mul-
tiple models for each dataset candidate, the only hyperparameter being the number of iterations which ranged 
between  23 to  216 in steps of powers of two. For training the L-BFGS optimization method was  utilized18. All 
models converged before reaching  216 iterations. The model with the highest (balanced) accuracy on the valida-
tion set was chosen. For 4 out of our 15 datasets this was not the model which converged on the training set.

RF, an ensemble model containing multiple decision trees classifying inputs into an arbitrary number of 
 classes19. In our case the decision was binary, i.e. an individual survived or died. For Hyperparameter tuning, 
Random Search was utilized, in this case it consisted of randomly choosing 1000 candidate parameter combi-
nations, namely number of estimators, i.e. decision trees, (5–1000); maximum number of random samples per 
decision tree used during training (1 − N); minimum number of samples in leaf nodes (1 − N/10), with N being 
the number of samples in the given training dataset. Each combination was trained independently and evaluated 
on the validation set. The RF with the combination of hyperparameters yielding highest (balanced) validation 
accuracy was chosen respectively.

XGB, an advanced ensemble machine learning model also utilizing decision trees, but unlike RF constructing 
them additively, not  independently20. Hyperparameter tuning was equivalent to RF but with different param-
eters, namely number of estimators (5–1000); maximum decision tree depth (1–50); minimal child weight, i.e. 
minimal summed weight needed to construct a child node (1–20); gamma, i.e. minimum loss reduction needed 
in order to partition a node (0–2 in 0.1 steps); maximum number of bins, i.e. maximum number of distinct value 
groups per feature  28–216. The classifier with the combination of hyperparameters yielding highest (balanced) 
validation accuracy was chosen.

All analyses, modeling and visualization were performed using Python (version 3.6.12, available at http:// 
www. python. org) and auxiliary modules, notably scikit-learn (version 0.24.1) and XGBoost (version 1.4.0).

Ethical approval and informed consent. All experiments were carried out in accordance with relevant 
guidelines and regulations. Data collection was ethically approved by the ethics committee of the AOK Nordost. 
Informed consent was waived by the ethics committee of the of the AOK Nordost.

Results
The flow of data is summarized in Fig. 1. As described, the sampled cohort included 373,077 individuals, 142,102 
did not survive follow-up; characteristics of the cohort are shown in Table 1. The mean follow-up was 1816 days 
(standard deviation SD: 574). The mean (SD) age of the sample was 83.5 (5.1) years. The majority of individu-
als were female and younger than 85 years. The mortality rate was 9.15% in mean per year and higher in males 
than females and those with social hardship status than those without. Mortality increased incrementally and 
monotonically with increasing age; there were minor differences between federal states only.

The models showed useful (balanced) accuracy between 65 and 93% (Fig. 2). A longer follow-up period 
showed limited to no advantage in predicting death, but models trained on data with short time distance from 
death were more accurate than models trained on more distant data. RF and XGB were more accurate than LR 
for every follow-up and time distance. The difference between RF and XGB, however, was limited, and the pos-
sible advantage of XGB was only apparent when having data available up until death.

There was consistency in the most important variables employed for prediction by different models: The 
utilization of laboratory diagnostic services and transportation costs (per year and in 365 days intervals) as well 
as the consumption of conventional (not urgent) outpatient care were relevant for all three models; utilization of 
an emergency transport was relevant for LR and XGB (Table 2). For LR, the direction of associations was notable; 
having had emergency hospital visits and transports as well as any hospital visits significantly increased the risk 
of dying, while having had laboratory analytics and having consumed conventional outpatient care decreased it.

http://www.python.org
http://www.python.org
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All secondary metrics (F1-score, sensitivity, specificity, PPV and NPV) showed similar behavior as (balanced) 
accuracy (in Table 3, details for exemplary models built on 1-year follow-up and time distances between 0 and 
4 years are shown). Notably, for RF and XGB sensitivity and specificity were similar, while for LR sensitivity was 
significantly lower than specificity (Figs. 3 and 4). For all three models, the NPV significantly exceeded 90% 
for all analyses, while the PPV was below 62% (and even dropped to below 20% for longer time distances from 
death, see Table S2).

Discussion
Predicting death on claims data has a range of relevant applications, for example early and targeted intervention 
by healthcare professionals, or risk-adjusted insurance policies and incentives. So far, few studies have used 
large claims dataset and analyzed them using ML for predicting  mortality21–23. In the present evaluation, data 
from over 370,000 elderlies from a large area in Germany were used to train and test ML models; the underlying 
dataset contained over 86,000 features. We aimed to employ ML for predicting and to also assess if the models 
build their predictions in a consistent manner and according to clinical reasoning.

We found (balanced) accuracies which ranged between 65 to 93%, i.e. moderately useful to excellent, depend-
ing on three factors (ordered according to their relevance); time distance to death; ML model architecture; 
follow-up period (i.e. number of accumulated data a model was trained on). A range of predictors were assessed 
and found both consistently across models and in line with clinical reasoning. Notably, while the (balanced) 

Table 1.  Sample characteristics (N; %) from Northeast Germany. Total, male and female population aged 
75 years or older, in 5-years age bands and according to federal state. We compare the global dataset against 
the sampled cohort. *“Others” indicates individuals who were insured at AOK Nordost, but did not live in the 
three federal states of interest.

Covariate Group N Mortality rate (%)
Mean annual total costs in EUR (years alive–
year of death)

Mean annual transportation costs in EUR 
(years alive–year of death)

All 373,077 (100%) 9.15 9958 (7642–15,664) 340 (229–613)

Sex
Male 123,537 (33.1%) 10.02 9434 (6795–15,200) 376 (232–691)

Female 249,540 (66.9%) 8.74 10,213 (8032–15,920) 322 (227–570)

Age group

75–79 155,671 (22.8%) 4.45 7267 (5221–15,127) 247 (151–619)

80–84 258,718 (37.9%) 6.47 9221 (7252–15,940) 327 (228–666)

85–89 166,720 (24.4%) 10.74 11,394 (9243–15,559) 400 (283–627)

90–94 76,656 (11.2%) 17.90 13,877 (12,049–15,757) 435 (323–550)

95–99 20,587 (3.0%) 26.92 15,896 (15,551–16,127) 429 (345–485)

100–104 3584 (0.5%) 37.88 16,191 (17,806–15,728) 353 (288–371)

105–109 318 (0.05%) 44.83 16,162 (20,307–15,055) 268 (264–269)

Social hardship status
No 191,018 (51.2%) 8.47 6704 (4956–11,720) 201 (129–409)

Yes 182,059 (48.8%) 9.87 13,374 (10,719–19,002) 485 (343–786)

Federal state

Berlin 112,359 (30.1%) 9.25 10,057 (7594–16,105) 269 (177–496)

Brandenburg 140,912 (37.8%) 8.95 9550 (7305–15,284) 364 (244–653)

Mecklenburg 99,041 (26.6%) 9.07 9851 (7583–15,545) 359 (241–653)

Others* 20,531 (5.5%) 10.54 12,918 (10,987–16,317) 472 (358–677)

Figure 2.  Balanced accuracy of predicting death using Logistic Regression (a), Random Forests (b) and 
Extreme Gradient Boosting (c). Models built on different follow-up periods (from 1 to 5 years) in which 
covariates may have occurred, and used different time distances (time between exposure and event [death]).
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accuracies were rather high (as were the NPVs), the positive predictive values were low. This and more details 
need to be discussed.

First, the time distance to an event (death or survival) was most relevant for (balanced) accuracy. It was 
apparent that events close to death were features the models built on. Notably, these were rather indicators of 
poor health (e.g. requiring an emergency transport, costs for transportation) but not specific health conditions or 
risk factors (which were available in the dataset, but not found that relevant for prediction making). Vice versa, 
we did not find benefits in increasing the follow-up period, i.e. in expanding the dataset available for training, 
which is likely a function of the relevance of distance to death: Data acquired 3 or 4 years ago was too distant and 
hence not useful for prediction making any longer. If claims data are to be used for prediction making, it seems 
relevant to record and employ them in a timely manner, i.e. to avoid lengthy delays in documentation, records 
cleaning and making them available for modelling.

Second, ensemble models showed advantages over the less complex LR. This has been found  before24 and was, 
to some degree expected given the size of our dataset. While in smaller datasets, more complex models oftentimes 
do not yield advantages or even show limitations due to overfitting (i.e. learning the training data by heart and 
not generalizing sufficiently any longer), in large datasets they can exert their power and yield superior accura-
cies. Notably, the interpretation of these models is no longer possible for humans, which is why it was relevant 

Table 2.  The most important predictors used by logistic regression (LR), random forest (RF) and extreme 
gradient boosting (XGB). For LR, Odds Ratios and 95% confidence intervals (95% CI; from 100 independently 
trained LR models) are shown to display variable importance, for RF and XGB Gini importance is displayed. 
Models represented are from dataset with 1 year of follow-up and no time distance to the point of death.

LR Odds ratio Lower CI Upper CI

Emergency hospital visits [count] 1.379 1.357 1.401

Claimed non-emergency (conventional) outpatient services 
[count] 0.689 0.687 0.692

Hospital visits [count] 1.270 1.257 1.284

Claimed laboratory analytics [count] 0.733 0.729 0.738

Emergency transport utilized [yes] 1.245 1.228 1.263

RF Gini importance (%) XGB Gini importance (%)

Total transportation cost in 365 days intervals 36.0 Emergency transport utilized [yes] 44.8

Claimed non-emergency (conventional) outpatient services 
[count] 25.36 Claimed non-emergency (conventional) outpatient services 

[count] 11.2

Transportation cost billed per calendar year 6.2 Total transportation cost in 365 days intervals 8.6

Insurance points claimed 5.9 Claimed laboratory analytics [count] 3.9

Total costs billed per calendar year 4.3 Transportation cost billed per calendar year 2.9

Table 3.  Metrics for predicting death using logistic regression (a), random forests (b) and extreme gradient 
boosting (c). Models built on a follow-up period of 1 year and time distances (from 0 to 4 years).

Time distance [years] Balanced accuracy F1-score (weighted) Sensitivity Specificity PPV NPV

(a)

0 0.856 0.918 0.794 0.917 0.453 0.981

1 0.706 0.812 0.637 0.775 0.205 0.959

2 0.66 0.778 0.583 0.737 0.184 0.946

3 0.655 0.797 0.532 0.778 0.204 0.94

4 0.647 0.788 0.524 0.77 0.206 0.934

(b)

0 0.896 0.911 0.898 0.895 0.426 0.99

1 0.722 0.776 0.733 0.71 0.187 0.967

2 0.71 0.787 0.68 0.739 0.209 0.958

3 0.682 0.748 0.679 0.684 0.187 0.952

4 0.673 0.73 0.684 0.661 0.187 0.948

(c)

0 0.911 0.928 0.904 0.918 0.488 0.991

1 0.723 0.783 0.724 0.723 0.192 0.966

2 0.717 0.781 0.707 0.726 0.208 0.961

3 0.686 0.757 0.673 0.699 0.193 0.952

4 0.674 0.739 0.672 0.676 0.192 0.948
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to contrast the feature importance (Gini importance) of RF and XGB with the most impactful coefficients of LR 
(Odds-Ratio furthest away from 1), where we can assess the direction of any underlying association, for instance.

Third, we found these associations and the feature importance to be both consistent across models and clini-
cally meaningful. Certain factors (the need of and costs for transportation being first and foremost, followed 
by the need for an emergency and, more generally, any hospital visit) increased the risk of death in LR, while 
others (receiving conventional outpatient care, laboratory analytics) decreased it. While the former indicates, as 
discussed, the poor health of people before dying, the latter can be considered as indicators of moderate to good 
health (e.g. as individuals were able to receive outpatient care on their own).

Last, sensitivity, specificity and NPV were high or very high (NPV exceeding 98% means that nearly every 
individual identified to be not at risk eventually survived—this certainty is most relevant for any application 
in the practice or insurance setting). On the other hand, the PPV was very low; individuals identified to be at 
risk were, as indicated above, by no means not at high risk of dying. This low PPV and high NPV were mainly 
the result of the low incidence of death (9% per year). With this regard, models with a high sensitivity are espe-
cially desired, another reason why LR does not seem the best choice when implementing any such model into 
a healthcare application.

This study has a number of strengths and limitations. First, it is one of few longitudinal investigations in the 
very old and comprises a cohort of over 370,000 individuals from three different federal states. Second, a massive 
variety in covariates could be employed and considered during feature extraction, many of them at first glance not 
directly related to mortality. This, however, is one of the promises of big data and advanced analytics; identifying 
complex patterns in data beyond the capacity of humans and building highly accurate models on that. Third, as 
indicated, further refinement of the developed models may assist in implementing a useful application in the 
insurance or practice setting: Data owners like insurers or practices could regularly feed models with claims 
data to identify insurance holders or patients at risk. These could, for example, be scheduled for more regular 
check-ups, which could be additionally incentivized, or could be offered specific preventive or monitoring pro-
grams. Admittedly, identifying individuals at risk comes with significant ethical conflicts (e.g. individuals have 
a “right not to know”) and moral hazards (e.g. risk-based insurance premiums). Fourth, and as a limitation, 

Figure 3.  Sensitivity for predicting death using Logistic Regression (a), Random Forests (b) and Extreme 
Gradient Boosting (c). Models built on different follow-up periods (from 1 to 5 years) in which covariates may 
have occurred, and used different time distances (time between exposure and event [death]).

Figure 4.  Specificity for predicting death using Logistic regression (a), Random forests (b) and Extreme 
Gradient Boosting (c). Models built on different follow-up periods (from 1 to 5 years) in which covariates may 
have occurred, and used different time distances (time between exposure and event [death]).
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claims data suffer from a range of biases. For example, we cannot easily infer from claimed to provided or even 
needed treatments. Certain possibly relevant factors (e.g. care status) were not available and accounted for, and 
some available factors (e.g. social hardship status, place of living) came with limited granularity. Fifth, individu-
als insured by AOK Nordost are not fully representative for all Germans, as they are less affluent and tend to 
be older than the national average. The rural–urban disparities are also more severe in this region, with Berlin 
as capital and some of the poorest and most rural German municipalities being spatial neighbors. Moreover, 
privately insured individuals are not at all reflected; these are usually more affluent given the entry barrier to 
private insurance being a minimum salary (or being self-employed or a public servant). Notably, their share is 
very low in this part of Germany. Last, in order to avoid bias coming from oversampling techniques, we instead 
opted for undersampling, which itself may introduce bias. Notably, undersampling was conducted for training, 
not testing, hence reflecting the true value of the models for predicting death in the full population.

In conclusion, all ML models showed useful accuracies to predict mortality, but more complex models showed 
advantages over LR. Making predictions far into the future was less accurate than more short-term predictions. 
The variables employed for prediction were consistent across models and with medical reasoning. Identifying 
individuals at risk could assist tailored decision-making in daily care and allow targeted interventions on indi-
vidual and insurance level.

Data availability
Data used in this study cannot be made available by the authors given data protection rules, but may be requested 
at the GEWiNO.
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