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Continued
SUMMARY

Premature atrial contractions (PACs) are frequently observed on electrocardio-
grams and are associated with increased risks of atrial fibrillation (AF), stroke,
and mortality. In this study, we aimed to identify genetic susceptibility loci for
PAC frequency. We performed a genome-wide association study meta-analysis
with PAC frequency obtained from ambulatory cardiac monitoring in 4,831 indi-
viduals of European ancestry. We identified a genome-wide significant locus at
the SCN5A gene. The lead variant, rs7373862, located in an intron of SCN5A,
was associated with an increase of 0.12 [95% CI 0.08–0.16] standard deviations
of the normalized PAC frequency per risk allele. Among genetic variants previ-
ously associatedwith AF, there was a significant enrichment in concordance of ef-
fect for PAC frequency (n = 73/106, p = 5.13 10�5). However, several AF risk loci,
including PITX2, were not associatedwith PAC frequency. These findings suggest
the existence of both shared and distinct genetic mechanisms for PAC frequency
and AF.

INTRODUCTION

Premature atrial contractions (PACs) are a form of ectopic atrial activity in which the action potential is

generated by the atrial myocardium. They are frequently observed on electrocardiograms (ECG) and

detectable in up to 99% of individuals over 50 years of age undergoing 24-h (24h) Holter monitoring, which

is considered the gold standard for PAC quantification in clinical practice (Conen et al., 2012). Although

generally considered to be benign, PACs are an independent predictor of incident atrial fibrillation (AF)

(Dewland et al., 2013) and have been associated with increased risks of stroke and death (Larsen et al.,

2015; Lin et al., 2015).

The etiology of PACs remains uncertain, but several risk factors have been identified, including older age,

cardiovascular disease, greater height, and the lack of physical activity (Conen et al., 2012). Contrary to AF,

for which many susceptibility loci have been identified (Roselli et al., 2018), little is known about the genetic

architecture of PAC frequency. The identification of risk loci would improve the understanding of the bio-

logical mechanisms leading to PACs, as well as the relationship between PACs and AF. This information

could potentially lead to the development of novel preventive therapies.

In this study, we aimed to identify common genetic variants associated with PAC frequency measured by

ambulatory ECG monitoring by performing a genome-wide association study (GWAS) meta-analysis. We

also compared the genetic architectures of PAC frequency and AF.

RESULTS

GWAS meta-analysis

Five cohorts with a total of 4,831 individuals of European ancestry were included in the analysis (Table 1).

Mean age varied from 35.5 to 72.6 years. The proportion of men was between 37% and 54%. The estimated

number of PACs per hour before normalization ranged from 0 to 1482, with a median between 0 and 4.1 per
iScience 25, 105210, October 21, 2022 ª 2022 The Author(s).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2022.105210&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1. Clinical characteristics of individuals included from each cohort

GAPP SAPALDIA CHS MESA BHS

N 1897 1194 833 502 405

ECG monitoring Holter Holter Holter Zio Holter

Duration (h) 24.0 (0.1) 22.3 (2.1) 21.7 (1.0) 305.6 (67.4) 20.0 (2.0)

Age (years) 35.5 (5.2) 59.9 (6.0) 71.3 (4.6) 72.6 (7.9) 47.7 (15.1)

Sex (n male, %) 879 (46.3) 643 (53.9) 342 (41.1) 245 (48.8) 149 (36.8)

Height (m) 1.72 (0.09) 1.68 (0.09) 1.65 (0.09) 1.68 (0.10) 1.63 (0.09)

BMI (kg/m2) 24.6 (3.8) 26.5 (4.2) 26.6 (4.1) 27.8 (5.2) 26.0 (5.0)

Hypertension (n, %) 254 (13.4) 629 (52.7) 421 (50.5) 278 (55.4) 134 (33.1)

Diabetes (n, %) 0 (0) 67 (5.6) 109 (13.1) 74 (14.7) 24 (5.9)

Myocardial infarction (n, %) 0 (0) 8 (0.7) 0 (0) 7 (1.4) 8 (2.0)

Heart Failure (n, %) 0 (0) 18 (1.5) 0 (0) 1 (0.2) NA

PAC frequency (n/h) – mean (SD) 0.57 (3.6) 8.6 (40.4) 29.4 (108.4) 31.9 (100.5) 10.9 (63.0)

PAC frequency (n/h) - median (IQR) 0.13 (0.25) 1.2 (2.6) 3.0 (10.0) 4.1 (14.9) 0 (0.86)

Continuous variables are expressed as mean (standard deviation) unless stated otherwise. GAPP: Genetic and phenotypic

determinants of blood pressure and other cardiovascular risk factors; SAPALDIA: Swiss Cohort Study on Air Pollution and

Lung Diseases in Adults, CHS: Cardiovascular Health Study; MESA: Multi-Ethnic Study of Atherosclerosis; BHS: Baependi

Heart Study; BMI: body mass index, PAC: premature atrial contraction, SD: standard deviation, IQR: interquartile range.

See also Table S1.
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cohort. All participant samples were genotyped using a genome-wide array, and data were imputed with a

reference panel selected for each cohort (Table S1).

A total of 9,643,192 variants were meta-analyzed, including 6,807,074 variants common to all five cohorts.

There was no evidence of inflation in the individual cohorts (lambda between 0.992 and 1.073) or in the

meta-analysis (lambda of 1.011) (Figure S1). Five variants at the 3p22.2 locus reached the genome-wide sig-

nificance threshold (Figures 1 and 2). The lead variant, rs7373862, is located in an intron of the gene for so-

dium voltage-gated channel alpha subunit 5 (SCN5A). The direction of effect was concordant in all five co-

horts, and there was no significant heterogeneity (p = 0.27) (Figure 3). A list of variants with p < 1 3 10�5 is

available in Table S2. We retrieved a related phenotype in UK Biobank from hospital records, namely the

presence of atrial premature depolarization. The risk allele at the lead variant (rs7373862-A) was nominally

associated with this phenotype (n = 328 cases and 408,021 controls; OR = 1.22 [95% CI: 1.03, 1.43], p =

0.020).

Credible set and annotation

The 95% credible set included five variants, all in linkage disequilibrium (R2 > 0.95) (Table S3). To verify if

these variants are associated with a change in the expression of nearby genes, we queried publicly avail-

able expression quantitative trait loci (eQTL) datasets in several tissues, including heart chambers. The

lead variant is a weak eQTL for SCN5A in thyroid (p = 5.13 10�11) and lung (p = 2.03 10�5) tissues, accord-

ing to the Genotype-Tissue Expression (GTEx) project (Table S3). The risk allele rs7373862-A for PAC fre-

quency is associated with higher expression of SCN5A in these tissues. As for regulatory elements, two var-

iants, rs3924120 and rs3935184, showed DNase peaks in cardiac tissues. Notably, rs3935184 is located in a

DNase peak for the right atrium and is predicted to lie in a gene enhancer region for the right ventricle,

according to a model including five chromatin marks (Kundaje et al., 2015) (Table S3).

Replication of variants associated with AF

We verified the effect of previously identified genome-wide significant variants for AF obtained following

conditional analysis in a meta-analysis of 537,409 individuals of European ancestry (Roselli et al., 2018). Out

of 107 variants, 106 were available in the PAC frequency meta-analysis. One variant (rs187585530) was

excluded because the allele frequency was lower than 0.01. Five variants were significantly associated

with PAC frequency at a false-discovery rate threshold of 5% (Tables 2 and S4 and Figure S2), including

three variants at the SCN5A/SCN10A locus (rs7374540, rs7373065, and rs6790396). Variant rs7374540 is

in linkage disequilibrium with the PAC frequency lead variant rs7373862 (R2 = 0.808 in European individuals
2 iScience 25, 105210, October 21, 2022
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Figure 1. Manhattan plot of the meta-analysis of premature atrial contraction frequency

The genome-wide significant locus is shown in red. The dashed line represents the genome-wide significance threshold (p < 5 3 10�8). See also Figure S1

and Table S2.
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from 1000 Genomes), and the risk allele for AF (rs7374540-A) correlates with the allele associated with a

higher PAC frequency (rs7373862-A). Variant rs6480708, located in an intron of SYNPO2L-AS1, near SYN-

PO2L, and rs2288327, located in an intron of TTN, were also associated with PAC frequency (p respectively

0.00020 and 0.0019). On the other hand, the lead AF variant at the PITX2 locus, rs6847935, was not associ-

ated with PAC frequency (p = 0.94). Out of the 106 variants, 73 (68.9%) had a concordant direction of effect

between AF and PAC frequency, which is significantly higher than expected by chance (p = 5.1 3 10�5)

(Figure S3).

DISCUSSION

We performed the first genetic association study for PAC frequency measured from ambulatory monitoring

and identified a robust and reproducible association with common variants located in an intron of SCN5A.

Among genetic variants previously associated with AF, there was a significant enrichment in concordance

of effect for PAC frequency.

SCN5A encodes the alpha subunit of themain cardiac sodium channel Nav1.5, a large transmembrane pro-

tein with four homologous domains. It maintains the normal inward sodium current in the heart and has an

important role in the fast depolarization phase that enables initiation of the excitation–contraction

coupling cascade, for proper conduction of the electrical impulses in the heart (Li et al., 2018). Genetic var-

iants in SCN5A have been associated with several arrhythmias, including AF, Brugada syndrome, long QT

syndrome, sick sinus syndrome, ventricular fibrillation, and atrioventricular block, along with contractile

dysfunction and dilated cardiomyopathy (Akai et al., 2000; Benito et al., 2008; Kapplinger et al., 2010;

Wang et al., 2002; Wilde and Amin, 2018). Both gain- and loss-of-function variants located in different cod-

ing regions of the protein have been linked to atrial arrhythmias (Li et al., 2018; Wilde and Amin, 2018).

SCN5A is therefore an obvious candidate causal gene for PAC frequency, although the specific causal

variant and mechanism cannot be established with certainty based on our data. Some of the identified

SNPs could have a regulatory function, as suggested by modest effects on gene expression in non-cardiac

tissues and the presence of regulatory elements in cardiac tissues (GTEx Consortium, 2020; Dong and

Boyle, 2019). The SNPs could also tag a rare mutation impacting the protein, although this interpretation

is less likely given the consistency of the association among several European ancestry populations from

Europe, North America, and South America.
iScience 25, 105210, October 21, 2022 3



Figure 2. Regional plot at the genome-wide significant locus associated with premature atrial contraction

frequency

The lead variant rs7373862 is depicted by a purple diamond. Linkage disequilibrium in relation to the lead SNP is shown

using the color scale. See also Table S3.
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To our knowledge, a single GWAS was previously published for a closely related phenotype. Napier et al.

performed a multi-ancestry GWAS meta-analysis in 42,976 individuals for supraventricular ectopy, defined

as one or more supraventricular ectopic beats (a synonym of PACs) on a standard 10-s, twelve-lead elec-

trocardiogram (Napier et al., 2018). Although they did not identify any genome-wide significant associa-

tion, the lead variant, rs3922844 (p = 1.5 3 10�7), was located in the SCN5A gene, about 10 kilobases

from our lead SNP. The identification of a genome-wide significant signal at this locus in our study with

a smaller sample size underscores the importance of optimizing phenotype measurement to maximize po-

wer, in this case by using continuous PAC frequency from ambulatory monitoring.

We also observed associations between PAC frequency and previously reported AF risk variants. In addi-

tion to SCN5A, variants in two other loci, near SYNPO2L and TTN, showed a significant association with

PAC frequency after correction for multiple testing. Interestingly, the proteins coded by these genes are
Figure 3. Forest plot representing the effect of the lead variant rs7373862 on premature atrial contraction

frequency in each cohort

Beta represents the effect of each risk allele (rs7373862-A) on the normalized number of premature atrial contractions per

hour, one unit corresponding to one standard deviation. GAPP: Genetic and phenotypic determinants of blood pressure

and other cardiovascular risk factors; SAPALDIA: Swiss Cohort Study on Air Pollution and Lung Diseases in Adults, CHS:

Cardiovascular Health Study; MESA: Multi-Ethnic Study of Atherosclerosis; BHS: Baependi Heart Study.

4 iScience 25, 105210, October 21, 2022



Table 2. Replication of selected variants previously associated with atrial fibrillation

Variant Chr Pos RA NRA RR AF P AF Z PAC P PAC Candidate gene(s)

rs7374540 3 38634142 A C 1.06 1.7 3 10�12 4.866 1.1 3 10�6 SCN5A

rs6480708 10 75420114 C A 1.12 5.8 3 10�27 3.720 0.00020 SYNPO2L

rs7373065 3 38710315 T C 1.26 3.9 3 10�15 3.614 0.00030 SCN5A, SCN10A

rs6790396 3 38771925 G C 1.06 5.7 3 10�15 3.581 0.00034 SCN10A

rs2288327 2 179411665 G A 1.11 3.5 3 10�23 3.110 0.0019 TTN

rs6847935 4 111696651 T A 1.48 1.9 3 10�427 0.070 0.94 PITX2

Chr: chromosome; Pos: position (GRCh 37); RA: risk allele; NRA: non risk allele; RR AF: relative risk for atrial fibrillation from Roselli et al. (2018); P AF: P for atrial

fibrillation from Roselli et al. (2018); Z PAC: Z score for premature atrial contraction frequency from the current meta-analysis; P PAC: P for premature atrial

contraction frequency from the current meta-analysis. See also Figures S2 and S3 and Table S4.
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expressed in the heart and are involved in sarcomere organization (Clausen et al., 2021). Loss-of-function

variants in both genes have been associated with AF in humans (Ahlberg et al., 2018; Clausen et al., 2021),

and transgenic animal models exhibit cardiac fibrosis and electrical abnormalities (Ahlberg et al., 2018; van

Eldik et al., 2017). These mechanisms could be common to PAC frequency and AF. Also, variants near TTN

have recently been associated with left atrial passive emptying fraction, further supporting the role of this

gene in atrial function (Ahlberg et al., 2021).

On the other hand, other AF susceptibility loci showed no significant association with PAC frequency.

Moreover, >30% of the AF-associated variants had a discordant direction of effect. Notably, the lead

SNP at the strongest AF risk locus, PITX2, showed no association with PAC frequency. These findings sug-

gest that the genetic mechanisms involved in the two phenotypes are not identical.

In conclusion, we identified a novel association at the SCN5A locus with PAC frequency and the existence of

genetic determinants shared between AF and PAC frequency. More studies are needed to further define

the biological mechanisms by which cardiac sodium channels and sarcomere organization influence

ectopic atrial activity and to elucidate the complete genetic architecture of PAC frequency.
Limitations of the study

First, the distribution of PAC frequency was highly skewed and varied considerably among the cohorts. The

use of ambulatory monitoring data and normalization within each cohort produced a robust phenotype

adapted to each population. Second, only individuals of European ancestry were included in the analyses

due to a low sample size for other ancestries; further studies are needed with other ancestries. The power to

detect variants with a small effect was limited by the modest sample size for a genome-wide association

study, due to the limited availability of ambulatory electrocardiographic monitoring in large population-

based cohort studies. This is nevertheless the first study evaluating genetic determinants of PAC frequency

as a continuous variable obtained from ambulatory monitoring.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Summary statistics of the GWAS

meta-analysis for PAC frequency

This paper https://www.ebi.ac.uk/gwas/: accession number GCST90134637

Software and algorithms

METAL Willer et al. (2010) https://genome.sph.umich.edu/wiki/METAL

SAIGE Zhou et al. (2018) https://github.com/weizhouUMICH/SAIGE

CAVIAR Hormozdiari et al. (2014) https://github.com/fhormoz/caviar

HaploReg Ward and Kellis (2012) https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php

RegulomeDB Dong and Boyle (2019) https://regulomedb.org/regulome-search/
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Sébastien Thériault (sebastien.theriault@criucpq.ulaval.ca).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d Summary statistics of the meta-analysis have been deposited on GWAS Catalog and are publicly avail-

able as of the date of publication. Accession numbers are listed in the key resources table.

d This paper does not report original code. All codes used in this study followed the manuals of the soft-

ware listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
EXPERIMENTAL MODELS AND SUBJECT DETAILS

A total of five population-based cohorts were included in the study: Genetic and phenotypic determinants of

blood pressure and other cardiovascular risk factors (GAPP), Swiss Cohort Study on Air Pollution and Lung Dis-

eases in Adults (SAPALDIA), Cardiovascular Health Study (CHS), Multi-Ethnic Study of Atherosclerosis (MESA),

and Baependi Heart Study (BHS). Only individuals of European ancestry were included due to a low sample size

for other ancestries. Individuals with a history of AF, pacemaker implantation or those using antiarrhythmic

drugs other than beta-blockers and calcium channel blockers were excluded. Institutional review board

approval and informed consent for all participating individuals were obtained at the study level. A summary

of the clinical characteristics of the individuals included from each cohort is available in Table 1.

Cohort description

GAPP

Genetic and phenotypic determinants of blood pressure and other cardiovascular risk factors (GAPP) is a

population-based prospective cohort study involving a representative sample of healthy adults aged 25–41

years residing in the Principality of Liechtenstein (Conen et al., 2013). Exclusion criteria were the presence of

cardiovascular disease, diabetes, obstructive sleep apnoea and a body mass index >35 kg/m2.

SAPALDIA

Swiss Cohort Study on Air Pollution And Lung And Heart Disease In Adults (SAPALDIA) is a population-

based multi-center study in eight geographic areas representing the range of environmental,
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meteorological and socio-demographic conditions in Switzerland (Ackermann-Liebrich et al., 1997; Martin

et al., 1997). It was initiated in 1991 (SAPALDIA 1) with a follow-up assessment in 2002 (SAPALDIA 2) and

2010 (SAPALDIA3). This study has specifically been designed to investigate longitudinally lung function,

respiratory and cardiovascular health; to study and identify the associations of these health indicators

with individual long term exposure to air pollution, other toxic inhalants, lifestyle and molecular factors.

CHS

Cardiovascular Health Study (CHS) is a population-based cohort study of risk factors for coronary heart dis-

ease and stroke in adults R65 years conducted across four field centers (Fried et al., 1991). The original

predominantly European ancestry cohort of 5,201 persons was recruited in 1989–1990 from random sam-

ples of the Medicare eligibility lists; subsequently, an additional predominantly African American cohort of

687 persons was enrolled for a total sample of 5,888.

MESA

Multi-Ethnic Study of Atherosclerosis (MESA) is a community-based study of subclinical cardiovascular dis-

ease in a sample of 6,814 men and women without cardiovascular disease, aged 45–84 years at baseline

(2000–2002) (Bild et al., 2002). Participants were enrolled at six US field centers, and self-identified as Black,

Chinese American, Hispanic, or White. At Exam 6 (2016–2018), a subset of participants wore one or two

14-day Zio Patch cardiac monitors (Heckbert et al., 2020). The White participants with Zio Patch data

were included in this analysis.

BHS

The Baependi Heart Study was set up in 2005 to develop a longitudinal family-based cohort study that re-

flects on some of the genetic and lifestyle-related peculiarities of the Brazilian populations, in order to eval-

uate genetic and environmental influences on CVD risk factor traits (Egan et al., 2016).
METHOD DETAILS

Quantification of PACs

PAC frequency was obtained from 24h monitoring using Holter monitors or 2-week monitoring using Zio

patches (one study). Participants with a duration of recording of less than 18 h were excluded. The number

of PACs per hour was normalized using rank-based inverse normal transformation with the Rankit method,

i.e., the inverse cumulative normal function of (r - 1/2)/n, where r is the rank and n the number of

observations.
Genotyping and imputation

Genotyping was performed individually by each cohort using a genome-wide array (Table S1). Individuals

with a poor genotype call rate, unusually high heterozygosity or sexmismatch and ancestry outliers (verified

using principal component analysis) were excluded. Variants with a poor call rate, marked deviations from

Hardy Weinberg equilibrium or a low minor allele frequency were excluded. Imputation was performed us-

ing reference panels from 1000 Genomes, Haplotype Reference Consortium (HRC), Trans-Omics for Preci-

sion Medicine (TOPMed) or the Genetic Investigation of ANthropometric Traits (GIANT) consortium

(Table S1).
Study-level association analyses

Association between each variant and normalized PAC frequency was evaluated using linear regression. An

additive model was used with the genotype probability (expected allele dosage) for imputed data. Cova-

riables included age, sex and the first ten genetic principal components, along with study-specific covari-

ates (e.g., center, genotyping platform) (Table S1).
GWAS meta-analysis

The summary statistics from each cohort were examined for signs of inflation and discrepancy in allele fre-

quencies. Variants with an imputation quality score <0.3 or minor allele frequency <0.01 were excluded. A

meta-analysis was performed using METAL (Willer et al., 2010) with sample size weighting. The genome-

wide significance level of p < 5.0 3 10�8 was used. Heterogeneity was evaluated using Cochran’s Q-test.
10 iScience 25, 105210, October 21, 2022
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Replication in UK Biobank

We verified the association of the lead SNP at the genome-wide associated locus with a diagnosis of atrial

premature depolarisation in UK Biobank (International Classification of Diseases version-10 code number

I49.1). Samples were genotyped with the Affymetrix UK BiLEVE Axiom array or the Affymetrix UK Biobank

Axiom Array. Phasing and imputation were performed centrally using a reference panel combining the

Haplotype Reference Consortium, UK10k and 1000 Genomes Phase 3 samples (Bycroft et al., 2018). Sam-

ples with call rate <95%, outlier heterozygosity rate, gender mismatch, non-white British ancestry, samples

with excess third-degree relatives (>10), or not used for relatedness calculation were excluded. The asso-

ciation between the genetic variant and atrial premature depolarisation (as a binary phenotype) was eval-

uated by mixed modeling using SAIGE version 0.45 (Zhou et al., 2018). A selection of independent, high

quality genotyped variants (n = 93,511) was used to derive the genetic relationship matrix in step 1. The

models were adjusted for age, sex, and the first ten ancestry-based principal components. The analyses

were conducted under UK Biobank data application number 25205.
Fine-mapping

A 95% credible set of variants was established at the genome-wide associated locus with a model assuming

a single causal variant in CAVIAR (Hormozdiari et al., 2014). Expression quantitative trait loci (eQTL) were

retrieved from The Genotype-Tissue Expression (GTEx) project v8 (GTEx Consortium, 2020) and from the

Hsu et al. study (Hsu et al., 2018) for the left atrial appendage. In order to prioritize variants with a potential

functional impact, HaploReg v.4.1 (Ward and Kellis, 2012) and RegulomeDB (Boyle et al., 2012; Dong and

Boyle, 2019) were used to look at regulatory elements, including DNA accessibility, chromatin marks and

states.
Replication of atrial fibrillation variants

We selected independent variants previously reported to be associated with atrial fibrillation in a large

meta-analysis (Roselli et al., 2018). A list of 107 genome-wide significant variants obtained following con-

ditional analysis in individuals of European ancestry was used to perform replication in our PAC frequency

meta-analysis. A threshold of 5% false-discovery rate was used for statistical significance. The proportion of

variants with a concordant direction of effect was evaluated using one-sided Pearson’s chi-square test.
QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed with R version 3.6.0 unless otherwise specified. Two-sided p below 0.05

were considered significant unless otherwise specified.
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