Climatic similarity and genomic background shape the extent of parallel adaptation in Timema stick insects

Chaturvedi, Samridhi; Gompert, Zachariah; Feder, Jeffrey L.; Osborne, Owen G.; Muschick, Moritz; Riesch, Rüdiger; Soria-Carrasco, Víctor; Nosil, Patrik (2022). Climatic similarity and genomic background shape the extent of parallel adaptation in Timema stick insects. Nature ecology & evolution, 6(12), pp. 1952-1964. Nature Publishing Group 10.1038/s41559-022-01909-6

[img] Text
Chaturvedi_et_al._2022_Nature_Ecol_Evol.pdf - Published Version
Restricted to registered users only
Available under License Publisher holds Copyright.

Download (15MB) | Request a copy

Evolution can repeat itself, resulting in parallel adaptations in independent lineages occupying similar environments. Moreover, parallel evolution sometimes, but not always, uses the same genes. Two main hypotheses have been put forth to explain the probability and extent of parallel evolution. First, parallel evolution is more likely when shared ecologies result in similar patterns of natural selection in different taxa. Second, parallelism is more likely when genomes are similar because of shared standing variation and
similar mutational effects in closely related genomes. Here we combine ecological, genomic, experimental and phenotypic data with Bayesian modelling and randomization tests to quantify the degree of parallelism and its relationship with ecology and genetics. Our results show that the extent to which genomic regions associated with climate are parallel among species of Timema stick insects is shaped collectively by shared ecology
and genomic background. Specifically, the extent of genomic parallelism decays with divergence in climatic conditions (that is, habitat or ecological similarity) and genomic similarity. Moreover, we find that climate-associated loci are likely subject to selection in a field experiment, overlap with genetic regions associated with cuticular hydrocarbon traits and are not strongly shaped by introgression between species. Our findings shed light on when evolution is most expected to repeat itself.

Item Type:

Journal Article (Original Article)

Division/Institute:

08 Faculty of Science > Department of Biology > Institute of Ecology and Evolution (IEE)
08 Faculty of Science > Department of Biology > Institute of Ecology and Evolution (IEE) > Aquatic Ecology

UniBE Contributor:

Muschick, Moritz

Subjects:

500 Science > 570 Life sciences; biology
000 Computer science, knowledge & systems

ISSN:

2397-334X

Publisher:

Nature Publishing Group

Language:

English

Submitter:

Marcel Häsler

Date Deposited:

25 Oct 2022 09:01

Last Modified:

05 Dec 2022 16:26

Publisher DOI:

10.1038/s41559-022-01909-6

BORIS DOI:

10.48350/174046

URI:

https://boris.unibe.ch/id/eprint/174046

Actions (login required)

Edit item Edit item
Provide Feedback