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Abstract: There is large intersubject variability in cerebrovascular hemodynamic and systemic
physiological responses induced by a verbal fluency task (VFT) under colored light exposure (CLE).
We hypothesized that machine learning would enable us to classify the response patterns and provide
new insights into the common response patterns between subjects. In total, 32 healthy subjects
(15 men and 17 women, age: 25.5 ± 4.3 years) were exposed to two different light colors (red vs.
blue) in a randomized cross-over study design for 9 min while performing a VFT. We used the
systemic physiology augmented functional near-infrared spectroscopy (SPA-fNIRS) approach to
measure cerebrovascular hemodynamics and oxygenation at the prefrontal cortex (PFC) and visual
cortex (VC) concurrently with systemic physiological parameters. We found that subjects were
suitably classified by unsupervised machine learning into different groups according to the changes
in the following parameters: end-tidal carbon dioxide, arterial oxygen saturation, skin conductance,
oxygenated hemoglobin in the VC, and deoxygenated hemoglobin in the PFC. With hard clustering
methods, three and five different groups of subjects were found for the blue and red light exposure,
respectively. Our results highlight the fact that humans show specific reactivity types to the CLE-VFT
experimental paradigm.

Keywords: functional near-infrared spectroscopy; fNIRS; systemic physiology augmented functional
near-infrared spectroscopy; SPA-fNIRS; colored light exposure; verbal fluency task; CLE-VFT; unsupervised
machine learning; k-means clustering

1. Introduction

Color and colored light have always fascinated humans and played a vital role in
daily life. In our modern society, we are increasingly exposed to various colored light
sources, ranging from illuminated advertising boards to computer screens, room lighting,
and smartphones. In addition, colors and colored lights can also be parts of different
learning environments. It has been demonstrated that colored lights (or colors) have
significant effects on students, influencing their emotions, mood, performance, and systemic
physiology [1–4]. Selecting an optimal learning environment with a specific colored light
may enhance cognitive performance in the context of education. In spite of the broad range
of colored light applications, the influence of colored light on human physiology is still
rarely studied and is therefore of substantial interest for science and society.

Systemic physiology augmented functional near-infrared spectroscopy (SPA-fNIRS)
is a powerful approach to study the physiological state of a human and body–brain inter-
actions [5]. This approach can also be used to understand how the entire body reacts to
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stimulus/task paradigms [5]. In our previous studies, we employed this approach to inves-
tigate the visual and non-visual effects of colored light exposure (CLE) in humans [6–9]. In
one of our latest studies [9], we investigated a mixed-effect of CLE and a verbal fluency task
(VFT; one of the most widely applied tests for the assessment of cognitive function [10–12])
by SPA-fNIRS. In this study [9], subjects were manually classified into different groups
based on their hemodynamic response patterns of oxygenated hemoglobin ([O2Hb]) in the
prefrontal (PFC) and visual cortex (VC). Seven and five different hemodynamic patterns
were found for red and blue light exposure, respectively. The manual classification of
subjects was the very first step in analyzing such data, providing valuable information
about individual differences in hemodynamic responses during a CLE-VFT. However, the
impact of systemic physiology was not directly taken into account for such a classification.
In fact, considering several parameters, i.e., cerebrovascular and systemic physiological
parameters, the manual classification of subjects is complex and not practicable. In the
present study, we aimed to extend this approach by using an automatic classification method.
More parameters have been considered in the process of automatic classification, which is
expected to provide a better overview and understanding of different subjects’ reactions.

Machine learning (ML) algorithms can be used to extract new information from
physiological data. Such algorithms can help in the automatic classification of different
subjects’ reactions due to a CLE-VFT. Unsupervised ML is a type of algorithm for learning
from unlabeled data, which aims to find patterns or intrinsic structures from input features,
facilitating flexible, general, and automated methods of ML [13,14]. Clustering analyses,
a subsection of unsupervised ML, partition input data into distinct groups based on
similarities between observations [15,16].

Using unsupervised ML, we aimed to investigate whether the CLE-VFT causes differ-
ent subjects’ reactions in cerebrovascular hemodynamics and systemic physiology mea-
sured with SPA-fNIRS. Particularly, we analyzed the performance of a variety of different
clustering methods. We hypothesized that unsupervised ML would enable the classification
of the response patterns, which would provide new insights into the common response
patterns between subjects.

2. Materials and Methods
2.1. Subjects

In total, 32 healthy right-handed adults were recruited in this study (15 men and
17 women, age: 25.5 ± 4.3 years). The size of the sample was calculated with a power
analysis to detect substantial effects (effect size: d = 0.59; based on our previous study
results investigating the different physiological effects of light exposure with two colors)
at a p < 0.05 and a power of >0.8. Subjects were all well-educated (i.e., university stu-
dents or individuals with university degrees), non-smokers, medication-free, and without
any significant history of neurological, cardiovascular, or respiratory disease. To avoid
physiological changes due to confounders, subjects were asked to refrain from consuming
stimulants (e.g., coffee, tea, or energy drinks) and from eating for two hours before the
measurements. The study had a quantitative, cross-over, randomized, and semi-blinded de-
sign. All measurements were conducted at the Institute of Complementary and Integrative
Medicine of the University of Bern. The recruitment and data collection were performed
over a time span of 15 months (August 2017–October 2018). Recruitment was conducted
via the distribution of flyers and an online advertisement on the University of Bern website
as well as inquiries from colleagues, friends, and acquaintances. Subjects were financially
compensated for their participation.
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2.2. Experimental Protocol and Measurement Setup

Each subject was exposed to two colored lights (red and blue) for 9 min on two different
days but at the same time of day (± half an hour). The color order was randomized, and the
light illuminance was set at 120 lux for each color. Subjects sat comfortably in a reclining
chair and were asked to perform a VFT while they were exposed to the colored light.
Before and after the CLE-VFT, subjects were in a rest phase (darkness, without any task)
for 8 min and 15 min, respectively. The subjects performed the experiment with their eyes
open for both resting sessions as well as the CLE-VFT phase. Subjects produced 58 ± 12
(mean ± SD) correct nouns during the red light exposure and 57 ± 15 during blue light
exposure. No significant difference in the VFT performance was found between the red
and blue light exposure.

The SPA-fNIRS approach comprised a multi-channel frequency-domain near-infrared
spectroscopy (FD-NIRS) device (Imagent, ISS Inc, Champaign, IL, USA) and three devices
to measure systemic physiological parameters. FD-NIRS is able to determine the absolute
values of [O2Hb], deoxygenated hemoglobin ([HHb]), total hemoglobin ([tHb]), and tissue
oxygen saturation (StO2) in the PFC and VC. Our fNIRS was sensitive to the brain and, as a
multi-distance system, minimized the impact of extracerebral blood flow changes on the
data [17–20]. Heart rate (HR), mean arterial blood pressure (MAP), and arterial oxygen
saturation (SpO2) were measured by a SOMNOtouch NIBP device (SOMNOmedics GmbH,
Randersacker, Germany). A NONIN LifeSense (NONIN Medical, Plymouth, MN, USA)
device was employed to record the respiration rate (RR) and the end-tidal carbon dioxide
(PETCO2). Skin conductance (SC) was determined with a VERIM system (Mind-Reflection,
Tallinn, Estonia). All data were recorded simultaneously.

A more detailed description of the experimental protocol, as well as the SPA-fNIRS
setup, can be found in our previous studies [8,9].

The planning of the study, the data analysis, and the reporting of the results were
conducted according to recently published fNIRS guidelines [21].

2.3. Signal Processing and Machine Learning

To avoid the effects of confounders, a homogenous sample was selected for data
analysis. All subjects were Swiss German speakers. To have a sample in a small age
range (20 to 30 years), two subjects over 30 years old were excluded from the analysis. By
removing these two subjects, we avoided the need to correct for age when performing
the statistical analysis. Signal preprocessing was performed according to our previous
study [9]. For each time-dependent parameter, the area under the curve (AUC) of the
CLE-VFT phase was calculated for each subject in both conditions (red and blue). In
total, 15 different parameters (features) were investigated: [O2Hb], [HHb], [tHb], and StO2
in the PFC and VC as well as HR, MAP, SpO2, RR, PETCO2, SC, and task performance.
Subsequently, the features were subjected to min–max normalization in order to bring
all of them to a comparable scale. Min–max normalization has the advantage of exactly
preserving all relationships in the data [22,23]. A principal component analysis (PCA) was
applied in order to reduce the dimensionality of the feature space so that unsupervised
ML algorithms could be implemented effectively. The observations were projected on the
n first principal components of the data, and data in the projected space were used for
unsupervised ML. The number of selected principal components was such that around
80% of the variance was kept. This allowed us to significantly reduce the dimensions of
the data while not losing much information. It has been demonstrated that for descriptive
purposes at least 80% of the variance should be explained by the principal components. In
this study, two dimensions were sufficient to account for >80% of the variance in the data,
while the variance contributed by other principal components was small [24,25].
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The aim of the next step of the data analysis was to select a maximum of five features
among the 15 features investigated in this study so that one was chosen from the PFC
parameters, one was chosen from the VC, and three were chosen from the systemic physi-
ology. Since all of our subjects were students with almost equal verbal fluency skills, in
unsupervised ML the task performance of the subjects had a low and insignificant impact
on the classification of subjects. Using an in-house-developed algorithm, all possible com-
binations of the features were found and scored (silhouette value). Then, all combinations
with silhouette values above 0.6, which indicates a good clustering (i.e., clusters are well-
separated) [26–28], for a range of cluster numbers (k = 2 to k = 9) were selected for both
the blue and red light conditions, and the best common combinations in both conditions
were identified. Finally, using unsupervised ML, a variety of different clustering methods
were used to classify subjects. These methods included k-means, k-medoids, hierarchical
clustering, a Gaussian mixture model (GMM), the density-based spatial clustering of ap-
plications with noise (DBSCAN), and clustering via self-organizing maps (SOM). Three
clustering criteria were used, including the silhouette score [29], the Calinski–Harabasz
index [30], and the Davies–Bouldin index [31], in order to evaluate the quality of clustering
and the performance [32].

Signal processing steps and machine learning were performed in MATLAB (R2021b,
MathWorks, Inc., Natick, MA, USA).

3. Results

Using k-means clustering as a method and the silhouette index as a clustering criterion,
the five best combinations of the cerebrovascular and systemic physiological parameters
were detected for subject classification (Table 1). SC was the most important and sensitive
parameter for the clustering, as observed in all five sets, while SpO2 also played a significant
role in subject classification. SpO2 and SC were the common components of the first three
categories, together with other parameters, leading to three and five different groups of
subjects for the blue and red light exposure, respectively. Moreover, as Table 1 shows,
[O2Hb] and [HHb] had greater impacts on the classification of subjects compared to
the other two cerebrovascular parameters (i.e., [tHb] and StO2). With these five sets
of parameters, subjects were suitably classified into different groups. The best subject
classification was obtained according to the changes in the following parameters: [HHb] in
the PFC, [O2Hb] in the VC, PETCO2, SC, and SpO2.

Table 1. Summary of the best five sets of cerebrovascular and systemic physiological parameters
for subject classification. The optimal number of clusters with the corresponding silhouette index
criterion is shown for both the blue and red light exposure conditions.

Features
Optimal Number of

Clusters (Blue
Light Exposure)

Silhouette Index (Blue
Light Exposure)

Optimal Number of
Clusters (Red

Light Exposure)

Silhouette Index (Red
Light Exposure)

[HHb]-PFC, [O2Hb]-VC,
PETCO2, SC, SpO2

3 0.77 5 0.88

[O2Hb]-PFC, [HHb]-VC,
SC, MAP, SpO2

3 0.75 5 0.87

[HHb]-PFC, [HHb]-VC,
RR, SC, SpO2

3 0.76 5 0.85

[HHb]-PFC, [HHb]-VC,
PETCO2, SC, HR 3 0.72 7 0.86

[O2Hb]-PFC, [O2Hb]-VC,
SC, HR, MAP 4 0.70 6 0.87
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For the next data analysis step, the best subject classification set was chosen, and
several clustering methods were employed to determine the optimal number of clusters
within each condition. Table 2 shows the best number of groups for all clustering algorithms
utilized in this study. In almost all methods, two out of three clustering criteria (bold
numbers) confirmed that the subjects were classified into three and five groups for the
blue and red light exposure, respectively. Moreover, hard clustering algorithms (k-means,
k-medoids, and SOM) had higher clustering performance (blue: silhouette index = 0.77, red:
silhouette index = 0.88) compared to the soft clustering algorithm (GMM; blue: silhouette
index = 0.71, red: silhouette index = 0.53) and the two other methods (hierarchical clustering;
blue: silhouette index = 0.63, red: silhouette index = 0.87 and DBSCAN; blue: silhouette
index = 0.2, red: silhouette index = 0.87).

Table 2. The optimal number of clusters for the best set of parameters ([HHb]-PFC, [O2Hb]-VC, PETCO2,
SC, and SpO2) using six different clustering methods and evaluated with three clustering criteria.

Condition Clustering Criteria k-Means k-Medoids Hierarchical
Clustering GMM SOM DBSCAN

Blue light
exposure

Silhouette index 3 3 3 2 3 2
Calinski–Harabasz index 7 7 3 3 6 8

Davies–Bouldin index 3 3 2 3 3 2

Red light
exposure

Silhouette index 5 5 5 4 5 5
Calinski–Harabasz index 7 7 5 5 7 5

Davies–Bouldin index 5 5 4 5 5 9

Considering the best set of parameters ([HHb]-PFC, [O2Hb]-VC, PETCO2, SC, and
SpO2), Figure 1 visualizes the PCA scores and silhouette index values, obtained by k-means
clustering, of each subject for the blue and red light exposure conditions. Three and five
different groups of subjects were found for the blue (silhouette index = 0.77) and red (sil-
houette index = 0.88) light exposure, respectively. At the individual level, the silhouette
plots show that most subjects have a considerable silhouette index value (i.e., >0.6), indi-
cating that the group is relatively well-separated from neighboring groups. In 81% of the
subjects, the silhouette index value was >0.6 for the blue light exposure condition, whereas
91% were >0.6 for the red light exposure. This specifies that subjects were well-separated
(with distinctive reactions) during the red light exposure compared to blue light exposure.
Figure 1a,b depict that some subjects reacted the same, i.e., relatively similar PCA scores, to
both colored lights (e.g., subjects #9, #22, #24, and #28) and some others showed completely
different reactions (e.g., subjects #16, #21, #23, and #31) to blue and red lights, i.e., dissimilar
PCA scores. Considering the first group for both light colors, subjects exposed to blue light
showed more scattered reactions than during red light exposure. To some extent, this was
also observed in the other groups, as the second group in the blue light condition was
relatively equivalent to the integration of the second and fourth groups in red light.
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Figure 1. Classification of subjects based on changes in [HHb]-PFC, [O2Hb]-VC, PETCO2, SC, and
SpO2 using k-means clustering: (a,b) PCA scores and (c,d) silhouette values of each individual
for the blue and red light exposure. The numbers next to the data points indicate the subjects’
identification codes.

4. Discussion
4.1. Red Light Causes Greater Intersubject Variability in the Physiological Reactions Compared to
Blue Light Exposure

In this study, we found that during the CLE-VFT subjects exposed to red light were
classified in more groups than those exposed to blue light. This finding aligns with our
previous study results, where subjects were manually classified into different groups [9].
A relatively higher number of clusters in red compared to blue implies that red light may
cause broader and more varied effects on human physiology compared to blue light. Red
is equally associated with both positive (e.g., happiness, joy, and excitement) and negative
(e.g., anger, danger, and fear) emotional perceptions, while blue is more associated with
positive concepts (e.g., calm, comfort, and contentment) [33–37]. Red, in general, has been
known as a unique and special color, and people who like this color are supposed to be
active, influential, cheerful, competitive, optimistic, and action-oriented [38,39]. It has been
hypothesized that red has negative meanings (failure) and aversive implications (avoidance
motivation) in achievement contexts. On the other hand, it also carries positive, appetitive
meanings and facilitates approach-relevant responding in relational contexts [39]. Our
results imply that red light might lead to various positive and negative reactions in the
subjects. These reactions, which were detected by unsupervised ML based on changes in
SPA-fNIRS parameters during the CLE-VFT, can be classified into five categories, whereas
blue light caused fewer clusters with more dispersed reactions, as blue appeals to almost
everyone and carries more general and limited concepts.
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4.2. Hard Clustering Methods Have Better Clustering Performance

In the current study, we utilized six different clustering methods in order to explore a
wide range of possible solutions for identifying different subjects’ reactions during the CLE-
VFT. The optimal number of clusters was determined using three criteria: the silhouette
index, the Calinski–Harabasz index, and the Davies–Bouldin index. Using these criteria,
the optimal numbers of clusters were generally equal to three and five for the blue and
red light exposure, respectively. However, for the DBSCAN method, in the blue light
condition the optimal number of clusters was equal to two. DBSCAN is known to be
robust to noise points and can exclude data points from being part of any group, which
decreases the impacts of outliers on its classification performance [40,41]. It seems that this
method sorted two data points from the blue light (#17 and #24) into a separate “noise”
cluster since they were too dissimilar to the rest of the dataset. Therefore, this algorithm
found “two” to be the optimal number of clusters, which is not necessarily true in our
case because we believe that these two data points are not real outliers but two different
reactions of subjects to the blue light, which incidentally both belong to the same group
(group 3, approved by other unsupervised ML methods). Using a larger number of subjects
in future studies would enable the determination of whether such data points are outliers
or specific reactions to the blue light. Moreover, we demonstrated that hard clustering
algorithms (k-means, k-medoids, and SOM) have a higher clustering performance compared
to the soft clustering algorithm (GMM) and the two other methods (hierarchical clustering
and DBSCAN). In hard clustering methods, each data point either belongs to a cluster
completely or not, while soft clustering methods are more flexible and can assign a data
point to more than one cluster. k-means clustering is a simple, powerful, and widely used
approach for classification, aiming to classify n observations into k clusters where each
observation belongs to the cluster with the nearest mean [42,43]. k-medoids is similar to
k-means, but instead of taking the mean value of the data points in a cluster, the most
centrally located data point is considered as the reference point [14,44]. SOM is a special
class of neural network based on competitive learning, which transforms a dataset into a
topology-preserving 2D discrete map [13,14]. By employing all unsupervised ML methods,
we found that the clustering performances of k-means, k-medoids, and SOM were the same
and were the highest among all other methods for both the red and blue light conditions.
Therefore, we can conclude that hard clustering methods suit this type of physiological
data best. Compared to the hierarchical clustering method, k-means and k-medoids recover
more stable clusters, classify messy high-dimensional data more accurately, and have less
computational complexity [14,43,45]. Mangiameli et al. also demonstrated the superior
accuracy and robustness of SOM in comparison with hierarchical clustering methods [46].
GMM, a fuzzy or soft clustering method, uses partition-based clustering where data points
come from different multi-variate normal distributions with certain probabilities [47]. In
line with our findings, Maaoui and Pruski found that k-means and SOM perform better than
GMM when clustering physiological signals [48]. Finally, it has frequently been observed
(Table 2) that the optimal number of groups evaluated by the Calinski–Harabasz index is
higher than for the two other criteria, especially for hard clustering algorithms. This could
mainly be attributed to the major drawback of this criterion, which is generally higher for
convex globular clusters, namely k-means [49].

4.3. Changes in Systemic Physiological Activity Help to Classify the Individual Physiological
Responses to a Task/Stimulation

As the traditional method for data classification, manual classification can be biased
and inconsistent but not necessarily worse or less accurate than automatic classification. The
data used in the current study had also been analyzed in our previous research [9] where
subjects were manually classified into different groups based only on their hemodynamic
response patterns of [O2Hb] in the PFC and VC. Although the subject-specific analysis and
data classification were successfully performed in the previous study [9], the effects of the
systemic physiological parameters on subject clustering were not directly taken into ac-
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count. Therefore, an automatic classification was needed to provide a meaningful and better
classification that considered both the cerebrovascular and systemic physiological data. In
the current study, we investigated using unsupervised ML with the SPA-fNIRS approach to
find different subjects’ reactions based on changes in both cerebrovascular hemodynamics
and systemic physiology. The manual classification of subjects with fNIRS signals was the
very first step in analyzing such data, providing valuable information about individual
differences in cerebrovascular hemodynamics during a CLE-VFT. However, a reliable and
accurate interpretation of the changes in the fNIRS signals and thus a better subject clas-
sification cannot be obtained without considering systemic physiological parameters. In
terms of classification, taking five features (cerebrovascular and systemic physiological
parameters) instead of only two features (cerebrovascular parameters) into account was the
main strength of this study compared to the previous one. It definitely facilitates a better
understanding of the role and influence of each individual in a cluster. For example, consid-
ering the first group of the red exposure, the range of changes in SC during the CLE-VFT
was from 0.03 to 1.78 µS, while highly significant positive SC changes were observed for the
third cluster (∆SC > 11 µS). [O2Hb] changes in the VC for the individuals of the first cluster
were in the range of positive to insignificant (0.66 ± 1.05 µM), but they were significantly
lower for the third group (−0.83 ± 0.29 µM) compared to the first group. In addition,
the changes in [HHb] in the PFC for most subjects in the first group were significantly
negative, while they were insignificant for the subjects in the third group. Individuals in
the first and third groups showed a wide range of changes in PETCO2 and SpO2 during the
CLE-VFT. In other words, no specific common PETCO2 and SpO2 patterns were found for
these two groups. The findings under the blue light condition were roughly in line with
the red light results (first cluster: −0.11 µS < ∆SC < 2.33 µS, ∆[O2Hb]-VC: 1.28 ± 1.23 µM;
third cluster: ∆SC > 11.4 µS, ∆[O2Hb]-VC: 0.55 ± 0.37 µM). Unsupervised ML enabled us to
provide a better overview and understanding of different subjects’ reactions based on not
only the fNIRS signals but also systemic physiology. In our previous study [9], the effect of
systemic physiology was not directly taken into account for the classification of subjects
due to some limitations of the manual method. However, the current study shows that more
parameters can be taken into consideration for subject classification with unsupervised ML.
It was also found that one of these systemic physiological parameters, i.e., SC, along with
[O2Hb]-VC play the most important roles in the clustering since the individuals of each
group had special characteristics for these two parameters. SC reflects the state and activity
of the autonomic nervous system. The various forms of SC changes observed among all
individuals were associated with the stress that subjects experienced during the VFT task.
In other words, subjects experienced different stress levels while performing the task, which
was mostly identified by measuring electrodermal activity. On the other hand, PETCO2 and
SpO2 were found to be less sensitive parameters for the clustering. Such unique findings
cannot be obtained except by an automated method (e.g., unsupervised ML). Moreover, it
seems that statistically significant correlations between some cerebrovascular and systemic
physiological parameters play a vital role in subject classification. Considering the systemic
physiological parameters of the first two categories (PETCO2, SC, SpO2, and MAP), statisti-
cally significant correlations were found as follows: (i) blue light exposure: [O2Hb]-VC vs.
SC (r = 0.48, p = 0.008), [O2Hb]-VC vs. PETCO2 (r = −0.28, p = 0.014), and [O2Hb]-PFC vs.
MAP (r = 0.56, p = 0.002); (ii) red light exposure: [HHb]-PFC vs. SpO2 (r = −0.44, p = 0.015),
[O2Hb]-VC vs. PETCO2 (r = −0.4, p = 0.035), [O2Hb]-VC vs. SpO2 (r = 0.61, p < 0.001).
In our previous studies, we also showed that changes in PETCO2 have strong effects on
cerebrovascular hemodynamics [50,51]. The correlation of SC and cerebrovascular hemo-
dynamics has been reported elsewhere [52–56]. It has also been shown that MAP and SpO2
correlate with the changes in the fNIRS signals in the PFC and the motor cortex [9,57].
Caldwell et al. designed a model providing valuable information regarding the possible
confounding factors of fNIRS measurements [58], showing that depending on the degree
of the changes in PETCO2 and MAP, specific hemodynamic responses are induced.
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4.4. Limitations

The current study has the following limitations: (1) Although the number of partici-
pants was calculated with a power analysis, a more optimal number of groups with more
subjects in each cluster might have been found if the number of participants had been
larger. (2) The fNIRS measurement setup did not cover the entire head, and therefore
the whole brain was not measured. (3) Different cognitive tasks might affect subjects
differently, depending on the nature of the task. As a very common example, females
generally perform better than males in the VFT, finger tapping, and item memory, while
males generally perform better in visual-spatial tasks such as mathematical tasks and
mental rotation [1,59]. Moreover, non-mathematical tasks activate the whole PFC and the
parietal cortex, supporting more general cognitive operations (e.g., attention and emotion)
rather than specific modules for calculation, while mathematical processing may recruit
only the left frontal cortex and the intraparietal sulcus [60–62]. Thus, our results cannot be
transferred to other cognitive tasks. However, this will be investigated in future studies
in combination with CLE. (4) While red and blue are the most common and widely used
colored lights in science and society, other colors should also be investigated with our
experimental paradigm and SPA-fNIRS approach.

5. Conclusions

For the first time, we used machine learning to investigate the intersubject variability
in hemodynamic and systemic physiological responses due to a VFT under CLE. Since
the manual classification of subjects with several parameters is complex and, in most
cases, not practical, machine learning is an alternative method to categorize subjects into
different groups. Based on the SPA-fNIRS parameters, we suitably classified the subjects
into different groups using unsupervised machine learning in which the number of groups
was different between the red and the blue light exposure. We showed that SC and
[O2Hb]-VC play vital roles for the clustering, as the same response patterns between most
subjects in each group were found for these two parameters. Since each individual reacts
differently to the CLE, it would be advantageous to generate an algorithm that enables
us to understand how each individual responds to the CLE based on cerebrovascular and
systemic physiological changes. The newly applied data analysis is the very first step of
designing an algorithm to assist in determining who reacts in a specific physiological way
to a colored light exposure.
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40. Dudik, J.M.; Kurosu, A.; Coyle, J.L.; Sejdić, E. A comparative analysis of DBSCAN, K-means, and quadratic variation algorithms

for automatic identification of swallows from swallowing accelerometry signals. Comput. Biol. Med. 2015, 59, 10–18. [CrossRef]
41. Zanna, K.; Neal, T.; Canavan, S. Clustering of Physiological Signals by Emotional State, Race, and Sex. In Proceedings of the

Companion Publication of the 2021 International Conference on Multimodal Interaction, Montreal, QC, Canada, 18–22 October
2021; pp. 312–316.

42. Badillo, S.; Banfai, B.; Birzele, F.; Davydov, I.I.; Hutchinson, L.; Kam-Thong, T.; Siebourg-Polster, J.; Steiert, B.; Zhang, J.D. An
Introduction to Machine Learning. Clin. Pharmacol. Ther. 2020, 107, 871–885. [CrossRef]

43. Pikoula, M.; Quint, J.K.; Nissen, F.; Hemingway, H.; Smeeth, L.; Denaxas, S. Identifying clinically important COPD sub-types
using data-driven approaches in primary care population based electronic health records. BMC Med. Inform. Decis. Mak. 2019,
19, 86. [CrossRef]

44. Chitrakar, R.; Chuanhe, H. Anomaly detection using Support Vector Machine classification with k-Medoids clustering. In
Proceedings of the 2012 Third Asian Himalayas International Conference on Internet, Kathmandu, Nepal, 23–25 November
2012; pp. 1–5.

45. Castaldi, P.J.; Benet, M.; Petersen, H.; Rafaels, N.; Finigan, J.; Paoletti, M.; Marike Boezen, H.; Vonk, J.M.; Bowler, R.; Pistolesi,
M.; et al. Do COPD subtypes really exist? COPD heterogeneity and clustering in 10 independent cohorts. Thorax 2017, 72,
998–1006. [CrossRef]

46. Mangiameli, P.; Chen, S.K.; West, D. A comparison of SOM neural network and hierarchical clustering methods. Eur. J. Oper. Res.
1996, 93, 402–417. [CrossRef]

47. Borthakur, D.; Peltier, A.; Dubey, H.; Gyllinsky, J.; Mankodiya, K. SmartEAR: Smartwatch-based unsupervised learning for multi-
modal signal analysis in opportunistic sensing framework. In Proceedings of the 2018 IEEE/ACM International Conference on
Connected Health: Applications, Systems and Engineering Technologies, Washington DC, USA, 26–28 September 2018; pp. 75–80.

48. Maaoui, C.; Pruski, A. Unsupervised stress detection from remote physiological signal. In Proceedings of the 2018 IEEE
International Conference on Industrial Technology (ICIT), Lyon, France, 20–22 February 2018; pp. 1538–1543.

49. Katarya, R.; Saini, R. Enhancing the wine tasting experience using greedy clustering wine recommender system. Multimed. Tools
Appl. 2022, 81, 807–840.

50. Scholkmann, F.; Gerber, U.; Wolf, M.; Wolf, U. End-tidal CO2: An important parameter for a correct interpretation in functional
brain studies using speech tasks. Neuroimage 2013, 66, 71–79. [CrossRef] [PubMed]

51. Scholkmann, F.; Klein, S.D.; Gerber, U.; Wolf, M.; Wolf, U. Cerebral hemodynamic and oxygenation changes induced by inner
and heard speech: A study combining functional near-infrared spectroscopy and capnography. J. Biomed. Opt. 2014, 19, 017002.
[CrossRef] [PubMed]

52. Critchley, H.D.; Elliott, R.; Mathias, C.J.; Dolan, R.J. Neural activity relating to generation and representation of galvanic skin
conductance responses: A functional magnetic resonance imaging study. J. Neurosci. 2000, 20, 3033–3040.

53. Zhang, S.; Hu, S.; Chao, H.H.; Luo, X.; Farr, O.M.; Li, C.S.R. Cerebral correlates of skin conductance responses in a cognitive task.
Neuroimage 2012, 62, 1489–1498. [CrossRef]

54. Nagai, Y.; Critchley, H.D.; Featherstone, E.; Trimble, M.R.; Dolan, R.J. Activity in ventromedial prefrontal cortex covaries with
sympathetic skin conductance level: A physiological account of a “default mode” of brain function. Neuroimage 2004, 22, 243–251.

http://doi.org/10.1016/0377-0427(87)90125-7
http://doi.org/10.1109/TPAMI.1979.4766909
http://doi.org/10.1016/j.patcog.2012.07.021
http://doi.org/10.1080/17470218.2015.1090462
http://doi.org/10.1007/s11199-018-0955-z
http://doi.org/10.1521/soco.1997.15.1.55
http://doi.org/10.1002/col.22756
http://doi.org/10.1002/col.22327
http://doi.org/10.1146/annurev-psych-010213-115035
http://doi.org/10.1016/j.compbiomed.2015.01.007
http://doi.org/10.1002/cpt.1796
http://doi.org/10.1186/s12911-019-0805-0
http://doi.org/10.1136/thoraxjnl-2016-209846
http://doi.org/10.1016/0377-2217(96)00038-0
http://doi.org/10.1016/j.neuroimage.2012.10.025
http://www.ncbi.nlm.nih.gov/pubmed/23099101
http://doi.org/10.1117/1.JBO.19.1.017002
http://www.ncbi.nlm.nih.gov/pubmed/24419872
http://doi.org/10.1016/j.neuroimage.2012.05.036


Brain Sci. 2022, 12, 1449 12 of 12

55. Patterson, J.C.; Ungerleider, L.G.; Bandettini, P.A. Task-independent functional brain activity correlation with skin conductance
changes: An fMRI study. Neuroimage 2002, 17, 1797–1806. [CrossRef]

56. MacIntosh, B.J.; Mraz, R.; McIlroy, W.E.; Graham, S.J. Brain activity during a motor learning task: An fMRI and skin conductance
study. Hum. Brain Mapp. 2007, 28, 1359–1367.

57. Tachtsidis, I.; Leung, T.S.; Tisdall, M.M.; Devendra, P.; Smith, M.; Delpy, D.T.; Elwell, C.E. Investigation of frontal cortex, motor
cortex and systemic haemodynamic changes during anagram solving. Adv. Exp. Med. Biol. 2008, 614, 21–28.

58. Caldwell, M.; Scholkmann, F.; Wolf, U.; Wolf, M.; Elwell, C.; Tachtsidis, I. Modelling confounding effects from extracerebral
contamination and systemic factors on functional near-infrared spectroscopy. Neuroimage 2016, 143, 91–105. [CrossRef]

59. Bell, E.C.; Willson, M.C.; Wilman, A.H.; Dave, S.; Silverstone, P.H. Males and females differ in brain activation during cognitive
tasks. Neuroimage 2006, 30, 529–538. [CrossRef] [PubMed]

60. Tanida, M.; Katsuyama, M.; Sakatani, K. Relation between mental stress-induced prefrontal cortex activity and skin conditions: A
near-infrared spectroscopy study. Brain Res. 2007, 1184, 210–216. [CrossRef] [PubMed]

61. Gruber, O.; Indefrey, P.; Steinmetz, H.; Kleinschmidt, A. Dissociating neural correlates of cognitive components in mental
calculation. Cereb. Cortex 2001, 11, 350–359. [CrossRef] [PubMed]

62. Houdé, O.; Tzourio-mazoyer, N. Neural foundations of logical and mathematical cognition. Nat. Rev. Neurosci. 2003, 4, 507–514.
[CrossRef] [PubMed]

http://doi.org/10.1006/nimg.2002.1306
http://doi.org/10.1016/j.neuroimage.2016.08.058
http://doi.org/10.1016/j.neuroimage.2005.09.049
http://www.ncbi.nlm.nih.gov/pubmed/16260156
http://doi.org/10.1016/j.brainres.2007.09.058
http://www.ncbi.nlm.nih.gov/pubmed/17950258
http://doi.org/10.1093/cercor/11.4.350
http://www.ncbi.nlm.nih.gov/pubmed/11278198
http://doi.org/10.1038/nrn1117
http://www.ncbi.nlm.nih.gov/pubmed/12778122

	1
	Materials and Methods 
	Subjects 
	Experimental Protocol and Measurement Setup 
	Signal Processing and Machine Learning 

	Results 
	Discussion 
	Red Light Causes Greater Intersubject Variability in the Physiological Reactions Compared to Blue Light Exposure 
	Hard Clustering Methods Have Better Clustering Performance 
	Changes in Systemic Physiological Activity Help to Classify the Individual Physiological Responses to a Task/Stimulation 
	Limitations 

	References

