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Simple Summary: Although cancer immunotherapy has become a “game changer” in treating
LUSC patients, challenges still prevail due to the heterogeneous response and insufficient predictive
biomarkers. Recently, NSD3, a neighbor gene of FGFR1, was identified as a key genetic driver of
LUSC tumorigenesis. While previous studies have reported the relevance of NSD3 in innate antiviral
immunity, the association of NSD3 with the TIME remains an open question requiring further
investigation. We first show that NSD3 gene amplification is associated with an immune-desert
phenotype and correlated with a worse immunotherapy outcome. Further molecular characterizations
pinpoint that the high activity of UPR signaling might be a pivotal mediator for the non-inflamed
TME phenotype of NSD3-amplified LUSC. Concordantly, the pharmaco-transcriptomic correlation
analysis indicated that the intervention of UPR signaling could be a promising synthetic lethality
target for NSD3-amplified LUSC. Our findings reveal a previously unappreciated immunological
role for NSD3 in LUSC pathobiology and provide therapeutic rationales for this daunting disease.

Abstract: The histone H3 lysine 36 (H3K36) methyltransferase NSD3, a neighboring gene of FGFR1,
has been identified as a critical genetic driver of lung squamous cell carcinoma (LUSC). However, the
molecular characteristics, especially the immunological roles of NSD3 in driving carcinogenesis, are
poorly understood. In this study, we systematically integrated multi-omics data (e.g., genome, tran-
scriptome, proteome, and TMA array) to dissect the immunological profiles in NSD3-amplified LUSC.
Next, pharmaco-transcriptomic correlation analysis was implemented to identify the molecular under-
pinnings and therapeutic vulnerabilities in LUSC. We revealed that NSD3-amplified LUSC presents a
non-inflamed tumor immune microenvironment (TIME) state in multiple independent LUSC patient
cohorts. Predictably, elevated NSD3 expression was correlated with a worse immunotherapy outcome.
Further molecular characterizations revealed that the high activity of unfolded protein response
(UPR) signaling might be a pivotal mediator for the non-immunogenic phenotype of NSD3-amplified
LUSC. Concordantly, we showed that NSD3-amplified LUSCs exhibited a more sensitive phenotype
to compounds targeting UPR branches than the wild-type group. In brief, our multi-level analyses
point to a previously unappreciated immunological role for NSD3 and provide therapeutic rationales
for NSD3-amplified squamous lung cancer.

Keywords: lung squamous cell carcinoma (LUSC); NSD3; tumor immune microenvironment (TIME);
unfolded protein response (UPR); immunotherapy
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1. Introduction

Lung squamous cell carcinoma (LUSC), a primary subtype of non-small cell lung
cancer, is one of the leading causes of cancer-related mortality worldwide, with an abysmal
prognosis and aggressive phenotype [1,2]. Although many efforts have been made to
investigate the molecular underpinnings and actionable driver mutations of LUSC tumori-
genesis, the therapeutic landscapes of LUSC have hardly changed for decades, with no
targeted therapy available [3–5].

Comprehensive genomic studies have revealed that approximately 20% of LUSC
patients have amplification of the chromosomal region of 8p11–12, among which FGFR1
has been identified as the leading candidate driver within this region for a long time [6,7].
However, clinical trials with FGFR-TKIs for LUSC patients harboring FGFR1 alterations are
unsuccessful, raising the possibility that LUSC might have other potential driver mutations
that confer the aggressive nature of tumor growth [8,9]. Recently, the histone H3 lysine
36 (H3K36) methyltransferase NSD3, a neighboring gene of FGFR1, has been defined as a
critical mutational driver of LUSC tumorigenesis [10]. Beyond LUSC, the oncogenic activity
of NSD3 has also been characterized in breast cancer and other malignancies [11]. However,
the molecular underpinnings of NSD3 gene amplification in driving carcinogenesis are still
poorly understood.

Although immunotherapy with immune checkpoint blockade (ICB) has achieved
remarkable clinical efficacy for NSCLC, challenges still prevail due to the heterogeneous re-
sponse [2]. As a complex entity involving various immune components, the tumor immune
microenvironment (TIME) considerably impacts the response and acquired resistance to
ICBs [12–14]. Of note, mounting evidence has demonstrated apparent heterogeneity in
the tumor immunogenicity of LUSC patients, further highlighting that biomarker-driven
stratification for immunotherapy is urgently needed [15,16]. Previous studies have reported
the relevance of NSD3 in innate antiviral immunity [17], but the association of NSD3 with
the TIME remains an open question.

By utilizing multi-scale analyses, we have provided the first evidence that NSD3-
amplified LUSC shapes a non-immunogenic phenotype and consequently correlates with
worse clinical outcomes of ICBs. Further molecular characterizations revealed that unfolded
protein response (UPR) signaling might be a pivotal mediator for such a non-inflamed TIME
phenotype. More importantly, a pharmaco-transcriptomic correlation analysis indicated
that the intervention of UPR signaling could be an actionable synthetic lethality target for
NSD3-amplified LUSC. These findings point to a previously unappreciated immunological
role for NSD3 and provide therapeutic rationales for treating this devasting disease.

2. Materials and Methods
2.1. Data Retrieval and Preprocessing

The RNA sequencing (RNA-seq) data (FPKM value), copy number variants (CNVs),
genomic mutation data, and clinical-related information of The Cancer Genome Atlas
(TCGA) LUSC dataset were obtained from the online data portal UCSC Xena (https://
xenabrowser.net/datapages/, accessed on 1 March 2022). Data on RNA-seq were log2
transformed, and the GISTIC algorithm processed the CNV information. In addition, the
CPTAC LUSC cohort downloaded from the cBioPortal (http://cbioportal.org, accessed
on 1 March 2022) was included in our study [18]. Moreover, transcriptomic data from
transgenic mice carrying a lung-specific active mutant (T1232A) or genetic knockout of Nsd3
(GSE149212 & GSE149482) and one immunotherapy-related cohort GSE135222(NSCLC)
were downloaded from the Gene Expression Omnibus (GEO) [10,19]. CRISPR-knockout
gene scores of NSD3, EIF4EBP1, and LSM1 in NSCLC cell lines were downloaded from the
Cancer Dependency Map Data Portal (DepMap_22Q2_Public + Score_Chronos) [20]. Drug
sensitivity datasets were downloaded from the Genomics of Drug Sensitivity in Cancer
(GDSC) [21].

https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
http://cbioportal.org
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2.2. Identification of Differentially Expressed Genes (DEGs) and Functional Enrichment Analysis

Patients were classified according to NSD3 genetic status. The empirical Bayesian
approach of the limma R package was applied to identify DEGs from the gene expression
profile between groups (amplification vs. non-amplification). The criteria for determining
differential DEGs were set with an adjusted p value < 0.05. We determined the common
DEGs using the software VennDiagram R package. Gene Ontology (G.O.) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed using
the ClusterProfiler R package.

2.3. Estimation of the Immunological Profiles of the TME in LUSC

The ESTIMATE algorithm, a method that uses gene expression signatures to infer
the fraction of stromal and immune cells in tumor samples, was applied to assess the
stromal score, immune score, ESTIMATE score, and tumor purity [22]. Information on 122
immunomodulators (MHC, immune receptors, chemokines, and immune stimulators) and
33 well-known effector genes of tumor-infiltrating immune cells (TIICs) were collected from
previous studies [23,24]. In addition, to avoid the errors caused by various algorithms when
estimating the levels of TIICs, five independent algorithms: TIMER, EPIC, MCP-counter,
quanTIseq, and TISIDB, were applied to comprehensively evaluate the relative abundances
of TIICs [25–29]. We also identified gene signatures of 29 immune cell types and immune-
related pathways from a previous study [30]. Exhausted- and cytotoxic T-cell signatures
were independently scored as the sum of the corresponding gene sets (exhausted: TIGIT,
HAVCR2, CTLA4, LAG3, and PDCD1; cytotoxic: GZMA, GZMB, GZMK, IFNG, and IL2).

Furthermore, a single-sample gene set enrichment analysis (ssGSEA) was performed
to evaluate the activities of the cancer immunity cycle according to the expression levels of
specific signatures. Seven major steps are comprised as follows: step 1, the release of cancer
cell antigens; step 2, cancer antigen presentation; step 3, priming and activation; step 4,
trafficking of immune cells to tumors; step 5, infiltration of immune cells into tumors; step
6, recognition of cancer cells by T-cells; and step 7, killing of cancer cells [24,31]. After that,
22 inhibitory immune checkpoints with therapeutic potential, 18 genes associated with
T-cell inflammation as the T-cell inflamed score, and the immunophenoscore (IPS) were
collected to predict the clinical response of ICBs [23,32,33]. To dissect the role of NSD3 gene
amplification in modulating cancer immunity, we evaluated the immunological pattern of
the TME concerning the above aspects.

2.4. Ethics Statements

The LUSC tissue microarray (TMA, HLugS180Su01), which contains 90 LUSC tumor
tissue and adjacent normal samples, was obtained from Outdo Biotech (Shanghai, China).
The HBlaU079Su01 microarray ethical approval for the study of tissue microarray slides
was granted by the Clinical Research Ethics Committee, Outdo Biotech (SHYJS-CP-1810010,
2018.10; Shanghai, China).

2.5. Immunohistochemistry of LUSC Tissue Microarray

Immunohistochemistry (IHC) staining was directly conducted on the HLungS180Su01
TMA with standard procedures. The primary antibodies used were as follows: anti-NSD3
(1:1000 dilution, Cat.11345-1-AP, Proteintech, Wuhan, China), anti-PD-L1 (Ready-to-use, Cat.
GT2280, GeneTech, Shanghai, China), and anti-CD8 (Ready-to-use, Cat. PA067, Abcarta,
Suzhou, China). Antibody staining was visualized with DAB and hematoxylin counterstain,
and whole slide images were scanned using Aperio Digital Pathology Slide Scanners.

2.6. Semiquantitative Scoring

Two pathologists independently assessed all stained slides. The percentage of NSD3-
and PD-L1-positive cells in the whole slide region was scored as 0–4: 0 (<1%), 1 (1–5%), 2
(6–25%), 3 (26–50%) and 4 (>50%). Moreover, the staining intensity was scored as 0–3: 0
(negative), 1 (weak), 2 (moderate), and 3 (strong). After that, the percentage of positive cells
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multiplied by the staining intensity was calculated as the immunoreactivity score (IRS).
The infiltration level of CD8+ T-cells was assessed by estimating the percentage of cells
with strong membrane staining intensity.

2.7. Classification of Immune Subtypes

According to the spatial distribution of CD8+ T-cells, tumors were divided into three
major phenotypes, as previously described [24]. The “inflamed phenotype” included
CD8+ T cells located in the tumor parenchyma; the “excluded phenotype” included CD8+
T cells located in the stroma surrounding the tumor but not in the parenchyma, and the
“deserted phenotype” was characterized by the absence of CD8+ T cells in both the tumor
parenchyma and stroma. The non-inflamed immune state can be defined by either excluded
or deserted phenotypes.

2.8. Prediction of Clinical Drug Response

The R package “pRRophetic” was used to predict each patient’s response to common
clinical chemotherapeutic drugs [34]. The half-maximal inhibitory concentration (IC50)
of each sample was calculated by ridge regression. In addition, a 10-fold cross-validation
based on the CGP training set was applied to evaluate the prediction accuracy. Here,
default options were used for all parameters.

2.9. Statistical Analysis

Comparisons between two groups were conducted using Student’s t-test or Wilcoxon
rank-sum test according to the normality. One-way or two-way analysis of variance
(ANOVA) was performed to determine the comparisons among more than two groups. Tu-
mor samples within all datasets were divided into two groups based on the best-separation
cut-off value to plot the Kaplan–Meier survival curves using the “survminer” and “survival”
R packages. Predictive values of categorical variables were assessed using the log-rank test.
GraphPad Prism 8 or R software (version 4.0.4, http://www.rproject.org, accessed on 1 May
2022) was utilized for statistics, and a p-value < 0.05 was considered statistically significant.

3. Results
3.1. NSD3 Is a Critical Genetic Driver of LUSC Tumorigenesis

As one of the more common genetic alterations in LUSC, the NSD3 amplification state
strongly correlates with corresponding mRNA levels (Figure 1A,B). Accordingly, the mRNA
expression of NSD3 is a superior predictor of its amplification state (Figure 1C). Moreover,
transcriptomic data from The Cancer Genome Atlas (TCGA) showed that NSD3-amplified
LUSC patients featured a panel of differentially expressed genes (DEGs), such as LETM2, STAR,
KRT13, ADAM32, and EIF4EBP1, which have considerable impacts on cell growth, metastasis,
and anti-tumor immunity in various cancers (Figure 1D, Supplementary Table S1).

Strikingly, Gene Set Enrichment Analysis (GSEA) revealed that NSD3-amplified
tumors were highly enriched in MYC targets, E2F targets, G2-M checkpoint, and un-
folded protein response (UPR) but displayed lower activity in immune-related pathways
(e.g., interferon-alpha/gamma response, TNFα-NF-κB signaling, and inflammatory re-
sponse) (Figure 1E, Supplementary Table S2). In addition, the NSD3-amplified group
displayed no significant differences in genomic mutations or tumor mutation burden (TMB)
(Supplementary Figure S1A–C). Furthermore, genetic knockout of NSD3 specifically led
to a potent anti-tumor effect in NSD3-amplified LUSC cell lines (Figure 1F,G, Supplemen-
tary Table S3). Together, these data confirm a pivotal oncogenic role for NSD3 in LUSC
tumorigenesis and indicate that NSD3 might participate in regulating anti-tumor immunity.

http://www.rproject.org
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Figure 1. NSD3 is a key mutational driver of LUSC carcinogenesis. (A,B) Correlation analysis be-
tween the amplification status and mRNA expression of NSD3 in the TCGA LUSC patient cohort (n 
= 491). The Wilcoxon rank-sum test was used for comparison, and p < 0.05 was considered signifi-
cant. (C) Receiver operating characteristic (ROC) curves manifest that for NSD3, the corresponding 
mRNA level is a sensitive marker to predict its amplification state. (D,E) The top 20 differentially 

Figure 1. NSD3 is a key mutational driver of LUSC carcinogenesis. (A,B) Correlation analysis between
the amplification status and mRNA expression of NSD3 in the TCGA LUSC patient cohort (n = 491).
The Wilcoxon rank-sum test was used for comparison, and p < 0.05 was considered significant.
(C) Receiver operating characteristic (ROC) curves manifest that for NSD3, the corresponding mRNA
level is a sensitive marker to predict its amplification state. (D,E) The top 20 differentially expressed
genes (DEGs) between the non- and amplification groups of NSD3 shown in the heatmap were
ranked by the adjusted p-value (D). Data were downloaded from the TCGA LUSC cohort (n = 491).
Gene set enrichment analysis (GSEA) was performed based on the transcriptomic data from the
TCGA-LUSC cohort stratified by NSD3 genetic status. (F) Correlation analysis between the copy
number of NSD3 and CRISPR genetic knockout score across LUSC (n = 22) and LUAD cell lines
(n = 52). Data were downloaded from The Cancer Dependency Map Project (DepMap; 22Q2 Chronos).
(G) The difference in the CRISPR genetic knockout score between the non- and amplification groups
of NSD3 in LUSC cell lines (n = 22). Data were downloaded from The Cancer Dependency Map
Project (DepMap; 22Q2 Chronos). A two-tailed unpaired t-test was used for comparison, and p < 0.05
was considered significant.
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3.2. NSD3 Shapes a Non-Inflamed TIME in LUSC

Considering that an altered expression pattern of immune-related pathways was ob-
served in NSD3-amplified tumors, we speculated that NSD3 might play an immunological
role in LUSC. To investigate the possible correlation between NSD3 gene amplification
and anti-tumor immunity, we sought to evaluate the immune landscapes within NSD3-
amplified LUSC samples using a multi-faceted approach. Generally, we found that NSD3-
amplified tumors exhibited lower stromal, immune, and ESTIMATE scores but a higher
tumor purity than the wild-type tumors (Figure 2A). In line with this, NSD3-amplified
tumors were accompanied by a decreased expression pattern in a majority of immunomod-
ulators (e.g., MHC molecules, immunostimulators, and immune receptors), indicating a
weak capacity for antigen presentation and processing as well as the recruitment of effector
TIICs into the TME (Figure 2B,C, Supplementary Table S4).

To better characterize the TIME, we further incorporated five independent algorithms
(TIMER, EPIC, MCP-counter, quanTIseq, and TISIDB) to assess the infiltration status of
immune cells in LUSC. Our data showed that the infiltration levels of most immune cells,
particularly the cytotoxic components (e.g., CD8+ T-cells, NK cells, and macrophages), were
generally downregulated in the NSD3-amplified group (Figure 2D, Supplementary Fig-
ure S2A,B and Tables S5 and S6). In line with the above findings, we found that NSD3
gene amplification was characterized by reduced activity of major steps involved in the
cancer-immunity cycle, especially in Step 4 trafficking of immune cells to tumors (e.g., den-
dritic cell, macrophage, and basophil recruiting), Step 5 the infiltration of the immune
cell into cancer, and Step 6 recognition of cancer cells by T-cells (Figure 2E. Meanwhile,
reduced expression of the T-cell inflamed score, a predictive marker for the immunogenic
state [33], was observed in the NSD3-amplified group, further strengthening the notion
that NSD3-amplified LUSC features a non-immunogenic phenotype (Figure 2F).

Subsequently, we incorporated the CPTAC LUSC cohort as an external validation
dataset. First, based on the proteome dataset of the CPTAC cohort, we validated that NSD3
gene expression correlated strongly with its protein levels (Figure 3A). Next, we divided
the cohort into NSD3- high and low groups according to the corresponding protein levels at
the cut-off of zero. As expected, a similar suppressive anti-tumor immunity was observed
in LUSC patients with high protein levels of NSD3 (Figure 3B–F, Supplementary Figure S2C
and Tables S7 and S8). In summary, by mining two large independent LUSC patient cohorts
(TCGA and CPTAC), we reveal that NSD3-amplified LUSC presents a non-inflamed TME
state, which might contribute to a poor clinical response to immunotherapy.

3.3. The Association between NSD3 and Immune Infiltrates in LUSC

To continually move forward to the clinical settings, our findings were examined in
an internal LUSC TMA cohort, which included 90 paired para-tumor and LUSC samples
(Supplementary Figure S3A,B). Our data further confirmed that NSD3 was highly expressed
in LUSC patient samples compared to paired normal control samples and associated with
aggressive phenotypes and poor prognosis (Figure 4A–D). We next divided the LUSC
cohort into three immunophenotypes, deserted, excluded, and inflamed, according to
the spatial distribution of CD8+ T-cells (Figure 4E). Notably, NSD3 exhibited the highest
protein expression in the immune-desert phenotype, which displayed an absent CD8+
T-cell infiltration and relatively lower expression of PD-L1 (Figure 4F–I).
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test was used for all comparison, and p < 0.05 was considered significant. (A) Distribution plots of 
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MATE algorithm in the non- and amplification groups of NSD3 across the TCGA LUSC cohort (n = 
491). (B,C) The expression pattern of immunomodulators (chemokines, immunostimulators, MHC, 

Figure 2. NSD3 shapes a non-immunogenic phenotype in the TCGA-LUSC. The Wilcoxon rank-
sum test was used for all comparison, and p < 0.05 was considered significant. (A) Distribution
plots of tumor purity, ESTIMATE score, immune score, and stromal score were calculated using the
ESTIMATE algorithm in the non- and amplification groups of NSD3 across the TCGA LUSC cohort
(n = 491). (B,C) The expression pattern of immunomodulators (chemokines, immunostimulators,
MHC, and receptors) in the non- and amplification groups of NSD3 across the TCGA LUSC cohort
(n = 491). Data with statistical significance were shown in (C). (D) The expression levels of tumor-
infiltrating immune cells were calculated using five various algorithms (TIMER, EPIC, MCP-counter,
quanTIseq, and TISIDB) in the non- and amplification groups of NSD3 across TCGA LUSC patients’
cohort (n = 491). Data with statistical significance were shown. (E) The activities of various steps
involved in the cancer immunity cycle were calculated by the ssGSEA algorithm in the non- and
amplification groups of NSD3 across the TCGA LUSC cohort (n = 491). ns: none significant; * p < 0.05;
** p < 0.01. (F) The difference in the T-cell inflamed gene score between the non- and amplification
groups of NSD3.
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Figure 3. NSD3 defines a non-immunogenic phenotype in the CPTAC-LUSC. The Wilcoxon rank-sum
test was used for comparison, and p < 0.05 was considered significant. (A) Correlation analysis
between the mRNA and protein expression of NSD3 in the CPTAC LUSC cohort (n = 108). (B)
Distribution plots of tumor purity, ESTIMATE score, immune score, and stromal score were cal-
culated using the ESTIMATE algorithm in the NSD3-low and NSD3-high groups according to the
corresponding protein levels at the cut-off of zero across the CPTAC LUSC cohort (n = 108). (C) The
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difference in immunomodulators expression (chemokines, immunostimulators, MHC, and receptors)
between the NSD3-low and NSD3-high groups according to the corresponding protein levels at
the cut-off of zero across the CPTAC LUSC patients’ cohort (n = 108). (D) The expression pattern
of immune cell-related gene markers in the NSD3-low and NSD3-high groups according to the
corresponding protein levels at the cut-off of zero across the CPTAC LUSC cohort (n = 108). (E) The
activities of various steps involved in the cancer immunity cycle were calculated by the ssGSEA
algorithm in the NSD3-low and NSD3-high groups according to the corresponding protein levels at
the cut-off of zero across the CPTAC LUSC cohort (n = 108). ns: none significant; * p < 0.05; ** p < 0.01.
(F) The difference in the T-cell inflamed gene score between the NSD3-low and -high groups according
to the corresponding protein levels at the cut-off of zero in the CPTAC LUSC cohort (n = 108).

To further elucidate the internal links between NSD3 and CD8+ T cells, we performed
data mining of T-cell states in the TCGA-and CPTAC-LUSC cohorts. Interestingly, our
results showed that NSD3-amplified LUSC was characterized by a downregulated molecu-
lar signature of cytotoxic T-cells (Figure 4J). Moreover, NSD3 displayed a strong negative
correlation with the molecules (GZMA, GZMB, GZMK, and IFNG) from the cytotoxic T lym-
phocytes (CTLs) (Figure 4K). In line with the above findings, the protein levels of Granzyme
A (GZMA) and Granzyme K (GZMK) were significantly decreased in the LUSC patients
with a high level of NSD3, but no apparent difference in the T-cell exhaustion marker, TIM3
(HAVCR2) (Figure 4L). Overall, the above evidence further supports our speculation that
NSD3 gene amplification defines a non-inflamed TIME; however, how NSD3 affects the
suppressive immune microenvironment, particularly the interplay between NSD3 and
CTLs, remains to be further elucidated.

3.4. Immunotherapy Outcome Prediction by NSD3

As expected, NSD3 expression was found to be negatively correlated with the majority
of inhibitory immune checkpoints (e.g., PD-1, CTLA-4, and CD86), and more importantly,
a lower expression of immunophenoscores (IPS) was shown in the NSD3-amplified group,
suggesting that NSD3-amplified LUSC might have a weak response to corresponding ICBs
(Figure 5A,B, Supplementary Table S9) [23]. To further investigate the predictive capacity
of NSD3 for the clinical outcome of immunotherapy, we mined bulk RNA-Seq data and
clinical information from one NSCLC immunotherapy cohort treated with anti-PD-1/PD-
L1. Although there was no noticeable difference between the response state (DRB vs. NRB),
elevated NSD3 expression was tightly correlated with shorter progression-free survival
(PFS), indicating that NSD3 might be a promising predictor of immunotherapy outcome
(Figure 5C,D). Future studies are highly encouraged to validate the above observations by
evaluating response data from the LUSC immunotherapy cohort.

3.5. Internal Links between the Unfolded Protein Response and Non-Immunogenic Feature of
NSD3-Amplified LUSC

Given the enormous enrichment of the UPR in NSD3-amplified tumors (Figure 1E)
and the tight junction between UPR signaling and anti-tumor immunity [35,36], we sought
to determine whether the UPR is associated with the suppressive immunological fea-
tures of NSD3-amplified LUSC. Apart from displaying an upregulated expression pattern
(Figure 6A), the high UPR gene signature predicted a poor prognosis, particularly in the
NSD3-amplified group (Figure 6B, Supplementary Figure S4A). In addition, LUSC carrying
high UPR was accompanied by an aggressive phenotype in LUSC, as indicated by the
enormously positive correlation with MYC targets, DNA repair, tumor proliferation, and
hypoxia signatures (Figure 6C). The above findings indicated that hyperactivated UPR
might contribute to the aggressive nature of NSD3-amplified LUSC. Of particular inter-
est, the UPR gene signature manifested a significantly negative correlation with immune
cell-related gene markers (e.g., SIGLEC1, FLT3LG, SLC15A3, and TBX21) and inhibitory
immune checkpoints (e.g., PD-1, CTLA-4, CD47, and CD86) (Figure 6D,E, Supplementary
Figure S4A, Tables S10 and S11).
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(whole slide region) between the para-tumor and tumor groups in a LUSC tissue microarray (n = 90;
(B). Representative IHC images are shown in (A). Original overall magnification, ×200. Scale bar:
50 µM. A two-tailed unpaired t-test was used for comparison. (C) The expression levels of the
NSD3 IHC score (whole slide region) in different pathological stages of LUSC patients (n = 90).
One-way analysis of variance (ANOVA) followed by Dunnett’s multiple comparison test was used
for comparison. (D) Kaplan–Meier analysis of LUSC patients based on the protein level of NSD3 in
the TMA array (n = 90) with high- (in red) or low- (in blue) were stratified by the optimal cut-off
value of the individual protein expression across all patients using the surv_cutpoint function in
the R “maxstat” package. Log-rank test was used for comparison. (E) IHC staining for indicated
proteins in the LUSC TMA array (n = 90). Representative IHC images are shown. Original overall
magnification, ×200. Scale bar: 50 µM. (F–H) Infiltration levels of CD8+ T-cells and the expression
levels of NSD3 (G) and PD-L1 (H) in three different immune subtypes of LUSC samples (n = 90).
One-way analysis of variance (ANOVA) followed by Dunnett’s multiple comparison test was used
for comparison. (I) Correlation analysis between the infiltration of CD8+ T-cells and the PD-L1 IRS
score in the LUSC TMA array (n = 90). (J) The difference in the exhausted- and cytotoxic T-cell
signature between the non- and amplification groups of NSD3 in the TCGA LUSC cohort (n = 491).
Two-way analysis of variance (ANOVA) followed by Sidak’s multiple comparison test was used
for comparison. (K) Heatmap showing the Spearman correlation coefficients between the mRNA
expression of NSD3 and cytotoxic T-cell-related gene markers in the TCGA LUSC cohort (n = 491).
(L) The difference in the protein levels of cytotoxic T-cell-related gene markers (GZMA, GZMB, and
GZMK) and exhausted T-cell gene marker (HAVCR2) between the NSD3-low and -high groups in the
CPTAC LUSC cohort (n = 108). Two-way analysis of variance (ANOVA) followed by Sidak’s multiple
comparison test was used for comparison. ns: none significant; * p < 0.05; ** p < 0.01.

Additionally, we further confirmed that the UPR gene signature was upregulated in the
Nsd3-mutant group but with a decreased expression pattern in the Nsd3-knockout group by
mining transcriptomic data (GSE149212 & GSE149482) from transgenic mice carrying a lung-
specific active mutant (T1232A) or genetic knockout of Nsd3 to model the consequences of
NSD3 amplification and depletion (Figure 6F,G, Supplementary Figure S4B,C). Interestingly,
ssGSEA (GSVA) showed that the hyperactivity of NSD3 further accelerated the immune-
desert phenotype in the tumor, as indicated by the reduced infiltration of several immune
cell types (e.g., activated DCs, B cells, and mast cells) and repressed activities of the
type II-IFN response (Figure 6H, Supplementary Figure S4D,E). In brief, we reveal that
the UPR might be an essential mediator of the non-inflamed TME phenotype of NSD3-
amplified LUSC.

3.6. Exploration of Potential Therapeutic Targets for NSD3-Amplified LUSC

As clinical NSD3 inhibitors are currently unavailable, we next attempted to explore the
potential therapeutic targets for NSD3-amplified LUSC by screening 138 clinical chemother-
apeutic drugs. The correlation analysis between NSD3 genetic status and treatment re-
sponse based on the estimated half maximal inhibitory concentration (IC50) revealed
that NSD3-amplified LUSCs exhibited a more sensitive phenotype to several compounds
(e.g., A-443654, thapsigargin, paclitaxel, and lapatinib) than the wild-type group (Figure 7A,
Supplementary Table S12). Strikingly, thapsigargin, an endoplasmic reticulum Ca2+ AT-
Pase inhibitor intervening in UPR signaling, was one of the TOP compounds that exhibited
promising synthetic lethality with NSD3 amplification (Figure 7B). In line with this finding,
NSD3 expression was negatively correlated with the IC50 of thapsigargin in LUSC cell lines
(Supplementary Figure S4F). In addition, we also found that NSD3 gene expression was
tightly associated with several UPR-related genes (e.g., LSM1, EIF4EBP1, HYOU1, and
DDX10) (Figure 7C). Interestingly, LSM1 and EIF4EBP1 were the top candidates among
the upregulated DEGs in the NSD3-amplified LUSC (Figure 1D, Supplementary Figure S5).
More importantly, NSD3-amplified LUSC cell lines were accompanied by a more sensitive
phenotype to the specific genetic knockout of LSM1 and EIF4EBP1 (Figure 7D), which
might be candidate synthetic targets for NSD3-amplified LUSC. Hence, our findings further
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indicate that the clinically actionable drugs that targeting UPR signaling might serve as a
novel therapeutic rationale for NSD3-amplified LUSC.
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Figure 5. Clinical predictive value of NSD3 for immunotherapy outcome in LUSC. (A) Heatmap
showing the Spearman correlation coefficients between the mRNA expression of NSD3 and a panel
of inhibitory immune checkpoints in the TCGA LUSC cohort (n = 491). (B) Immunophenoscore
(IPS) distribution plot in the non- and amplification groups of NSD3 across the TCGA LUSC cohort
(n = 491). The Wilcoxon rank-sum test was used for comparison, and p < 0.05 was considered
significant. (C) mRNA expression of NSD3 in the different clinical response groups (DCB: durable
clinical benefit; non-durable clinical benefit) based on the transcriptomic dataset from the NSCLC
immunotherapy cohort (n = 27; GSE135222). A two-tailed unpaired t-test was used for comparison,
and p < 0.05 was considered significant. ns: none significant. (D) Kaplan–Meier analysis based on the
mRNA level of NSD3 in the NSCLC immunotherapy cohort (n = 27; GSE135222) with high- (in red)
or low- (in blue) expression was stratified by the optimal cut-off value of the individual expression
across all patients using the surv_cutpoint function in the R “maxstat” package. The log-rank test
was used for comparison, and p < 0.05 was considered significant.



Cancers 2022, 14, 4997 13 of 20
Cancers 2022, 14, x FOR PEER REVIEW 15 of 23 
 

 

 
Figure 6. The internal links between UPR and non-immunogenic features of NSD3-amplified LUSC. 
(A) The difference in the unfolded protein response (UPR) gene signature between the non- and 
amplification groups of NSD3 in the TCGA LUSC cohort (n = 491). The UPR gene signature was 
scored as the sum of the hallmark UPR gene sets. The Wilcoxon rank-sum test was used for com-
parison, and p < 0.05 was considered significant. (B) Kaplan–Meier analysis based on the UPR gene 

Figure 6. The internal links between UPR and non-immunogenic features of NSD3-amplified LUSC.
(A) The difference in the unfolded protein response (UPR) gene signature between the non- and



Cancers 2022, 14, 4997 14 of 20

amplification groups of NSD3 in the TCGA LUSC cohort (n = 491). The UPR gene signature was scored
as the sum of the hallmark UPR gene sets. The Wilcoxon rank-sum test was used for comparison,
and p < 0.05 was considered significant. (B) Kaplan–Meier analysis based on the UPR gene score in
NSD3-amplified LUSC patients (upper panel; n = 207) or non-amplified group (lower panel; n = 236),
with high (in red) or low (in blue) expression, was stratified by the optimal cut-off value of the
individual expression across all patients using the surv_cutpoint function in the R “maxstat” package.
The log-rank test was used for comparison, and p < 0.05 was considered significant. (C) Correlation
analysis between the UPR gene score and several gene signatures was calculated using the “GSVA” R
package in the TCGA LUSC cohort (n = 491). (D,E) Correlation analysis between the UPR gene score
and a panel of immune cell-related gene markers (D) as well as inhibitory immune checkpoints (E) in
the TCGA LUSC cohort (n = 491). (F,G) The expression levels of UPR gene signature in the indicated
groups. Transcriptomic data were obtained from transgenic mice carrying a lung-specific active
mutant (T1232A) or genetic knockout of Nsd3 (GSE149212 & GSE149482). A two-tailed unpaired
t-test was used for comparison, and p < 0.05 was considered significant. * p < 0.05; **** p < 0.001.
(H) The difference in the indicated immune cell types and the type II-IFN response was calculated
using the “GSVA” R package between the wild-type and Nsd3 active mutant (T1232A) groups. A
two-tailed unpaired t-test was used for comparison, and p < 0.05 was considered significant.
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Figure 7. Prioritization of cancer drug targets for NSD3-amplified LUSC. (A) Heatmap showing
the estimated half maximal inhibitory concentration (IC50) values of candidate therapeutic drugs
calculated using the “pRRophetic” R package across the TCGA LUSC cohort (n = 491). The top 10
compounds ranked by the adjusted p-value are shown. The Wilcoxon rank-sum test was used for
comparison, and p < 0.05 was considered significant. (B) Correlation analysis between the estimated
IC50 values of candidate therapeutic drugs and pathway enrichment scores calculated using the
“GSVA” R package. (C) Heatmap showing the Spearman correlation coefficients between the mRNA
levels of NSD3 and a panel of UPR genes, which displayed an elevated expression pattern in NSD3-
amplified LUSC. (D) Correlation analysis between the copy number of NSD3 and CRISPR genetic
knockout score of EIF4EBP1 and LSM1 across LUSC cell lines (n = 22). Data were downloaded from
The Cancer Dependency Map Project (DepMap; 22Q2 Chronos).
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4. Discussion

Tremendous efforts have been made to delineate the molecular underpinnings and
immunological profiles of squamous cell lung cancer; however, our knowledge about the
TIME of LUSC is still poorly understood. Immune checkpoint blockades alone or com-
bined with standard chemotherapy have achieved considerable success in advanced LUSC
patients [37,38]. However, the heterogeneous response and limited predictive biomark-
ers for immunotherapy are still great challenges in clinical oncology [16,39–41]. In the
present study, by utilizing multi-scale systematic analysis (e.g., genome, transcriptome,
proteome, and TMA array), we provided the first evidence that NSD3 gene amplification,
a newly identified genetic driver of LUSC tumorigenesis, is associated with an immune-
desert phenotype and consequently a poor immunotherapy outcome. Further molecular
characterizations indicated that the high activity of UPR signaling might mediate the
non-immunogenic phenotype of NSD3-amplified LUSC. Most importantly, we revealed
that intervention of UPR signaling is an actionable therapeutic target for NSD3-amplified
LUSC, which might also have considerable benefits in overcoming cancer resistance to
immunotherapy.

The crucial epigenetic deregulator, NSD3, was recently identified as a pivotal muta-
tional driver of LUSC tumorigenesis [10]. However, the immunological role of NSD3 in
driving carcinogenesis has not been systematically studied, especially in large-scale cancer
cohorts. Interestingly, according to the molecular basis of LUSC, we found that NSD3-
amplified tumors were enriched in MYC targets, E2F targets, the G2-M checkpoint, and the
unfolded protein response (UPR). Meanwhile, these patients also displayed a decreased
expression pattern in various immunological pathways, such as interferon-alpha/beta
and the inflammatory response, suggesting that there might be an internal link between
NSD3 and immunological regulation within LUSC. By further integrating multi-scale anal-
yses to systematically evaluate the immunological properties of LUSC, we revealed that
NSD3-amplified LUSC features consistently downregulated immune-related modulators
and reduced infiltration of immune cell signatures of a non-immunogenic phenotype. In
parallel, we observed a strong negative correlation between the mRNA expression of NSD3
and inhibitory immune checkpoints. In line with this, high NSD3 is associated with a worse
immunotherapy outcome, further stressing the possibility of NSD3 as a potential predictive
biomarker for ICBs. Future prospective immunotherapy trials, especially in LUSC, are
urgently needed to validate the above findings.

Unfolded protein response signaling has been established as a cell-intrinsic survival
mechanism for malignant cells facing microenvironmental stressors [42–44], and it could
interfere with local anti-tumor immunity [35,36,45,46]. However, its role in LUSC has been
insufficiently studied. Apart from an upregulated UPR pattern observed in the NSD3-
amplified LUSC, our data provided compelling evidence that neither hyperactivity nor
depletion of NSD3 is involved in the regulation of the UPR gene signature. Recent studies
have shown that NSD3-induced histone methylation is functionally involved in tumor
initiation and progression by facilitating the transactivation of oncogenic signaling, such
as NOTCH, MYC, and mTORC1 [10,47]. Further studies are warranted to investigate the
underlying mechanisms of the NSD3-driven UPR response.

In general, tumors can be divided into immune-hot and -cold subtypes based on
the levels of immune cell infiltration and the activities of immunomodulators. Increasing
evidence demonstrates that the absence of tumor antigens, antigen presentation defects,
and T-cell activation contribute to a “cold” tumor-immune microenvironment [48,49].
During the evolution of carcinogenesis, the accumulation of genetic alterations and cancer
hallmarks are inherent mechanisms for a “cold tumor” state [50–52]. A hyperactivated
UPR response has been reported to account for dysfunctional dendritic cells (DCs) and
neutrophils [53,54]. Moreover, CHOP, a critical downstream effector of the UPR response,
is vital for the immune inhibitory activity of tumor-infiltrating myeloid-derived suppressor
cells (MDSCs) and CD8+ T-cells [55]. In line with this, our data revealed that the UPR gene
signature manifested a significantly negative correlation with immune cell-related gene
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markers and inhibitory immune checkpoints, pointing to the possibility that UPR might
be a mediator of the “cold tumor” immunological phenotype of LUSC. Therefore, future
studies will be interesting to explore how the UPR contributes to the NSD3-driven “cold”
tumor immune microenvironment.

Until now, immunological treatment of “cold tumors” has been a substantial clinical
problem, as no adaptive immune response has been established. Emerging evidence has
shown that shifting the anti-tumor immunity to the T-cell inflamed phenotype could be
an excellent therapeutic rationale for improving the immunotherapy response [56]. Here,
our data showed that the hyperactivity of NSD3 could further accelerate the immune-
desert phenotype; in contrast, the depletion of NSD3 is accompanied by an upregulated
type-II IFN response, suggesting that targeting NSD3 might be a promising rationale for
transforming the TIME. At present, however, there is no NSD3 inhibitor that can be used
in a physiological setting. By integrating pharmaco-transcriptomic analysis, we further
proved that the intervention in UPR signaling, especially thapsigargin, might be a novel
therapy for NSD3-amplified LUSC. Despite the promising efficiency of targeting UPR
branches to balance the immune response, investigations of their usefulness in immune
modulations, especially in lung cancer, are rare [57]. Notably, a robust/lethal overactivation
of the UPR was shown to trigger immunogenic cell death (ICD), which in turn promotes
immunostimulatory responses [58–60]. In our scenario, we speculate that chemically
induced permanent ER stress by thapsigargin could drive tumor cells towards ICD and
finally lead to the elevation of the immunogenicity for enhanced cancer therapy. Hence,
future studies are warranted to confirm their clinical efficacy, especially as a combination
rationale with immunotherapy.

5. Limitations

There are some limitations in this study requiring further redress. (1) Albeit our data
revealed that both the mRNA and protein levels of NSD3 might be superior predictors
of its amplification state, direct evidence between the genetic status of NSD3 and the
corresponding protein expression is still lacking. (2) A slight inconsistency in the cancer
immunity cycle persists between the two applied LUSC patient cohorts, which might
be due to the tumor heterogeneity, and the difference in sample size. Validation with
independent cohorts is warranted. (3) As expected, NSD3-amplified LUSC was associated
with a downregulated cytotoxic T-cell signature; however, the internal links between NSD3
and different subtypes of T-cells (naive, effector, memory, and exhausted T-cells) need to be
further elucidated. Multi-colour IHC (mIHC) is highly recommended to dissect the above
issue in future studies.

6. Conclusions

In summary, we provide the first solid evidence that NSD3 gene amplification defines
a non-immunogenic phenotype in LUSC and is associated with poor immunotherapy
outcomes. Further molecular characterization revealed the potential internal links between
the unfolded protein response and the “cold” tumor immune microenvironment of NSD3-
amplified LUSC. More valuable, our data imply that either directly targeting NSD3 or
intervention of UPR signaling might be a promising therapeutic rationale to boost anti-
tumor immunity and improve the immunotherapy response.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/cancers14204997/s1. Figure S1: The genetic landscape of NSD3-amplified
LUSC; Figure S2. Immunological profiles of NSD3-amplified LUSC; Figure S3. The landscape of the LUSC
TMA array; Figure S4. The association between UPR and non-immunogenic features of NSD3-amplified
LUSC; Figure S5. Overview of the study design; Table S1. DEG analysis based on the amplification state
of NSD3 in the TCGA-LUSC cohort; Table S2. GSEA analysis between non- and amplification groups
of NSD3; Table S3. The copy number of NSD3 and CRISPR genetic knockout score across LUSC cell
lines; Table S4. Expression pattern of immunomodulators between non- and amplification of NSD3 in the
TCGA-LUSC cohort; Table S5. The infiltration levels of immune cells in LUSC are based on five algorithms
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(TIMER, EPIC, MCP-counter, quanTIseq, and TISIDB); Table S6. Expression levels of tumor-infiltrating
immune cell (TIIC) -related effector genes between the non- and amplification of NSD3 in TCGA-LUSC
cohort; Table S7. Expression levels of immunomodulators between non- and amplification of NSD3 in
CPTAC-LUSC cohort; Table S8. Expression levels of tumor-infiltration immune cells (TIICs) -related
effector genes between non- and amplification of NSD3 in the CPTAC-LUSC cohort; Table S9. Correlation
analysis between the expression of NSD3 and a panel of inhibitory immune checkpoints; Table S10.
Correlation analysis between the UPR gene signature and immune cell-related gene markers; Table S11.
Correlation analysis between the UPR gene signature and inhibitory immune checkpoints; Table S12.
Estimated IC50 values of candidate therapeutic targets for NSD3-amplified LUSC.
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