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Deep Brain Stimulation (DBS) is an effective treatment for advanced

Parkinson’s disease. However, identifying stimulation parameters, such as

contact and current amplitudes, is time-consuming based on trial and error.

Directional leads add more stimulation options and render this process more

challenging with a higher workload for neurologists and more discomfort

for patients. In this study, a sweet spot-guided algorithm was developed

that automatically suggested stimulation parameters. These suggestions were

retrospectively compared to clinical monopolar reviews. A cohort of 24

Parkinson’s disease patients underwent bilateral DBS implantation in the

subthalamic nucleus at our center. First, the DBS’ leads were reconstructed

with the open-source toolbox Lead-DBS. Second, a sweet spot for rigidity

reduction was set as the desired stimulation target for programming. This

sweet spot and estimations of the volume of tissue activated were used to

suggest (i) the best lead level, (ii) the best contact, and (iii) the effect thresholds

for full therapeutic effect for each contact. To assess these sweet spot-guided

suggestions, the clinical monopolar reviews were considered as ground truth.

In addition, the sweet spot-guided suggestions for best lead level and best

contact were compared against reconstruction-guided suggestions, which

considered the lead location with respect to the subthalamic nucleus. Finally,

a graphical user interface was developed as an add-on to Lead-DBS and is

publicly available. With the interface, suggestions for all contacts of a lead

can be generated in a few seconds. The accuracy for suggesting the best
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out of four lead levels was 56%. These sweet spot-guided suggestions were

not significantly better than reconstruction-guided suggestions (p = 0.3). The

accuracy for suggesting the best out of eight contacts was 41%. These sweet

spot-guided suggestions were significantly better than reconstruction-guided

suggestions (p < 0.001). The sweet spot-guided suggestions of each contact’s

effect threshold had a mean error of 1.2 mA. On an individual lead level, the

suggestions can vary more with mean errors ranging from 0.3 to 4.8 mA.

Further analysis is warranted to improve the sweet spot-guided suggestions

and to account for more symptoms and stimulation-induced side effects.

KEYWORDS

deep brain stimulation, Parkinson’s disease, programming, sweet spot, subthalamic
nucleus

Introduction

Deep brain stimulation (DBS) is an effective treatment
for advanced Parkinson’s disease (Deuschl et al., 2006; Krack
et al., 2019). Leads are implanted in the basal ganglia,
typically in the subthalamic nucleus, and electrical pulses are
generated by an implantable pulse generator. However, finding
effective stimulation parameters is currently time-consuming
with monopolar review (Ten Brinke et al., 2018). Contacts
are tested one at a time and current amplitude or voltage is
increased in steps until the patient experiences symptom relief
or stimulation-induced side effects to determine a therapeutic
window for each contact (Volkmann et al., 2006).

Directional leads have been introduced in recent years that
allow for steering and shaping of the stimulation field. Whereas
traditional leads consist of four omnidirectional contacts, the
directional leads have six or more directional contacts, greatly
adding to the complexity of finding effective stimulation
parameters (Schupbach et al., 2017).

As a result of the time-consuming monopolar review
for directional leads, research groups have been working on
identifying effective stimulation regions in the brain (“sweet
spots”), whose activation has been correlated to favorable
outcomes (Dembek et al., 2019; Nguyen et al., 2019).

Our goal is to improve clinical outcomes by developing
an algorithm that reduces the time and complexity of DBS
programming while fully exploiting the potential of directional
stimulation. To this end, the objectives of this retrospective
study were to:

(1) Develop algorithms to automatically suggest lead level and
contact and estimate effect thresholds for each contact
using a previously published sweet spot (Nguyen et al.,
2019).

(2) Build a graphical user interface to run the suggestions
algorithms and visualize the results.

(3) Evaluate the suggestions of the algorithms against clinical
monopolar review data.

Materials and methods

A summary of the workflow: To compute suggestions for a
new lead, we reconstructed the lead’s position and orientation.
We used the open-source toolbox Lead-DBS (Horn et al.,
2019). Then we estimated volumes of tissue activated (VTAs)
for different levels, contacts, and current amplitudes. Finally,
we identified those stimulation volumes that had a desired
overlap volume with the sweet spot to suggest the best level,
contact, and effect thresholds for that lead. These sweet spot-
guided suggestions were compared retrospectively with clinical
monopolar reviews. We detail the estimation of VTAs and the
desired overlap volume below.

Data and patient cohort

The cohort consisted of 24 patients with bilaterally
implanted DBS leads at the University Hospital of Bern.
The inclusion and exclusion criteria, and surgical procedure
and postoperative management were the same as previously
described (Nguyen et al., 2019). The target structure for
the implantation was the motor part of the subthalamic
nucleus. The patients were implanted with the Boston Vercise
Directional system. Pre-operative 3 Tesla magnetic resonance
images and post-operative computer tomography scans were
performed on all patients. Effect thresholds from monopolar
reviews were available for 284 contacts, including ring-mode
stimulation (i.e., activating the three directional contacts on the
same level together). The monopolar review evaluated rigidity
reduction and noted effect thresholds for complete rigidity
reduction.

Frontiers in Human Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnhum.2022.925283
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-925283 October 26, 2022 Time: 15:10 # 3

Nordenström et al. 10.3389/fnhum.2022.925283

Lead reconstruction

The leads’ position and orientation were reconstructed
with the open-source Lead-DBS toolbox in Matlab 2020b
(Mathworks, Natick, MA, USA). The process has been detailed
previously (Horn et al., 2019). In short, the pre-operative
magnetic resonance images and post-operative computer
tomography scans of each patient were coregistered to each
other and normalized to Montreal Neurological Institute
template space. The leads were then semi-automatically
reconstructed with the PaCER algorithm and a lead’s position
was manually refined so that the reconstructed trajectory
matched the artifact of the lead on the computer tomography
scans (Husch et al., 2018). Finally, the lead orientations were
estimated using the DiODe algorithm (Hellerbach et al., 2018).

Stimulation sweet spot

The sweet spot for rigidity reduction used in this study
is detailed in Nguyen et al. (2019). The sweet spot included
voxels with efficiency scores at the 90th percentile and above and
was located in the dorsolateral part of the subthalamic nucleus,
Figure 1. The sweet spot was computed for the right hemisphere
by pooling all stimulation volumes to that hemisphere. To have
a sweet spot for the left hemisphere, the right sweet spot was
non-linearly warped with Lead-DBS to the left hemisphere.
Importantly, the sweet spot had been calculated with a previous
and different cohort from our center than the cohort tested in
this study.

Estimation of volume of tissue
activated

The volumes of tissue activated were estimated with two
algorithms. The first algorithm was the SimBio/FieldTrip
pipeline in Lead-DBS (Horn et al., 2019). Conductivity values for
gray and white matter were set to 0.33 and 0.14 S/m, respectively.
Gray and white matter were assigned with the DISTAL atlas
(Ewert et al., 2018). The potential gradient was thresholded
at 0.2 V/mm to get the binarized VTA (Astrom et al., 2015).
The second algorithm was called Instant Analytical Spheres
that we developed for this study to accelerate computation.
The SimBio/FieldTrip algorithm can take a few minutes per
VTA. The instant analytical spheres algorithm estimated VTAs
markedly faster by assuming VTA and sweet spot to be
spheres. Thus, the overlap volume between the two spheres
was calculated with an algebraic expression. Both algorithms
are described below. The FastField method to estimate VTAs
would also have been a viable alternative (Baniasadi et al.,
2020). However, a wrapper to compute VTAs without user
interaction did not exist for FastField at the time. It would

have required user input and would therefore have been more
time-consuming.

The VTAs were estimated in the Montreal Neurological
Institute template space to evaluate tests across patients.
In a small cohort of three patients, we did not find
significant differences between calculations in native space or
template space (data not shown) and therefore chose to stay
in template space.

SimBio/Fieldtrip-based algorithm
To suggest stimulation settings for a new lead, first, the

three contacts closest to the center of mass of the sweet spot
were shortlisted. Second, VTAs were generated for these three
contacts from 1 to 8 mA in steps of 1 mA with SimBio/FieldTrip.
An initial estimate I(i’) of the effect threshold was obtained by
selecting the current amplitude at which the overlap volume
between the VTA and the sweet spot was closest to the desired
overlap volume Vd, i.e.:

i′ = argmin
i
|V(i)− Vd|, where i = 1, 2, ..., 8 mA (1)

where i’ was the stimulation index of the initially estimated effect
threshold, V(i) was the volume of VTA-sweet spot overlap at
index i, and I(i) was the current at index i.

Third, a refined estimate of the effect threshold was
calculated because the step size of 1 mA provided only a
rough, initial estimate. A linear interpolation was performed
between [I(i’),V(i’)] and [I(i’+1),V(i’+1)] for underestimated
initial estimates, i.e., between the current amplitude and the
overlap volume. For overestimated initial estimates, a linear
interpolation was instead performed between [I(i’),V(i’)] and
[I(i’-1),V(i’-1)]. The refined estimate of the effect threshold Iest

was then obtained as the current amplitude corresponding to an
overlap volume of Vd based on the linear interpolation.

Instant analytical spheres algorithm
We developed a mathematical model called instant

analytical spheres to accelerate computation, where both the
sweet spot and the VTA were assumed to be spheres. This led to
an algebraic expression for the overlap volume:

VO(rSS, d, rVTA) =
π

12d

((
rVTA + rSS − d

)2

(
d2
+ 2d (rVTA + rSS)− 3 (rVTA − rSS)

2)) (2)

where VO, rSS, d and rVTA were the overlap volume, radius
of the sweet spot, distance between the sweet spot center and
VTA center, and radius of the VTA, respectively. Note that
Eq. (2) only held when the VTA and sweet spot intersected, i.e.,
|(rVTA − rSS)| ≤ d ≤ rVTA + rSS, and the sweet spot was not
completely inside the VTA.
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As Eq. (2) expressed the overlap volume in terms of the VTA
radius and not the current amplitude, a transformation between
these two variables was required. The transformation was found
empirically by generating VTAs with the SimBio/FieldTrip
algorithm from 0.6 to 10 mA in steps of 0.1 mA for a single
omnidirectional contact, calculating the radius corresponding
to each VTA, and fitting a second-degree polynomial with
intercept zero. The transformation was then validated on one
omnidirectional contact and one directional contact of another
patient and hence used for the remainder of the analysis.

Next, while estimating directional VTAs, we observed that
the center of the VTA moved as the current amplitude increased.
More specifically, the position vector pVTA of the center was
assumed to be (bold typeface indicating a three-dimensional
vector):

pVTA = pe + γ
pe − pc
|pe − pc|

rVTA (3)

where pe was the position vector to the center of the contact’s
surface, pc the position vector to the center of that lead level
(both vectors were extracted from the lead reconstruction in
Lead-DBS), and G a parameter that determined how the VTA
center moved with increasing current amplitude. The default
value of G was set to 0.1, meaning that for each millimeter
increase in VTA radius, its center moved 0.1 mm further on that
trajectory. For omnidirectional stimulation, on the other hand,
the VTA center was assumed to be at the center of the lead level
for all current amplitudes.

For the spherically approximated sweet spot, we verified that
the center of the presumed spherical sweet spot was identical
to the center of the original sweet spot. Together, these steps
yielded the necessary radii and distance to compute the overlap
volume with Eq. (2).

Finally, to suggest the effect threshold, the algorithm
selected the current amplitude at which the overlap volume
reached the desired overlap volume, Vd. This was identical to
the SimBio/FieldTrip-based algorithm.

We validated the instant analytical spheres algorithm in two
steps. First, we evaluated the spherical approximations with the
Dice similarity coefficient:

Dice similarity coefficient = 2
|V1 ∩ V2|

|V1| + |V2|
, (4)

where V1 and V2 were two VTAs or one VTA and the sweet spot
(for instance, V1 with the instant analytical spheres algorithm
and V2 with the SimBio/FieldTrip algorithm). Second, we
compared the suggested effect thresholds of the instant
analytical spheres algorithm with the suggested effect thresholds
of the SimBio/FieldTrip pipeline. The effect thresholds of
384 directional contacts and 96 omnidirectional contacts
were estimated with both algorithms. Pearson correlation was
performed to investigate the relationship between the two
algorithms’ suggestions.

Sweet spot-guided suggestions

Desired overlap volume
At the beginning of this study, we assumed the desired

overlap volume Vd to be constant on the premise that a certain
volume of the sweet spot needed to be activated for therapeutic
effect. For the constant desired overlap volume, we estimated a
desired overlap volume of 33% of the sweet spot. This estimate
was derived from our previous publication (Nguyen et al., 2019),
where we found a correlation between overlap and clinical
improvement.

But during early prototyping, we ran into limitations with
the constant desired overlap volume. Therefore, we also added
a non-constant desired overlap volume, which was defined as a
function of the distance between contact and sweet spot center.
We analyzed the distance between contact to sweet spot and the
percentage of activated sweet spot at the effect threshold for that
contact (taken from the monopolar reviews). We then calculated
a linear-mixed effect model with random effects on slope and
intercept and the lead ID as grouping variable. This resulted in a
distance-dependent desired overlap volume.

Best level and best contact suggestions
With the instant analytical spheres, the suggestions of the

best level were made by estimating the effect thresholds of all
four levels of lead. Directional contacts at the same level were
considered together as one omnidirectional electrode, i.e., in
“ring-mode.” The level with the lowest effect threshold was
selected as the suggested best level.

The clinically best level for each lead was selected as the level
with the lowest effect threshold from the monopolar review.
In the case of more than one level having the same lowest
clinical effect threshold, all these levels were selected as the best
levels, as they were assumed to be equally effective in providing
therapeutic effects. Sufficient data were available to obtain the
clinically best level for 34 leads.

Similarly, the suggestions of the best contact were made by
estimating the effect threshold for all eight contacts of a lead.
These suggestions were compared with the monopolar reviews.
In cases where two contacts were considered equally best by the
algorithm (i.e., both had the lowest suggested effect threshold),
the suggestion was classified as partially correct.

Effect threshold suggestions
The instant analytical spheres algorithm was used to

calculate suggestions using the constant desired overlap volume
and the distance-dependent desired overlap volume. These
suggestions were evaluated against the clinical effect thresholds
for 284 electrode contacts, including ring-mode stimulation.

Comparison against reconstruction-guided
suggestions

The sweet spot-guided suggestions for best level and
best contact were compared against reconstruction-guided
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suggestions. The latter suggestions are intended to emulate a
clinician with access to the lead reconstructions. Such a clinician
could look at the three-dimensional visualization of the lead
with respect to the subthalamic nucleus and estimate a best level
or contact. Here, the reconstruction-guided suggestion for the
best level was the level with the shortest distance to the centroid
of the subthalamic nucleus. Similarly, the reconstruction-guided
suggestion for the best contact was the contact with the shortest
distance to the nucleus’ centroid. The subthalamic nucleus was
taken from the DISTAL atlas (Ewert et al., 2018). However,
we assumed that such a visual inspection of the reconstruction
would not allow for suggestions of effect thresholds.

Statistical testing and evaluation
metrics

A p-value less than 0.05 was considered statistically
significant for rejecting null hypotheses. The confidence interval
(CI) for the suggested best levels was calculated using the
standard formula for proportion estimates of a population in a
sample, namely:

CI = p ±

√
p · (1− p)

N
· Z, (5)

where p, N, and Z represent the proportion of correct
predictions, the number of leads analyzed, and the Z-score
(1.96), respectively. A binomial test was performed to test
the sweet spot-guided suggestions against the reconstruction-
guided suggestions of best level and best contact.

Open-source graphical user interface

A graphical user interface was developed with MATLAB’s
App Designer tool (Matlab 2020b). The user can run
the algorithms described above and display results. The
interface will be incorporated in a future version of the
Lead-DBS toolbox and can be installed optionally. It can be
launched from the Lead-DBS 3D viewer. The source code
for the GUI and suggestion algorithms can be found at:
https://gitlab.switch.ch/brain-stimulation-mapping/automatic_
dbs_stim_params_selection.

Results

Instant analytical spheres

We first compared the instant analytical spheres algorithm
developed herein with the SimBio/Fieldtrip algorithm in Lead-
DBS. This allowed for faster computation of the overlap volume
and thus faster suggestions. For omnidirectional VTAs, the

FIGURE 1

Comparison of effect threshold suggestions by the instant
analytical spheres (IAS) algorithm and by the SimBio/FieldTrip
algorithm.

average Dice similarity coefficient was 0.90 and indicated very
good agreement between the algorithms. For directional VTAs,
the average Dice similarity coefficient was 0.85. Of note, the
instant analytical spheres model can—but does not need to—
generate VTAs to suggest stimulation settings. It instead uses
a mathematical representation of the VTAs and their overlap
volume with the sweet spot.

The empirical transform from the VTA radius to the
corresponding stimulation amplitude was found as follows:
I = 0.43rVTA + 0.36r2

VTA, where I is the current amplitude in
mA and rVTA is the VTA radius in mm. An R2-value of 0.99
was obtained for this second-order polynomial fit of the current-
radius transform to the data points of both omnidirectional and
directional contacts of one test patient.

Finally, the effect threshold suggestions of the instant
analytical spheres algorithm and the SimBio/FieldTrip
algorithm are displayed for all contacts in Figure 1. The
Pearson correlation coefficient was 0.97. The mean absolute
error between the two algorithms was 0.3 mA, and a larger
discrepancy was observed for larger current amplitudes. We
deemed these values acceptable given the faster computation.
With the SimBio/FieldTrip algorithm, the computation took
about 3 h for all contacts in a bilaterally implanted patient. In
contrast, it took approximately 5 s with the instant analytical
spheres algorithm (AMD Ryzen9 16-core processor, 64 GB
memory). We therefore used this algorithm for the suggestions
below.

Sweet spot-guided suggestions

The instant analytical spheres algorithm and sweet spot
were used to generate suggestions for the best level, the best
contact, and the effect thresholds of each contact. In one
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FIGURE 2

Percentage of sweet spot covered over distance between
contact to sweet spot. This was to infer a distance-dependent
desired overlap volume. The shaded area represents the 95%
confidence interval.

set of suggestions, a constant desired overlap volume was
used. In a second set of suggestions, a distance-dependent
desired overlap volume was used. These sweet spot-guided
suggestions were compared retrospectively against clinical
monopolar reviews considered as ground truth and against
reconstruction-guided suggestions, which suggested the level
or contact with the shortest distance to the centroid of the
subthalamic nucleus.

To calculate the distance-dependent desired overlap volume,
we analyzed the volume of the sweet spot that needed to be
covered. Figure 2 shows the relationship between the percentage
of the sweet spot covered and the distance contact to the sweet
spot. The data was derived from the effect thresholds of the
monopolar reviews. A linear mixed-effects model was fitted to
the data to calculate the distance-dependent desired overlap
volume. We added a lower bound of 1 mm3 and an upper
bound of 100 mm3 for the distance-dependent desired overlap
volume. The upper bound was chosen to be between the volume
of the motor subthalamic nucleus and the volume of the full

subthalamic nucleus, 62 and 164 mm3, respectively, according
to the DISTAL atlas (Ewert et al., 2018).

For suggestions of the best level, the sweet spot-guided
suggestions matched the best clinical level with an accuracy
of 56% (CI: 49–73%, n = 34, p = 0.3 for a right-tailed
test against reconstruction-guided suggestions of four levels,
accuracy 50%). Marginally different accuracies were obtained
with a constant desired overlap volume and a distance-
dependent desired overlap volume.

For suggestions of the best contact, the algorithm matched
the best clinical contact with an accuracy of 41% (CI: 26–56%,
n = 39, p < 0.001 for a right-tailed test against reconstruction-
guided suggestions of eight contacts, accuracy 13%).

For suggestions of the effect thresholds, we analyzed the
absolute error between the clinical effect threshold and the
suggested effect thresholds (Figure 3). With the constant desired
overlap volume, the mean absolute error was 1.73 ± 0.09 mA.
With the distance-dependent desired overlap volume, the
error was smaller at 1.18 ± 0.07 mA (p < 0.001; two-
sample t-test). The lead-specific errors ranged from 0.3 to
4.8 mA.

But the suggestions of the effect thresholds were not well
correlated with the clinical effect thresholds (Figure 4). The
suggestions with the constant desired overlap volume had a
Pearson’s correlation coefficient of 0.12 (p = 0.02) with the
clinical effect thresholds. The suggestions with the distance-
dependent desired overlap volume had a non-significant
correlation coefficient of 0.06 (p = 0.2). Taken together, the sweet
spot suggested the best level and contact well but not effect
thresholds.

Visualization and graphical user
interface

Figure 5 shows three exemplary leads with suggested
contacts and effect thresholds. The suggested VTA for each lead

FIGURE 3

Absolute errors for the effect thresholds. (A) Suggestions with the constant desired overlap volume had a mean error of 1.6 mA. Suggestions
with the distance-dependent desired overlap volume had a mean error 1.2 mA. (B) For suggestions with distance-dependent desired overlap
volume, the errors of the individual leads are shown as box plots with a range of 0.3–4.8 mA.
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FIGURE 4

Suggested effect thresholds vs. clinical effect thresholds.
(A) Using the constant desired overlap volume. (B) Using the
distance-dependent desired overlap volume. The shaded areas
represent the 95% confidence intervals.

can be seen with respect to the sweet spot, the subthalamic
nucleus, the lead, and the clinically deemed best VTA for
that lead. The suggestions were generated with the distance-
dependent desired overlap volume.

The developed graphical user interface consists of one input
window to load a user-specific sweet spot and to select the
SimBio/Fieldtrip algorithm or the instant analytical spheres
algorithm. This is shown in Figure 6. After computation, the
results are presented in an output window. The user can select
between five visualizations: (i) the suggested effect thresholds,
(ii) the distance between contacts to the sweet spot center, (iii)
the overlap ratios as a function of current amplitude, (iv) the
overlap volume of the sweet spot, and (v) the volume of VTA
not overlapping with the sweet spot. The selected sweet spot and
the suggested VTAs can be added and displayed in the 3D viewer
of Lead-DBS.

Discussion

Suggestions of best level, best contact
and effect thresholds

In the present study, we developed an algorithm to
automatically suggest the best level, the best contact, and the
effect thresholds of a directional lead. The suggestions were
generated in a few seconds and were guided by a sweet spot for
rigidity reduction in the subthalamic nucleus. The suggestions
of best level and best contact matched the best clinical levels
and contacts well, whereas the suggestions of effect thresholds
proved more challenging. Our algorithm is publicly available
and can be added to the toolbox Lead-DBS.

The sweet spot-guided suggestions of the best level matched
the best clinical levels in 56% of leads and were not significantly
better than reconstruction-guided suggestions. On the other
hand, the sweet spot-guided suggestions for best contact
matched the best clinical contact in 41% of leads. This was
significantly better than reconstruction-guided suggestions and

FIGURE 5

VTAs of suggested best contact and clinically best contact for three different leads (A–C). Gray: clinically best stimulation setting; yellow:
suggestion by the instant analytical spheres algorithm; green: sweet spot; and orange: subthalamic nucleus.
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FIGURE 6

Input window of the graphical user interface.

highlights one added value of the sweet spot. However, the
difficulty of suggesting the best level or best contact with a sweet
spot-guided approach is illustrated in Figure 5. In two out of
three shown cases, the suggested best contacts appeared to be the
best ones considering the location of the sweet spot, but the best
clinical contacts were visually further away. More analysis may
include side effects and sour spots to better understand these
cases but were beyond the scope of the study.

Our suggestion performances for best level and best contact
were lower than another sweet spot-guided study from our
group (Jaradat et al., 2022). In that study, the suggested best level
matched the best clinical level in 72% of the leads compared
to 56% in the present study. We used the same sweet spot
but with the visualization software Guide XT (Boston Scientific
Corporation and Brainlab AG). In addition, more manual work
to import the sweet spot and interaction with the software was
needed to generate suggestions. For the suggestions in Guide XT,
we aimed for a desired overlap volume of approximately 50%
between VTA and sweet spot, since the software only allowed
for a visual and qualitative inspection of the overlap. Moreover,
the model to estimate VTAs in Guide XT is likely to be different
from the instant analytical spheres model developed herein,
though full details of the Guide XT model are not available.

In another comparison, our suggestion performances were
similar to electrophysiology-guided suggestions. These were
done with local field potentials recorded at our center and
analyzed different frequency bands such as beta, gamma, or
high-frequency oscillations (Tinkhauser et al., 2018; Shah et al.,
2022). A possible explanation for the similar performance may
be related to the location of the sweet spot, which is located
at the dorsal border of the subthalamic nucleus. Two studies
have shown that imaging and electrophysiology highly agree
in detecting that dorsal border or entry into the subthalamic
nucleus (Nowacki et al., 2018; Al Awadhi et al., 2022).

Comparisons to other studies using imaging-guided
suggestions are not straightforward. Our suggestions here were
compared to the best clinical levels and best clinical contacts
from monopolar reviews. The suggestions themselves were not
tested in patients for motor improvement and should therefore
be viewed as an indirect validation. To our knowledge, four
other studies tested imaging-guided suggestions in patients and
found similar motor improvement compared to traditional
clinical programming (Pourfar et al., 2015; Pavese et al., 2020;
Lange et al., 2021; Waldthaler et al., 2021). These studies
generated suggestions manually with a visualization software
such as Guide XT but attempted to target the whole dorsolateral
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subthalamic nucleus and not a sweet spot. These studies can
therefore be regarded as a direct validation, thus demonstrating
the potential of imaging-guided suggestions. This warrants a
future study with sweet spot-guided programming.

Imaging-guided suggestions can help reduce the
time needed to program directional leads. For instance,
Lange et al. (2021) reported an average of 20 min with imaging-
guided programming compared to an average of 45 min with
traditional programming for a patient implanted bilaterally with
directional leads. Of note, they used the visualization in Guide
XT to preselect a contact that faced the dorsolateral subthalamic
nucleus. Then they determined the current amplitude for that
contact with traditional programming, i.e., they started with
0 mA and slowly increased the current amplitude. Pavese et al.
(2020) also targeted the dorsolateral subthalamic nucleus and
additionally used VTA estimations, called stimulation field
models in Guide XT, to suggest a current amplitude. Then
they applied this amplitude and performed adjustments, when
necessary. They reported an average of 36 min with imaging-
guided programming compared to an average of 140 min with
traditional programming for patients implanted bilaterally
with octopolar leads. Our algorithm generated suggestions in a
few seconds and could therefore produce similar time savings,
which need to be verified. Shorter programming times could
also be more comfortable for patients, who typically have to be
off medication for programming.

Our suggestions for effect thresholds were acceptable on
average with an error of 1.2 mA. But the suggested effect
thresholds did not correlate well with the clinical effect
thresholds. A possible explanation may be the sweet spot used
herein. It was computed with clinical efficiency, i.e., input
samples were normalized by the clinical effect threshold with
the intention to highlight an effective and efficient region
in the subthalamic nucleus (Nguyen et al., 2019). Therefore,
samples with large clinical effect thresholds had less weight
on the final sweet spot, whereas samples with small clinical
effect thresholds had a larger weight on the final sweet spot.
This might have flattened suggestions of effect thresholds.
Overfitting may be another issue with voxel-wise sweet spots
since these span thousands of voxels but have observations in the
hundreds; though this is mitigated to an extent through voxel-
wise statistics. These factors would need to be investigated in
further analysis.

Nonetheless, suggested effect thresholds are likely to require
clinical adjustments in each patient. For instance, Pavese et al.
(2020) suggested current amplitudes that required adjustments
in most of their patients. In contrast, Lange et al. (2021)
did not use VTA estimations. In their view, these estimations
made simplifying assumptions that would not adequately reflect
the complexity of stimulated brain tissue. An in-silico study
supports this point of view and reported differences between fast
VTA estimations and more refined and computationally more
expensive models (Duffley et al., 2019). Therefore, more work

is needed to refine the suggestions for effect thresholds and to
find a balance between added computation time and time for
subsequent clinical adjustments (e.g., a complex computational
model may take hours to calculate but need only minor
adjustments, while a simpler model may take a few minutes but
needs more adjustments).

Our study has several limitations. First, this analysis was
performed with retrospective data. These were monopolar
reviews done 4–6 months post-implantation with a focus on
rigidity. A more comprehensive study would have included
effects on bradykinesia or gait that were not measured in our
data. We also did not consider side effects or sour spots in this
study since our focus was on algorithm development. Second,
the estimations of VTAs used herein have many limitations
described in the literature (Duffley et al., 2019). Our estimations
did not also consider stimulation frequency or pulse width.
Third, an accumulation of errors from image acquisition,
coregistration, normalization, and orientation detection might
result in inaccuracies of the lead reconstructions.

Outlook

DBS programming can be optimized and personalized to
the symptom profile of the patient (Hollunder et al., 2022).
This would leverage the full potential of directional DBS
systems. One element toward personalization is symptom-
specific sweet spots or fiber tracts, for instance for bradykinesia,
tremor, or akinesia (Akram et al., 2017; Dembek et al., 2019;
Hollunder et al., 2022). The sweet spot used here was specific to
rigidity reduction. A second element is multipolar stimulation
with current steering to target these different sweet spots or
tracts while avoiding sour spots or tracts that are likely to
cause side effects. The algorithm presented here is only capable
of suggesting monopolar stimulation with one contact as the
cathode and the implanted pulse generator as the return.
A few in-silico studies have proposed algorithms to calculate
multicathodic or multipolar suggestions and may be added
to our algorithm in the future (Anderson et al., 2018; Pena
et al., 2018; Cubo et al., 2019; Connolly et al., 2021; Roediger
et al., 2022). Interestingly, Waldthaler et al. (2021) generated
multipolar suggestions manually with the software Guide XT
but had the dorsolateral part of the subthalamic nucleus as the
only target.

Conclusion

We have developed an algorithm to automatically suggest
the best level, the best contact, and effect thresholds based on a
sweet spot in the subthalamic nucleus. These sweet spot-guided
suggestions can assist with the programming of directional
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DBS leads, in particular to suggest the best contacts. Moreover,
an open-source graphical user interface was developed and
is available with Lead-DBS. Further clinical analysis for a
prospective study is warranted.
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