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Abstract
Adolescence is a period of major brain reorganization shaped by biologically timed and by environmental factors. We sought
to discover linked patterns of covariation between brain structural development and a wide array of these factors by
leveraging data from the IMAGEN study, a longitudinal population-based cohort of adolescents. Brain structural measures
and a comprehensive array of non-imaging features (relating to demographic, anthropometric, and psychosocial
characteristics) were available on 1476 IMAGEN participants aged 14 years and from a subsample reassessed at age 19
years (n= 714). We applied sparse canonical correlation analyses (sCCA) to the cross-sectional and longitudinal data to
extract modes with maximum covariation between neuroimaging and non-imaging measures. Separate sCCAs for cortical
thickness, cortical surface area and subcortical volumes confirmed that each imaging phenotype was correlated with non-
imaging features (sCCA r range: 0.30–0.65, all PFDR < 0.001). Total intracranial volume and global measures of cortical
thickness and surface area had the highest canonical cross-loadings (|ρ|= 0.31−0.61). Age, physical growth and sex had the
highest association with adolescent brain structure (|ρ|= 0.24−0.62); at baseline, further significant positive associations
were noted for cognitive measures while negative associations were observed at both time points for prenatal parental
smoking, life events, and negative affect and substance use in youth (|ρ|= 0.10−0.23). Sex, physical growth and age are the
dominant influences on adolescent brain development. We highlight the persistent negative influences of prenatal parental
smoking and youth substance use as they are modifiable and of relevance for public health initiatives.

Introduction

Adolescence is a critical period for brain maturation
leading to adult levels of emotional self-regulation and
cognitive control [1–3]. At the same time, this period of
brain reorganization is also associated with increased
vulnerability to psychopathology [4–6]; the incidence of
psychiatric disorders increases exponentially after the age
of 10 years with 75% of cases being diagnosed by age 24
years [7, 8]. Factors that influence adolescent brain
development are therefore critical in forming the foun-
dation for both positive and negative adult functional
outcomes [4–6].

Members of the IMAGEN Consortium are listed below
Acknowledgements.

* Sophia Frangou
sophia.frangou@mssm.edu

Extended author information available on the last page of the article

Supplementary information The online version of this article (https://
doi.org/10.1038/s41380-020-0757-x) contains supplementary
material, which is available to authorized users.

12
34

56
78

90
()
;,:

12
34
56
78
90
();
,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-020-0757-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-020-0757-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-020-0757-x&domain=pdf
http://orcid.org/0000-0003-4120-0474
http://orcid.org/0000-0003-4120-0474
http://orcid.org/0000-0003-4120-0474
http://orcid.org/0000-0003-4120-0474
http://orcid.org/0000-0003-4120-0474
http://orcid.org/0000-0003-4461-7646
http://orcid.org/0000-0003-4461-7646
http://orcid.org/0000-0003-4461-7646
http://orcid.org/0000-0003-4461-7646
http://orcid.org/0000-0003-4461-7646
http://orcid.org/0000-0003-4595-1144
http://orcid.org/0000-0003-4595-1144
http://orcid.org/0000-0003-4595-1144
http://orcid.org/0000-0003-4595-1144
http://orcid.org/0000-0003-4595-1144
http://orcid.org/0000-0002-5214-7421
http://orcid.org/0000-0002-5214-7421
http://orcid.org/0000-0002-5214-7421
http://orcid.org/0000-0002-5214-7421
http://orcid.org/0000-0002-5214-7421
http://orcid.org/0000-0003-2927-1632
http://orcid.org/0000-0003-2927-1632
http://orcid.org/0000-0003-2927-1632
http://orcid.org/0000-0003-2927-1632
http://orcid.org/0000-0003-2927-1632
http://orcid.org/0000-0002-9120-7060
http://orcid.org/0000-0002-9120-7060
http://orcid.org/0000-0002-9120-7060
http://orcid.org/0000-0002-9120-7060
http://orcid.org/0000-0002-9120-7060
http://orcid.org/0000-0002-8493-6396
http://orcid.org/0000-0002-8493-6396
http://orcid.org/0000-0002-8493-6396
http://orcid.org/0000-0002-8493-6396
http://orcid.org/0000-0002-8493-6396
http://orcid.org/0000-0002-0136-0388
http://orcid.org/0000-0002-0136-0388
http://orcid.org/0000-0002-0136-0388
http://orcid.org/0000-0002-0136-0388
http://orcid.org/0000-0002-0136-0388
http://orcid.org/0000-0002-1242-8990
http://orcid.org/0000-0002-1242-8990
http://orcid.org/0000-0002-1242-8990
http://orcid.org/0000-0002-1242-8990
http://orcid.org/0000-0002-1242-8990
http://orcid.org/0000-0001-6499-9376
http://orcid.org/0000-0001-6499-9376
http://orcid.org/0000-0001-6499-9376
http://orcid.org/0000-0001-6499-9376
http://orcid.org/0000-0001-6499-9376
http://orcid.org/0000-0001-5398-5569
http://orcid.org/0000-0001-5398-5569
http://orcid.org/0000-0001-5398-5569
http://orcid.org/0000-0001-5398-5569
http://orcid.org/0000-0001-5398-5569
http://orcid.org/0000-0002-9768-3383
http://orcid.org/0000-0002-9768-3383
http://orcid.org/0000-0002-9768-3383
http://orcid.org/0000-0002-9768-3383
http://orcid.org/0000-0002-9768-3383
http://orcid.org/0000-0002-9403-6121
http://orcid.org/0000-0002-9403-6121
http://orcid.org/0000-0002-9403-6121
http://orcid.org/0000-0002-9403-6121
http://orcid.org/0000-0002-9403-6121
http://orcid.org/0000-0002-2790-7281
http://orcid.org/0000-0002-2790-7281
http://orcid.org/0000-0002-2790-7281
http://orcid.org/0000-0002-2790-7281
http://orcid.org/0000-0002-2790-7281
http://orcid.org/0000-0002-7740-6469
http://orcid.org/0000-0002-7740-6469
http://orcid.org/0000-0002-7740-6469
http://orcid.org/0000-0002-7740-6469
http://orcid.org/0000-0002-7740-6469
mailto:sophia.frangou@mssm.edu
https://doi.org/10.1038/s41380-020-0757-x
https://doi.org/10.1038/s41380-020-0757-x


A substantial body of literature has documented the
typical brain structural changes observed during adoles-
cence; cortical thickness shows a largely monotonic
decrease [9, 10], cortical surface area expands and sub-
cortical structures show individual variation in terms of
expansion and contraction [11, 12]. These developmental
trajectories are shaped by the dynamic interplay between
biologically programmed functions (“nature”) and social
and physical exposures (“nurture”). Age and biological sex
are implicitly associated with biologically programmed
functions as normal adolescent development follows pre-
dictable timelines and is sexually dimorphic [10, 13, 14].
Key social and physical exposures known to influence
adolescent brain organization include perinatal events
[15, 16], parental socioeconomic status [17, 18], parenting
style [19] and social adversity [20]. Additionally associa-
tions with brain structure have been noted for personal
characteristics such as cognitive abilities [21, 22], person-
ality and behavioural traits [23–25].

Despite progress, the current literature is limited in several
respects. Prior studies have typically examined either a single
or very few of the non-imaging factors that can influence
adolescent brain development; this narrow focus ignores the
fact that many of these factors may be correlated. Notably,
multivariate analyses in adults have identified a “positive-
negative” axis of covariation between brain phenotypes and
multiple individual attributes; those that are considered posi-
tive (e.g., higher cognitive abilities) generally show positive
covariation with imaging phenotypes while the opposite is the
case for attributes or indicators considered negative (e.g.
substance use) [26–28]. Such multivariate analyses of devel-
opmental data require large longitudinal samples, which have
typically not been available in studies in youth [24, 29–31].
Therefore, the appropriate modelling of the multiple factors
associated with adolescent brain development remains a key
unmet priority [32].

To address these challenges, the current study applied
sparse canonical correlation analysis (sCCA) [33], a
machine learning technique, to define associations between
adolescent brain structural development with a broad array
of factors indicating biological programming (age and sex),
personal attributes, and social and environmental influences.
We capitalized on the rich database of the IMAGEN Study
(https://imagen-europe.com/), which provided high-quality
brain structural imaging data collected from a population-
derived cohort of more than 2000 youth. In addition, the
dataset includes non-imaging variables that describe parti-
cipants’ demographic, anthropometric, lifestyle, psycho-
metric and behavioural features as well as their family
function and social circumstances. IMAGEN participants
underwent the same comprehensive evaluation twice, at age
14 years and at age 19 years thus enabling us to identify
factors associated with brain structure at baseline and also

with developmental brain changes over the inter-scan
interval. We hypothesized that the patterns of covariation
identified here would largely follow a “positive-negative”
axis of covariation previously shown in studies of young
adults [30−32], which have also emphasized that negative
influences of social adversity and substance exposure
amongst environmental factors. Our aim was to quantify, in
the same integrative model, the contribution of biological
programmed variables (i.e., age and sex) and variables
relating to personal, social and environmental factors.

Subjects and methods

Participants

We used data from IMAGEN participants evaluated at age
14 years (baseline) and at age 19 years (developmental
change) in eight sites in England, France, Germany and
Ireland. At each evaluation, participants had a structural
magnetic resonance imaging (MRI) scan and a compre-
hensive assessment of their individual, social and family
characteristics. Following strict quality control procedures,
outlined in Supplementary Fig. S1, we selected those par-
ticipants for whom high-quality imaging data were available
at baseline (baseline sample: n= 1476) and at both baseline
and follow-up assessments (developmental change sample:
n= 714). Written informed consent was obtained from all
participants as well as from their legal guardians. The study
was approved by all local ethics committees separately.
Table 1 and Supplementary Table S1 summarize the char-
acteristics of participants at baseline and in the develop-
mental change sample.

Non-imaging variables

We considered variables corresponding to youths’ demo-
graphic characteristics (age and sex), anthropomorphic
features (height, weight, body mass index and pubertal
stage), perinatal events (parental smoking/substance use,
maternal medical conditions, birth complications, breast-
feeding), mental health (presence or absence of psychiatric
diagnoses), cognitive ability (general intelligence and
scholastic performance), personality and temperament,
substance use and risk, social and family circumstances (life
events, bullying, family function, socioeconomic status,
housing) and parental education level. Because our study
focuses on general neurodevelopment, we did not include
measures of individual psychopathologies (interested reader
is referred to the paper by Ing et al. on that topic [34], a full
list of IMAGEN publications is provided in Supplementary
Material). Definitions of the variables and description of the
assessment instruments are presented in Supplementary
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Table 1 Non-imaging characteristics, the total analysis sample and the
developmental change subsample at their baseline assessment.

Variable Analysis sample
(N= 1476)

Developmental
change subsample
(N= 714)

Youth demographic and anthropometric features

Sex (female) 819 (55%) 445 (62%)

Age (years) 14.45 (0.40) 14.45 (0.41)

Height (cm) 167.37 (7.86) 167.32 (7.81)

Weight (kg) 58.23 (10.92) 57.58 (10.29)

Body mass index 20.72 (3.24) 20.5 (2.99)

Pubertal
Development Scale

13.07 (2.22) 13.2 (2.2)

Youth perinatal events

Birth weight (g) 3424 (563) 3419 (553)

Maternal smoking during
pregnancy

178 (15%) 76 (12%)

Paternal smoking during
pregnancy

250 (21%) 108 (18%)

Maternal alcohol use
during pregnancy

269 (22%) 142 (23%)

Maternal medical illness
during pregnancy

91 (7%) 51 (8%)

Pregnancy and/or birth
complications

230 (19%) 117 (19%)

Breastfed 1032 (84%) 535 (86%)

Youth mental health

Presence of psychiatric
diagnosis

192 (13%) 79 (11%)

Youth cognitive ability

General intelligence g-
factor (z score)

0.02 (0.97) 0.17 (0.88)

ESPAD: Average grade

• 1: C− 12 (1%) 2 (0.3%)

• 2: C 28 (2%) 10 (2%)

• 3: C+ 40 (3%) 17 (3%)

• 4: B− 48 (4%) 18 (3%)

• 5: B 131 (10%) 59 (9%)

• 6: B+ 408 (32%) 178 (29%)

• 7: A− 444 (35%) 244 (39%)

• 8: A 150 (12%) 92 (15%)

ESPAD: Truancy 4.13 (1.56) 3.99 (1.69)

Youth personality and temperament

NEO: Neuroticism 1.88 (0.58) 1.91 (0.57)

NEO: Extroversion 2.45 (0.43) 2.43 (0.44)

NEO: Openness 2.2(0.47) 2.24 (0.49)

NEO: Agreeableness 2.33 (0.4) 2.38 (0.4)

NEO: Conscientiousness 2.3(0.55) 2.36 (0.56)

DAWBA Social
Aptitude Scale

24.43 (5.79) 24.61 (5.6)

TCI: Novelty seeking 111.22 (10.42) 110.63 (10.47)

Table 1 (continued)

Variable Analysis sample
(N= 1476)

Developmental
change subsample
(N= 714)

Youth substance risk and use

SURPS: Anxiety
sensitivity

2.25 (0.46) 2.26 (0.46)

SURPS: Hopelessness 1.87 (0.41) 1.87 (0.42)

SURPS: Impulsivity 2.43 (0.44) 2.39 (0.44)

SURPS: Sensation seeking 2.77 (0.55) 2.74 (0.54)

ESPAD: Frequency of lifetime smoking

• 0: Never 875 (69%) 459 (74%)

• 1: 1–2 times 178 (14%) 86 (14%)

• 2: 3–5 times 52 (4%) 19 (3%)

• 3: 6–9 times 40 (3%) 15 (2%)

• 4: 10–19 times 38 (3%) 16 (3%)

• 5: 20–39 times 18 (1%) 10 (2%)

• 6: 40 or more times 60 (5%) 15 (2%)

ESPAD: Smoking in the preceding 30 days

• 0: Not at all 1127 (89%) 571 (92%)

• 1: less than 1
cigarette per week

56 (4%) 26 (4%)

• 2: less than 1
cigarette per day

28 (2%) 9 (1%)

• 3: 1–5 cigarettes
per day

32 (2%) 8 (1%)

• 4: 6–10 cigarettes
per day

9 (1%) 3 (0.5%)

• 5: 11–20 cigarettes
per day

6 (0.5%) 3 (0.5%)

• 6: more than 20
cigarettes per day

3 (0.2%) 0 (0%)

ESPAD: Frequency of lifetime alcohol use

• 0: Never 285 (23%) 135 (22%)

• 1: 1–2 times 324 (26%) 161 (26%)

• 2: 3–5 times 239 (19%) 127 (21%)

• 3: 6–9 times 173 (14%) 86 (14%)

• 4: 10–19 times 132 (10%) 68 (11%)

• 5: 20–39 times 64 (5%) 24 (4%)

• 6: 40 or more times 41 (3%) 17 (3%)

ESPAD: Frequency of alcohol use in the preceding 30 days

• 0: Not at all 638 (51%) 325 (53%)

• 1–2 times 452 (36%) 218 (35%)

• 3–5 times 104 (8%) 46 (7%)

• 6–9 times 36 (3%) 16 (3%)

• 10–19 times 19 (1%) 10 (2%)

• 20–39 times 6 (0.5%) 2 (0.3%)

• 40 or more times 3 (0.2%) 1 (0.2%)

ESPAD: Frequency of lifetime cannabis use

• 0: Never 1180 (94%) 592 (96%)

• 1: 1–2 times 41 (3%) 16 (3%)

Linked patterns of biological and environmental covariation with brain structure in adolescence: a. . .



Table 1 (continued)

Variable Analysis sample
(N= 1476)

Developmental
change subsample
(N= 714)

• 2: 3–5 times 9 (1%) 3 (0.5%)

• 3: 6–9 times 8 (1%) 2 (0.3%)

• 4: 10–19 times 5 (0.3%) 0 (0%)

• 5: 20–39 times 1 (0.1%) 0 (0%)

• 6: 40 or more times 10 (1%) 3 (0.5%)

ESPAD: Frequency of cannabis use in the preceding 30 days

• 0: 0 1211 (96%) 603 (98%)

• 1: 1–2 times 30 (2%) 11 (2%)

• 2: 3–5 times 2 (0.2%) 0 (0%)

• 3: 6–9 times 4 (0.3%) 0 (0%)

• 4: 10–19 times 3 (0.2%) 0 (0%)

• 5: 20–39 times 1 (0.1%) 0 (0%)

• 6: 40 or more times 3 (0.2%) 2 (0.3%)

Youth social and family circumstances

LEQ: Total number of
negative life events since
last visit

5.83 (2.96) 5.66 (3.03)

LEQ: Family-related life
events since last visit

0.26 (0.23) 0.24 (0.22)

LEQ: Family accidents or
illness since last visit

0.53 (0.27) 0.51 (0.27)

LEQ: Events relating to
sexuality/intimacy since
last visit

0.29 (0.18) 0.28 (0.18)

LEQ: Autonomy: events
relating to independence
since last visit

0.53 (0.18) 0.53 (0.17)

LEQ: Deviance: events
relating to legal or school
problems

0.27 (0.23) 0.24 (0.23)

LEQ: Relocation: events
relating to change in
schools or residence since
last visit

0.45 (0.33) 0.45 (0.33)

LEQ: Distress: distressing
events since last visit

0.29 (0.19) 0.28 (0.19)

LEQ: Other events since
last visit

0.33 (0.27) 0.34 (0.28)

ESPAD: Victim of
bullying

0.19 (0.39) 0.2 (0.4)

ESPAD: Perpetrator of
bullying

0.1 (0.3) 0.07 (0.26)

DAWBA: Family
stressors: Financial/
housing

0.72 (1.08) 0.65 (1.03)

DAWBA: Family
stressors: Work pressure

1.07 (1.08) 1.11 (1.09)

DAWBA: Family
stressors: Illness

0.52 (0.9) 0.51 (0.9)

Table 1 (continued)

Variable Analysis sample
(N= 1476)

Developmental
change subsample
(N= 714)

DAWBA: Family
stressors: Relationships/
addiction

0.42 (0.74) 0.39 (0.73)

DAWBA: Child
experience: Affirmation

10.82 (1.47) 10.9 (1.35)

DAWBA: Child
experience: Discipline

3.43 (1.58) 3.35 (1.58)

DAWBA: Child
experience: Rules

4.64 (1.24) 4.64 (1.27)

DAWBA: Living with
both parents

1267 (86%) 620 (87%)

FIGS: Positive family
history of psychiatric
disorders

274 (19%) 129 (18%)

Parental characteristics

ESPAD: Maternal education level

• GCSEs or CSEs
or below

235 (17%) 90 (13%)

• NVQ or GNVQ 273 (19%) 112 (16%)

• A levels or a BTEC
national diploma

204 (15%) 111 (16%)

• Advanced diploma 203 (14%) 100 (15%)

• Bachelor degree 321 (23%) 175 (26%)

• Professional
qualification
(Master’s degree
and above)

162 (11%) 91 (13%)

ESPAD: Paternal education level

• GCSEs or CSEs
or below

300 (21%) 113 (17%)

• GNVQ or NVQ 209 (15%) 109 (16%)

• A levels or a BTEC
national diploma

175 (12%) 86 (13%)

• Advanced diploma 164 (12%) 78 (12%)

• Bachelor degree 313 (22%) 168 (25%)

• Professional
qualification
(Master’s degree
and above)

237 (17%) 125 (18%)

Continuous variables are shown as mean (standard deviation);
categorical variables are shown as number (percentage, %). Details
of each variable are shown in Supplementary Table S2.

ESPAD European School Survey Project on Alcohol and Other Drugs,
DAWBA Development and Well-being Assessment, FIGS Family
Interview for Genetic Studies, LEQ Life Events Questionnaire, NEO
NEO-Five Factor Personality Inventory, SURPS Substance Use Risk
Profile Scale, TCI Temperament and Character Inventory, WISC-IV
Wechsler Intelligence Scale for Children-IV, GCSE General Certificate
of Secondary Education, CSE Certificate of Secondary Education,
GNVC General National Vocational Qualification, NVQ National
Vocational Qualification, BTEC Business and Technology Education
Council, A levels Advanced Level Qualification.

A. Modabbernia et al.



Table S2. Missing values for non-imaging features were
imputed using random forest in R using available values
from other non-imaging features (package missForest ver-
sion 1.4) although the percentage of missing values was
generally low (Supplementary Table S3).

Neuroimaging acquisition and processing

High-resolution T1-weighted images were obtained at eight
European sites (Berlin, Dresden, Dublin, Hamburg, Lon-
don, Mannheim, Nottingham and Paris) with 3T MRI sys-
tems by different manufacturers (Siemens: four sites,
Philips: two sites, General Electric: one site, and Bruker:
one site). The MR protocols, cross-site standardization and
quality control procedures of the IMAGEN study are
described in Supplementary Material and in Schumann et al.
[35]. In addition to the standard IMAGEN procedures, we
also applied a validated automatic quality control algorithm
(Qoala-T; https://github.com/Qoala-T/QC) [36] to pre-
processed MRI scans to exclude low-quality images at each
assessment wave (Supplementary Fig. S1). Subsequently,
we used an automatic robust longitudinal processing pipe-
line [37] to extract reliable estimates of cortical thickness
and surface area and subcortical volumes (Supplementary
Table S4) using Freesurfer version 6.0 (https://surfer.nmr.
mgh.harvard.edu/). The final baseline (n= 1476) and
developmental change (n= 714) samples were defined
following outlier exclusion undertaken in each sample
separately using the Mahalanobis distance with a quantile
cut-off of 0.999 implemented in chemometrics package,
version 1.4.2, in R. Prior to statistical analysis, the imaging
variables were adjusted for site/scanner effects using
ComBat in R (https://github.com/Jfortin1/ComBatHa
rmonization) [38]. Initially used for batch adjustment of
genetic data, ComBat uses Empirical Bayes to adjust for
between-site variability while preserving biological
variability.

Statistical analysis

Descriptive statistics

For all variables, differences in baseline and follow-up
values were examined using paired t tests or McNemar’s
tests for continuous and categorical variables respectively.

Datasets

The neuroimaging and non-imaging datasets and their
constituent variables were described above and in Supple-
mentary Tables S2 and S4. Cortical thickness, cortical
surface area, and subcortical volumes were examined
separately because these phenotypes are genetically

independent and follow different developmental trajectories
[39–41]. Analyses of the baseline sample (n= 1476)
included global neuroimaging measures (e.g. mean cortical
thickness, total surface area, and total intracranial volume).
Values of brain regional measures for each imaging phe-
notype (cortical thickness, area and subcortical volume)
were thus not adjusted by their respective global measures.
In the developmental change subsample (n= 714), we were
interested in modelling the effect on the variables that
changed between the baseline and follow-up assessments.
In each IMAGEN participant, developmental change in any
variable was calculated as: (follow-up value – baseline
value), which was then residualized by the baseline value.
Parental education and perinatal events were not included in
the developmental change analyses as their values did not
change between baseline and follow-up. Pubertal develop-
ment and general intelligence (g-factor) were not included
in the main developmental change analyses; these were not
assessed at follow-up. We also performed additional sCCA
on the developmental change data with these variables
included. Sex was retained in the main model as it exerts a
continuous influence on brain structural development dur-
ing adolescence.

Identification of multivariate associations between imaging
and non-imaging datasets

We used sparse canonical correlations analyses [33], which
is a version of the general canonical correlation analysis
(CCA), to identify linked dimensions between imaging and
the non-imaging datasets (additional details in Supplemen-
tary Material). CCA is a method for finding relationships
between two multivariate sets of variables, all measured in
the same individuals [33]. CCA seeks to find linear com-
binations of variables from each dataset that are maximally
correlated with each other (referred to as pairs of canonical
variates or modes). Traditional CCA models are prone to
overfitting and are not fully equipped to deal with variables
that are correlated. Regularization is commonly employed
to penalize the complexity of a learning model and control
overfitting. sCCA implements regularization by using a
sparsity parameter that penalizes some variables by setting
their contribution to the overall model to zero. In addition to
the pairs of variates (i.e. one variate from each dataset),
sCCA generates information for variables with non-zero
contributions. These are expressed as weights (i.e. magni-
tude of the contribution of the variable to the variate from
the same dataset) and as canonical cross-loadings (i.e.
coefficient of the correlation of the variable with the variate
of the opposite dataset).

In this study, sCCA models were implemented in R
version 6.8.0 using the sgcca.wrapper function from the
mixOmics package. Non-imaging and neuroimaging
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variables were standardized to a mean of 0 and a standard
deviation of 1 before being entered into the sCCA models
[33, 42]. We then followed standard procedures to identify
the optimal sparsity parameters for each sCCA model. For
each analysis, we computed the sparse parameters by run-
ning the sCCA with a range of candidate values (from 1/√p
to 1, at 10 increments, where p is the number of features in
that view of the data) for each imaging and non-imaging
dataset, and then fitted the resulting models. We selected the
optimal sparse criteria combination based on the parameters
that corresponded to the values of the model that maximized
the sCCA correlation value. We then computed the optimal
sCCA model and determined its significance based on exact
P values calculated from 1000 random permutations. The
P value was defined as the number of permutations that
resulted in an equal or higher correlation than the original
data divided by the total number of permutations (further
details in Supplementary Material). Because we imple-
mented multiple sCCA models throughout the manuscript,
significance of each mode was further adjusted using false
discovery correction (FDR). In addition, statistically sig-
nificant modes were tested for reliability and reproducibility
(described below) and only models that survived these
analyses are reported. For significant sCCA mode, we
report weights and loadings of the contributing variables if
these are at least of small effect (>|0.1|) according to current
standards [43].

Reliability, reproducibility and supplemental analyses

We undertook the following analyses to determine the
robustness of our results: (i) we tested the association
between image quality and canonical correlation coeffi-
cients. A quality score for each individual scan was calcu-
lated using the Qoala algorithm. We then computed the
Spearman’s correlation coefficient between the mean data
quality score and the sCCA -coefficients derived from 500
randomly resampled subsets of the original sample; (ii) we
assessed the stability of the findings of each sCCA in
relation to sample size and composition. To do so we
repeated each sCCA in 100 randomly generated subsets
each containing 10−150% of the original data in 10%
increments (1500 subsamples in total); (iii) following our
prior work [28], we calculated redundancy reliability (RR)
scores for each sCCA; to achieve this we repeated each
sCCA in 500 randomly generated subsets and quantified the
reliability of canonical cross-loadings (details in Supple-
mentary Material); (iv) we randomly sampled 50% of the
data 500 times (training set), calculated sCCA on each
training set and then used the weights from the sCCA on the
training set on the remainder 50% of the data (test set) to
calculate the canonical correlations in the test set. We
reported only those modes that met the following robustness

criteria: (i) statistically significant at an FDR-corrected
P value < 0.001; (ii) had a median RR-score > 0.80, and (iii)
average canonical correlation on the resampled test sets was
at least 80% of that of the training sets. We performed
additional sCCAs to evaluate the effect of removing sex and
age on the results.

Results

The non-imaging characteristics of the baseline sample and
developmental change subsample are shown in Table 1 and
Supplementary Table S1. The corresponding descriptive
statistics for cortical thickness and area and subcortical
volumes are presented in Supplementary Table S5. At a
nominal statistical level, the follow-up subsample included
more women (P < 0.001) and more offspring of parents with
higher levels of parental education (P < 0.05) than the
baseline sample (Table 1). Over the 5-year mean inter-scan
interval, the mean (standard deviation, SD) of the global
cortical thickness decreased by 0.12 (0.06) mm on the right
and 0.13 (0.06) mm on the left. Total cortical surface area
showed an average decrease of 3891(2274) mm2 during the
same period.

Linked imaging and non-imaging dimensions

Cortical thickness

Baseline The sCCA testing the association between cor-
tical thickness measures and non-imaging variables was
significant (r= 0.30, PFDR < 0.001, mean (SD) permuted
r= 0.12(0.01)) (Fig. 1a) and accounted for 9% of the
covariance (Supplementary Fig. S2). The canonical weights
and cross-loadings for the imaging and non-imaging vari-
ables are shown in Supplementary Tables S6−S9. Sex and
age had the highest positive canonical cross-loadings on the
imaging variate while the frequency of negative family life
events had the highest negative canonical cross-loading
(Fig. 1b; Supplementary Table S7). Canonical cross-
loadings of ρ > 0.10 were noted for nearly all cortical
regions and were highest for the mean total cortical thick-
ness and for the rostral middle frontal cortex (Fig. 1c;
Supplementary Table S9).

Developmental change The sCCA testing the association
between developmental changes in cortical thickness mea-
sures and inter-scan changes in non-imaging variables was
significant (r= 0.34, PFDR < 0.001, mean (SD) permuted
r= 0.16(0.02)) (Fig. 1d) and accounted for 12% of the
covariance (Supplementary Fig. S3). The canonical weights
and cross-loadings for the imaging and non-imaging
variables are shown in Supplementary Tables S10−S13.
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Inter-scan changes in age, height, and frequency of alcohol
and cannabis use had the highest negative canonical cross-
loadings (Fig. 1e; Supplementary Table S11). Develop-
mental changes in cortical thickness with canonical cross-
loadings of ρ > 0.1 were noted in most cortical regions; the
highest loadings were found in the superior frontal, the pars
opercularis, supramarginal, bank of the superior temporal
sulcus, and posterior cingulate cortices (Fig. 1f; Supple-
mentary Table S13).

Cortical surface area

Baseline The sCCA testing for the association between
cortical surface area measures and non-imaging variables
was significant (r= 0.62, PFDR < 0.001, mean (SD) per-
muted r= 0.12(0.01)) (Fig. 2a) and accounted for 38% of
the covariance (Supplementary Fig. S4). The canonical
weights and cross-loadings for the imaging and non-
imaging variables are shown in Supplementary
Tables S14−S17. The highest positive canonical cross-
loadings were observed for sex, anthropometric measures
(height, weight and birth weight), youth cognitive ability
and parental education. The highest negative canonical
cross-loadings were observed for youth neuroticism and

anxiety sensitivity and parental perinatal smoking (Fig. 2b;
Supplementary Table S15). Canonical cross-loadings with
the non-imaging variate with ρ values ranging from 0.20 to
0.60 were noted for all cortical regions with the top five
seen for the total surface area, and the surface area of the left
superior temporal cortex, the left rostral middle frontal
cortex, the right fusiform and the right insula (ρ=
0.50–0.60) (Fig. 2c; Supplementary Table S17).

Developmental change The sCCA testing the association
between developmental changes in cortical surface area and
inter-scan changes in non-imaging variables was significant
(r= 0.59, PFDR < 0.001, mean (SD) permuted r= 0.20
(0.02)) (Fig. 2d) and accounted for 35% of the covariance
(Supplementary Fig. S5). The canonical weights and cross-
loadings for the imaging and non-imaging variables are
shown in Supplementary Tables S18−S21. Male sex, inter-
scan changes in age and in anthropometric features (height
and weight), cannabis use, and sensation seeking/deviance
had the highest positive canonical cross-loadings with the
imaging variate whereas anxiety sensitivity, distressing and
negative life events had the highest negative canonical
cross-loadings (Fig. 2e; Supplementary Table S19).
Developmental changes in the surface area showed mostly

Fig. 1 Sparse canonical correlation analysis (sCCA) for baseline
and developmental change in cortical thickness. Upper panel:
Baseline: a First canonical correlation coefficient. b Canonical cross-
loadings for non-imaging variables. c Canonical cross-loadings for
imaging variables. Lower panel: Developmental change: d First

canonical correlation coefficient. e Canonical cross-loadings for non-
imaging variables. f Canonical cross-loadings for imaging variables.
LEQ Life Event Questionnaire, SURPS Substance Use Risk Profile
Scale.
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positive and small to moderate canonical cross-loadings
(ρ < 0.35) throughout the cortex; notable negative canonical
cross-loadings were observed within the bank of the
superior temporal gyrus bilaterally (Fig. 2f; Supplementary
Table S21).

Subcortical volumes

Baseline The sCCA testing for the association between
subcortical volumes and non-imaging variables was sig-
nificant (r= 0.65, PFDR < 0.001, mean (SD) permuted r=
0.12(0.01)) (Fig. 3a) and accounted for 42% of the covar-
iance (Supplementary Fig. S6). The canonical weights and
cross-loadings for the imaging and non-imaging variables
are shown in Supplementary Tables S22−S25. Sex, youth’s
general cognitive ability and anthropometric measures
(height, birth weight, and weight) showed the highest
positive canonical cross-loadings while maternal prenatal
smoking and youth personality traits relating to anxiety and
neuroticism showed the highest negative canonical cross-
loading (Fig. 3b; Supplementary Table S23). Canonical
cross-loadings with the non-imaging variate with ρ values
ranging from 0.14 to 0.61 were noted for all subcortical

regions with the top five being the total intracranial volume,
the cerebellum and the thalami (Fig. 3c; Supplementary
Table S25).

Developmental change The sCCA testing the association
between developmental changes in regional subcortical
volumes was significant (r= 0.54, PFDR < 0.001, mean (SD)
permuted r= 0.18(0.02)) (Fig. 3d) and accounted for 29%
of the covariance (Supplementary Fig. S7). The canonical
weights and cross-loadings for the imaging and non-
imaging variables are shown in Supplementary
Tables S26−S29. Male sex, inter-scan changes in age and
anthropometric measures (height, weight and body mass
index) showed the highest positive canonical cross-loadings
while life experiences related to sexuality and youth per-
sonality traits relating to anxiety and conscientiousness
showed the highest negative canonical cross-loadings
(Fig. 3e; Supplementary Table S27). Developmental chan-
ges in regional subcortical volumes with showed positive
canonical cross-loadings with ρ values ranging from 0.10 to
0.40, with lateral ventricles having the smallest canonical
cross-loadings (ρ range 0.10–0.12) (Fig. 3f; Supplementary
Table S29).

Fig. 2 Sparse canonical correlation analysis (sCCA) for baseline
and developmental change in cortical surface area. Upper panel:
Baseline: a First canonical correlation coefficient. b Canonical cross-
loadings for non-imaging variables. c Canonical cross-loadings for
imaging variables. Lower panel: Developmental change: d First

canonical correlation coefficient. e Canonical cross-loadings for non-
imaging variables. f Canonical cross-loadings for imaging variables.
LEQ Life Event Questionnaire, SURPS Substance Use Risk Profile
Scale, NEO NEO-Five Factor Personality Inventory.
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Reliability analysis

Only the first mode for each sCCA analysis passed the
criteria for reporting (Supplementary Figs. S2−S7).
Resampling analyses showed that the canonical correlations
were largely stable for samples larger than 50% of the
originals. The results of the stability and reliability analyses
are summarized in Supplementary Figs. S8 and S9 and
Supplementary Table S30. To quantify the associations
beyond the effect of age and sex, we also reran the sCCA
after regressing out age and sex from both imaging and non-
imaging variables. We found that in most cases (except for
cortical thickness at baseline), first canonical mode
remained significant (Supplementary Table S31). Further
sCCA analysis showed that among variables that were only
measured at baseline, maternal education, pubertal stage,
and history of being breastfed had significant association
with the imaging variate (Supplementary Table S32).

Discussion

We leveraged the rich dataset and a longitudinal design of the
IMAGEN study to identify patterns of covariation between

adolescent brain structure and youth personal attributes, life-
style and psychosocial environment. Using integrated multi-
variate analyses, we demonstrate that adolescent brain
structural development was most strongly associated with sex,
age and anthropometric features. Contributions from envir-
onmental sources were quantitatively smaller and highlighted
the influence of parental smoking and education, unpleasant
life events and youths’ cognitive ability, use of alcohol and
cannabis and personality traits related to negative affect.

We found that measures of cortical thickness, surface
area and subcortical volumes show mostly unitary patterns
of covariation that reflect the corresponding global mea-
sures. Regional and global brain structural measures, both at
baseline and at follow-up, showed the highest covariation
with sex, age and anthropometric measures. These asso-
ciations have been consistently noted in prior research
[14, 28, 44]. However, the integrated analyses implemented
here enable the study of these factors in the wider context of
other potential influences relating to environmental expo-
sures. Thus, a novel finding of the current study is that
biologically programmed processes relating to sexual
dimorphism and the time-dependent evolution of develop-
ment remain the most significant drivers of adolescent brain
development even when accounting for other influences.

Fig. 3 Sparse canonical correlation analysis (sCCA) for baseline
and developmental change in subcortical volumes. Upper panel:
Baseline: a First canonical correlation coefficient. b Canonical cross-
loadings for non-imaging variables. c Canonical cross-loadings for
imaging variables. Lower panel: Developmental change: d First

canonical correlation coefficient. e Canonical cross-loadings for non-
imaging variables. f Canonical cross-loadings for imaging variables.
LEQ Life Event Questionnaire, SURPS Substance Use Risk Profile
Scale, NEO NEO-Five Factor Personality Inventory.
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Beyond sex and age, our findings support previous
reports in young adults, which have found that the pattern of
covariation of brain-derived phenotypes largely recapitu-
lates conventional notions of “positive” and “negative”
influences [30, 31]. We showed that global surface area and
intracranial volume, but not cortical thickness show sub-
stantial correlation of the overall intelligence (g-factor), thus
affirming the association between cognitive abilities and
brain organization [45, 46]. In line with previous observa-
tions, the strength of this association was moderate [47] and
more notable at baseline. Schmitt et al. [48] have also
reported that beyond the age of 10–11 years, the association
between cortical thickness and intelligence is weak. As
suggested by others, the relationship between brain struc-
ture and cognitive ability might be ever-changing and is
likely to be influenced both by baseline brain structure and
by its dynamic changes over time [49].

A key finding of the current study with important public
health implications concerns the “lingering” influence of
parental smoking and birth weight for brain structure in
adolescence. Cigarette smoking in pregnant women has
been associated with premature birth, low birth weight,
stillbirth, asthma, learning and behavioural disability, and a
predisposition to disease [50]. The mechanisms underlying
the relation between perinatal exposure to smoking and
brain structure are beyond the resolution of the available
data in this study, but we note that maternal smoking has
been associated with epigenetic modulation of birth weight
[51]. There may be further mechanistic links as smoking has
emerged as one of the most powerful epigenetic modulators
amongst environmental exposures [52].

Alcohol and cannabis use were associated with acceler-
ated cortical thinning and mild increase in cortical surface
area and subcortical volumes. Our findings are generally in
line with previous studies [27, 28] showing that even the
mild substance use commonly encountered in general
population is associated with measurable structural changes
in the brain although the literature on the specific regions
impacted is less consistent [53, 54]. Frontoparietal and
cingulate cortices had the largest decrease in cortical
thickness in relation to substance use and sensation seeking
behaviour, possibly delineating the critical role of matura-
tional changes in these regions in development of inhibitory
control during adolescence [55].

Personality traits associated with anxiety and neuroticism
were also associated with smaller surface area in adoles-
cents. Similar results were obtained in young adults parti-
cipating in the Human Connectome Project; in that study,
neuroticism was negatively associated with cortical surface
area in the left precentral, left superior parietal, left occipital
and right superior temporal regions [25]. Some studies have
suggested that the association between neuroticism and
brain structure is sex-dependent [56]. Our results suggest

that this may not be the case in this age-group when mul-
tiple other factors are simultaneously modelled. Intrigu-
ingly, conscientiousness had a negative cross-loading to the
variate of subcortical volumes. Conscientiousness has
shown positive associations with processing speed [57–60]
but negative associations with fluid intelligence [61, 62], the
latter being associated with larger subcortical volumes [63].
Although speculative, the negative cross-loading of con-
scientiousness with developmental change in subcortical
volume may be aligned with proposal that high level of
persistence and dutifulness may compensate for lower
general abilities [61, 62].

The main strengths of this study include the large sample
size, longitudinal design, and rich phenotyping of the
IMAGEN cohort. We adopted a robust quality control
procedure, where we used a longitudinal image analysis
pipeline together with a two-level quality control process.
Further, the analytic methods addressed several major issues
in population neuroscience including analysis of high-
dimensional data, stability, and reliability. Study limitations
include the exclusive focus on atlas-based measures of brain
structure, which provides a common framework for image
analysis, but arguably limits the granularity of the data
analysis. Structural measures are more reliable than other
brain phenotypes but the lack of other brain phenotypes in
the current study limits the generalizability of the findings to
brain function or connectivity.

In summary, using multivariate statistical techniques, we
found multiple reliable correlates of adolescent brain struc-
ture. Our study highlights the critical role for programmed
biological processes such as indicated by sex, age, measures
of physical growth, and intellectual functioning in brain
development. Nevertheless, our findings also provide evi-
dence for numerically smaller but statistically robust asso-
ciations between brain structural phenotypes and modifiable
social and environmental influences such as substance use,
parental education, and life and perinatal events.

Code availability

Analysis code is available at https://github.com/
AmirhosseinModabbernia/IMAGEN.
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