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Background. Despite effective prevention approaches, ongoing HIV-1 transmission remains a 

public health concern indicating a need for identifying its drivers.  

Methods. We combine a network-based clustering method using evolutionary distances between 

viral sequences with statistical learning approaches to investigate the dynamics of HIV-1 

transmission in the Swiss HIV Cohort Study and to predict the drivers of ongoing transmission.  

Results. We find that only a minority of clusters and patients acquire links to new infections 

between 2007 and 2020. While the growth of clusters and the probability of individual patients 

acquiring new links in the transmission network was associated with epidemiological, behavioral 

and virological predictors, the strength of these associations decreased substantially when 

adjusting for network characteristics. Thus, these network characteristics can capture major 

heterogeneities beyond classical epidemiological parameters. When modeling the probability of 

a newly diagnosed patient being linked with future infections, we found that the best predictive 

performance (median AUCROC=0.77) was achieved by models including characteristics of the 

network as predictors and that models excluding them performed substantially worse (median 

AUCROC=0.54).  

Conclusions. These results highlight the utility of molecular epidemiology-based network 

approaches for analysing and predicting ongoing HIV-1-transmission dynamics. This approach 

may serve for real-time prospective assessment of HIV-1-transmission. 

Keywords: HIV transmission dynamics, cluster analysis, distance-based clustering 

BACKGROUND 

Since the peak of the global Human Immunodeficiency Virus (HIV-1) epidemic in the mid-

1990s, the worldwide HIV-1-incidence has been declining [1] and continuous efforts to 

diagnose, counsel and treat people living with HIV-1 (PLWH) have contributed to this trend. 

Large-scale efforts have been undertaken to reach the ambitious UNAIDS 90-90-90 goal 

consisting of 90% of all PLWH knowing of their status, 90% of those receiving antiretroviral 

treatment (ART), and 90% of PLWH on ART having undetectable plasma viral load by the year 

2020 [2], although this goal was ultimately not met in the majority of countries. Other studies 

have shown that the strategy of treatment as prevention is effective at lowering the number of 

new HIV-1-infections and that the use of pre-exposure prophylaxis for at-risk patients further 

compounds this effect [3–6]. However, transmission of HIV-1 is still ongoing, with an estimated 

1.5 million new infections occurring in 2020 [7]. To achieve the goal of stopping the spread of 

HIV-1, there is a need to better characterise patients who contribute to transmission and to 

develop approaches that can be applied to inform targeted preventive measures [8]. 
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Approaches from molecular epidemiology have provided major insights into different aspects of 

HIV-1 transmission, both on the level of individual cases and large-scale transmission networks 

[9–14]. In this context, viral sequences are typically used to build phylogenetic trees, based on 

the rationale that sequences from patients who belong to the same transmission chain share a 

common ancestor and hence form subtrees [15]. While these approaches have led to important 

insights into HIV-1 transmission, they have limitations in the context of assessing the temporal 

growth of transmission chains and for potential real-time uses of molecular epidemiology to 

identify foci of ongoing HIV-1 transmission. These limitations include computation time and the 

sensitivity of phylogenetic trees to the addition of new sequence data. Indeed, updating the 

phylogenetic tree by adding new sequences over time can alter the topology of the resulting tree: 

the newly defined clusters are not always strict supersets of the clusters found at a previous 

timepoint, which complicates the identification and long-term analysis of some clusters. For 

example, in [4], we were able to quantify growth rates of clusters of men that have sex with men 

(MSM) in Switzerland using a phylogenetic clustering approach. However, as clustering patterns 

were not always consistent across years, this analysis had to be restricted to those clusters 

showing a minimal overlap with the pre-existing clusters from the previous year, thereby 

potentially causing selection bias (excluding unstable clusters) and complicating the study of 

long-term cluster growth.  

Evolutionary distance-based networks have been proposed and used as an alternative to infer 

transmission chains [16–18]. While this approach ignores the inference of common ancestry 

inherent in phylogenetic trees, it results in more robust clusters that are less sensitive to the 

addition of new patients. This substantially reduces computation time, particularly in the context 

of repeatedly updating clustering analyses in real-time. Moreover, distance-based clustering was 

non-inferior to phylogenetic approaches both in simulation studies and empirical assessment of 

the overlap between clusters and contact networks [19,20]. Finally, the distance network 

approaches are more directly amenable to the application of tools and metrics from network 

science. We therefore adapted one such distance-based clustering mechanism implemented in 

HIV-TRACE [16] and combined it with statistical learning approaches in the context of the 

Swiss HIV Cohort Study (SHCS) to assess its ability to analyse cluster growth dynamics in the 

Swiss HIV-1 epidemic, as well as the predictive capabilities that can be achieved in this 

framework.  

METHODS 

Swiss hiv cohort study 

The Swiss HIV Cohort Study (SHCS) is a prospective multi-center cohort study that covers an 

estimated 53% of all HIV-1 diagnoses ever issued and an estimated 80% of all HIV-1-positive 

MSM in Switzerland [21]. The 13299 analysed sequences were obtained from genotypic drug 

resistance tests that have been performed up to 2020-12-31, each sequence being the earliest 
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available of the corresponding patient. The SHCS was approved by the local ethical committees 

of the participating centers, and written informed consent was obtained from all participants. 

Sequences and clustering 

HIV-1-pol sequences from resistance tests of patients enrolled in the SHCS were used in the 

clustering, which was performed using HIV-TRACE [16]. HIV-TRACE performs pairwise 

sequence alignment, during which insertions and deletions relative to the reference are discarded, 

pairwise distance calculation based on the Tamura-Nei 93 distance criterion [22], and subsequent 

clustering of sequences with a genetic distance smaller than 0.01. The genetic distance threshold 

was chosen with the aim of maximising the number of clusters and therefore the resolution of our 

analyses, while staying within the realm of previously applied thresholds in studies on HIV-pol 

[19,23,24] (Supplementary Figure 1). A comparison of cluster growth rates for genetic distance 

thresholds between 0.005 and 0.015 is shown in Supplementary Table 1. The pol-gene of the 

reference HIV-1 genome HXB2 (GenBank accession number K03455.1) was used as the 

reference sequence. For the purposes of this study, a node represents a single HIV-1-pol 

sequence and therefore one patient, while a cluster is defined as a connected component in the 

network produced by this method. By this definition, a cluster has at least two members and an 

unconnected node is not part of any cluster. 

Data management and cluster analysis 

Data management was performed in two steps: first, we parsed the outputs of HIV-1-TRACE, 

calculated statistics of interest (Table 1) for clusters and nodes and linked the sequences to 

patient information from the SHCS, using Python 3.8. Graph-theoretical analysis of the clusters 

was performed using igraph 0.8.3 for Python [25]. Further analyses and visualizations were 

performed using R version 4.0.5 [26] and the package ggplot [27]. 

Cluster- and node-level growth modeling 

We used Poisson regression to model the number of nodes acquired in each cluster from 2014 to 

2017 and assess factors associated with cluster growth. One considered factor was the past 

cluster growth (defined as the change in cluster size from 2011 to 2014). We used logistic 

regression to model the acquisition of new links of individual nodes within the first three years of 

being enrolled in the cohort (with a binary outcome variable). We included variables that have 

been found to be predictive of cluster growth or clustering in similar work [4,19,28], such as age, 

sex, CD4-cell count, virus load and transmission risk factor. 

More details on the models and included variables can be found in the supplementary material.  

Cross-validation 

To predict whether a node will acquire a new link in the following three years, we compared 

logistic regressions and classification random forests [29] built on several subsets of variables. 
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For each set of predictors, a logistic regression model and a random forest model were trained on 

the same training data. To supplement the sets of predictors manually chosen, we also employed 

a method of automated variable selection implemented in Variable Selection Using Random 

Forests (VSURF) [30].  

For more detailed information on the methods employed, please refer to the methods section in 

the supplementary material. 

RESULTS 

Analysing a total of 13299 sequences with the distance-based clustering algorithm yielded a total 

of 998 clusters that were highly robust over the observed timeframe, making it possible to assess 

the dynamics of the clusters and their constituent nodes over the 13 year-long period 

(Supplementary Figures 2-4).  

Out of the 13299 included sequences, 4074 (30.6%) clustered with at least one other sequence at 

the time of sampling. At the last observed timepoint (2020-12-31), 5415 (40.7%) of all 

sequences were linked to at least one other sequence. We found that although IV-drug users 

represented 2572 (19.3%) of the total number of sequences, they constituted 29% of the clustered 

sequences (Table 2). On the other hand, patients in the heterosexual acquisition risk category 

represented 4782 (36%) of the total number of sequences but only 25% of the clustered 

sequences, indicating potentially less frequent transmission in this subpopulation (pχ2 < 0.001). 

Most clusters had less than 10 nodes at the end of 2020 (943/998, 94.5%). The largest identified 

cluster contained 1577 nodes, 43.7% of which were categorized as IV-drug users, and 24.0% of 

which were categorized as heterosexuals.  

The obtained clusters exhibit a large heterogeneity in terms of composition, size, and growth 

patterns (Figures 1, 2; Supplementary Figures 4-7). Of 575 clusters identified up to 2007-12-31, 

only 134 (23.3%) gained any new nodes in the following 13 years, of which only 33 (5.7%) 

gained 5 or more new nodes (Figure 2a). Despite the small fraction of clusters that gained 5 or 

more nodes, they accounted for 443 (70.9%) of all 625 nodes that were gained by all 575 clusters 

collectively. The clusters that gained 5 or more nodes were disproportionately MSM clusters (27 

of 33, 81.8%). We found a strong correlation between cluster size in 2007 and number of new 

nodes acquired until 2020 (Spearman's r = 0.72, p < 0.001, Figure 2a). Similarly, of the 9308 

identified patients in the SHCS as of 2007, only 1079 (11.6%) gained links to new sequences up 

to the year 2020 (Figure 2b). Most patients that acquired new links only gained very few: Only 

206 (2.2%) gained links to three or more new sequences, and they accounted for 1103 (50.4%) of 

the total 2190 new links over the studied period. 

When modeling cluster growth using Poisson regression (with log10 cluster size in the year 2014 

as an offset), we found that past growth of a cluster was a good predictor for future growth 
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(Figure 3a; adjusted incidence rate ratio, aIRR, [95%-CIs], 5.11 [2.62, 9.95] and 11.03 [6.44, 

18.88] for past cluster growth of 2-3 and >=4, respectively). Besides past growth, no other 

variable yielded a statistically significant estimate in the multivariable model. Clusters with older 

individuals had lower growth rates in the univariable models (aIRR 0.62 [0.42, 0.91] and 0.17 

[0.11, 0.29] for median ages of 40-49 and >=50, respectively), as did clusters made up of mostly 

heterosexuals (aIRR 0.38 [0.24, 0.60]), clusters with more than 90% virally suppressed patients 

(aIRR 0.48 [0.37, 0.62]), and clusters with high rates of condom use with occasional partners 

(aIRR 0.15 [0.07, 0.31]). On the other hand, clusters with more patients using non-IV drugs had 

significantly higher growth rates in the univariable model (aIRR 2.18 [1.41, 3.37]). This 

indicates that the effect of these variables can be captured by including past cluster growth as a 

proxy for behavioral and demographic risk factors. Similar results were obtained when 

restricting the analysis to clusters where MSM was the most common acquisition risk category 

(Supplementary Figure 8) and when varying the timepoint (Supplementary Figures 9-12) 

To quantify the relevant factors of growth at the individual node level, i.e., a node’s risk of 

acquiring new links over time, we specified a logistic regression model where we used a similar 

set of variables for predicting the addition of new links to a given node within three years of 

being sequenced (Figure 3b). Node degree had a significant effect on the outcome, with larger 

node degrees being associated with higher probabilities to gain new links (Odds ratios, OR, 

[95%-Cis], 2.41 [1.94, 3.00], 4.98 [3.98, 6.24], 11.35 [8.34, 15.45] for node degree 1, 2-4 and 

>=5, respectively). Accordingly, removing node-degree from the regression model led to a 

significantly worse model fit (Likelihood ratio test: p < 0.001). In other words, the growth of the 

network occurs by preferential attachment, meaning more connected nodes acquire more new 

links, which also explains the approximately scale-free pattern observed for the degree 

distribution of the whole network (Supplementary Figure 13). Besides node degree, several 

epidemiological and virological factors were associated with acquisition of new links: Patients 

between 40 and 49 years old were at a significantly lower risk than younger patients (OR 0.52 

[0.42, 0.64]), as were IV-drug users compared to MSM (OR 0.70 [0.54, 0.89]). Viral loads above 

10000 copies/ml were associated with the gain of new links (OR 1.35 [1.05, 1.74]), as were 

CD4-cell counts above 300 cells/µL (OR 1.59 [1.31, 1.93]) and inconsistent condom use with 

occasional partners (OR 1.37 [1.13, 1.67]). Restricting the analysis to MSM patients yielded 

similar results (Supplementary Figure 14), as did adding the enrolment year as a linear effect 

(Supplementary Figure 15) and random subsampling of 75% or 50% of the available sequences 

(Supplementary Figures 16, 17). 

Model comparison 

We trained multiple models using five different sets of predictors (specified in Table 3 and 

Supplementary Table 2) with the goal of identifying the best model for predicting whether a 

certain node is going to acquire a link to a new node within three years. To assess the 

performance of these models, we performed a 10-fold cross-validation and compared the median 

AUCs of the ROC-curves based on the model predictions.  
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Among models with preselected predictor sets (Table 3), models that used both network and 

patient characteristics yielded the most accurate predictions (Figure 4, compare Mix and Cluster  

predictor sets with Patient). Random forests and logistic regression models performed similarly 

in all cases except one. Notably, restricting the set of predictors to demographical and clinical 

variables (Patient predictor set) resulted in a large drop in accuracy: From the Mix to the Patient 

predictor set, the median AUC decreased from 0.78 to 0.67 for the logistic regression and from 

0.76 to 0.55 for the random forest. On the other hand, restricting the set of predictors to variables 

pertaining to the topological characteristics of clusters and nodes (model Cluster) did not 

decrease accuracy to the same degree, as the median AUC was 0.76 both for the logistic 

regression and the random forest. Accordingly, variables with the highest variable importance in 

the Mix random forest model were cluster characteristics, namely node degree, cluster past 

growth and cluster size (Supplementary Figure 18).  

Additionally, we identified two more subsets of predictors using Variable Selection Using 

Random Forests (VSURF) [30]. From a mix of demographical, clinical and cluster topology-

related predictors VSURF repeatedly selected only the latter category of variables 

(Supplementary Table 2). The performance of random forests based on the variables selected by 

VSURF was similar to the Mix and Cluster models, with median AUCs of 0.77 and 0.74 for 

VSURF_Interpretation and VSURF_Prediction, respectively (Figure 4). ROC curves of each 

model are displayed in Supplementary Figure 19. 

DISCUSSION 

Here we combined the distance-based clustering method HIV-Trace [16] with longitudinal 

cohort data and statistical learning approaches to analyse cluster growth dynamics in the Swiss 

HIV Cohort study. In concordance with previous work [4], we found that, in the timespan from 

2007 to 2020, only a minority of the HIV-1-clusters in Switzerland were growing. Similarly, 

only a small fraction of patients enrolled up to the year 2007 have formed any new links, which 

would be an indication of onward transmission of HIV-1. Consistent with earlier work, [4], we 

found that the fraction of virally suppressed patients and behavioral risk factors were predictive 

of cluster growth. When adjusting for network characteristics however, these associations were 

no longer statistically significant, suggesting that part of the information provided by the 

aforementioned variables can be captured by the characteristics of the network.   

When modeling the risk of acquiring new links on the patient-level, we found that viral loads of 

more than 10000 copies/ml were associated with a high risk of gaining links, adding to the 

evidence that suppressing viral loads is essential for HIV-1 prevention [5,31–34]. Additionally, 

we observed a subgroup of MSM with a sudden burst of growth early in the studied period, 

indicating that this subgroup or their undiagnosed or HIV-1-negative contacts might benefit from 

targeted preventive efforts (Figure 2b, Supplementary Figures 4,5). 
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As has been partly shown previously in a US-based study [35], we find that cluster size and its 

previous growth activity is predictive of future growth. When comparing demographical, clinical 

and behavioral variables with network-based variables, we observed a significant improvement 

in the predictive capacity of both cluster-level and patient-level growth models when network-

based variables were added as predictors. Keeping in mind the goal of prospectively analysing 

the state of HIV-1-epidemics, these variables derived from the network topology provided a 

substantial increase in predictive accuracy that should not be ignored. The predictive power of 

past cluster growth and the node degree, the small fraction of active clusters and patients, and the 

degree distributions observed in the clusters also suggest some degree of preferential attachment 

being responsible in the generation of the clusters. This underlines the need for approaches that 

allow the precise and timely identification of foci of ongoing transmission for the sake of 

preventive action. The predictive models established in this work could thus form the basis of 

such precision public health approaches to HIV-1 prevention.  

One limitation of our analyses is that they depend on an ad-hoc choice of clustering threshold. 

Here, in line with previous work [19,36,37], we chose a threshold of 0.01. This conservative 

threshold maximizes the number of clusters in our cohort and thereby provides the best 

resolution for our analysis. This way, we avoid the two extremes of an unnecessarily strict 

threshold, which would fail to cluster sequences even if they correspond to real transmission 

pairs, and a too lenient threshold, which would combine even very different sequences into large 

uninformative clusters that don’t reflect the underlying transmission network. In addition, a strict 

threshold was preferable in the case of the patient-based prediction models. We also conducted a 

sensitivity analysis showing that in this study, results were robust to the threshold choice. 

Another limitation is that we cannot establish individual transmission events between linked 

patients. Furthermore, the SHCS contains only part of the Swiss HIV-1-positive population, 

which means that the analysed clusters are missing patients that are not enrolled in the cohort. 

Consequently, the appearance of new links between patients of the SHCS can be caused by 

undiagnosed or otherwise not enrolled PLWH. However, with close to 21000 total patients and 

nearly 10000 patients under follow-up as of 2020, the SHCS is representative of the Swiss HIV-

1-epidemic [38]. Another limitation is the use of the first sequence per patient only, which does 

not account for intra-patient evolution of the virus. Since there was only a single sequence 

available for most (63.0%) SHCS patients for whom a genotypic resistance test had been 

performed, this was a practical choice with the added benefit of maximizing the long-term 

robustness of the clusters generated by HIV-TRACE. Future extensions of this study could 

possibly take this intra-patient evolution into account, therefore more precisely modeling the real 

epidemic, though this is contingent on the availability of sequence data on a large amount of 

longitudinally sampled patients.  

Despite these limitations, this study provides insight into the long-term dynamics of cluster 

growth of HIV-1 in Switzerland. It makes use of the densely sampled SHCS, representing a 

significant and representative part of the Swiss HIV-1-positive population. The clustering 
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method used makes longitudinal follow up on individual clusters feasible and opens the 

possibility of prospective analyses performed in real-time. Additionally, it demonstrates the 

importance of considering cluster-derived variables in addition to demographical and clinical 

variables when modeling cluster and individual growth dynamics.  

In conclusion, we present new insights into the long-term dynamics of HIV-1-cluster growth 

including the value of using cluster-based variables in predicting future growth both on the level 

of clusters and individual patients in the Swiss HIV-1-epidemic.  
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Table 1: Network properties that were calculated for clusters and nodes. 

Variable Object Description 

Node degree Node Number of links 

Past node growth Node Number of links gained over the past three years 

Future node growth Node Number of links gained over the next three years 

Closeness Node 

(n - 1) / (Σi
n
 pi), where n is the number of nodes in the cluster and pi 

is the shortest path from the node of interest to node i 

Betweenness Node 

Number of shortest paths between each pair of nodes in the cluster 

that pass through the node of interest 

Cluster size Cluster Number of nodes in the cluster 

Past cluster growth Cluster Number of nodes gained over the past three years 

Future cluster growth Cluster Number of nodes gained over the next three years 

Density Cluster 

m / (n * (n - 1) / 2), where m is the total number of links and n is 

the total number of nodes in the cluster 

Transitivity Cluster Probability of two neighbors of the same node being linked directly 

Median degree Cluster Median of all node degrees in the cluster 

Median distance Cluster Median Tamura-Nei 93-distance of all the links in the cluster 

Median closeness Cluster Median of the node closenesses 

Median betweenness Cluster Median of the node betweennesses 
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 Table 2: Characteristics of the patients whose HIV-pol sequences were used in the analysis. 

 
Clustered

a 
Not clustered

a 
All 

Age
a 

years years Years 

    Mean (SD) 37.3 (9.73) 38.7 (10.7) 38.3 (10.4) 

    Median [Q1, Q3] 36 [31, 42] 37 [31, 45] 37 [31, 44] 

Sex N (%) N (%) N (%) 

    Female 899 (22.1%) 2844 (30.8%) 3743 (28.1%) 

    Male 3175 (77.9%) 6381 (69.2%) 9556 (71.9%) 

Acquisition risk group 
   

    MSM 1751 (43.0%) 3588 (38.9%) 5339 (40.1%) 

    Heterosexuals 1017 (25.0%) 3765 (40.8%) 4782 (36.0%) 

    IV-drug users 1180 (29.0%) 1392 (15.1%) 2572 (19.3%) 

    unknown 126 (3.1%) 480 (5.2%) 606 (4.6%) 

RNA concentration
b 

copies/ml copies/ml copies/ml 

    Median [Q1, Q3] 27162 [3345, 110023] 15900 [790, 87078] 19605 [1260, 95938] 

    Missing 686 (16.8%) 2054 (22.3%) 2740 (20.6%) 

CD4-cell count
b 

cells/μl cells/μl cells/μl 

    Median [Min, Max] 379 [222, 568] 340 [180, 527] 350 [191, 540] 

    Missing 68 (1.7%) 184 (2.0%) 252 (1.9%) 

Total N = 4074 N = 9225 N = 13299 
a
 when the sample for the genotypic resistance test was taken 

b
 at the follow up visit closest to the sampling for the genotypic resistance test 

MSM: Men who have sex with men 
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Table 3: Predictor sets used in the model comparison. Mix, Cluster and Patient are 

predictor sets with mixed, only cluster-based predictors and only demographical and 

clinical predictors, respectively. The model comparison further included two predictor sets 

generated with automatic variable selection algorithm and which are described in the 

Supplementary Table 2. 

Predictor set Network-based predictors Demographical predictors 

Clinical 

predictors 

Mix 

node degree, past cluster growth, 

cluster size 

acquisition risk group, 

registration center, age, sex 

RNA-

concentration 

Cluster 

node degree, past cluster growth, 

cluster size, median closeness in the 

cluster, node closeness, cluster 

density, median distance in the 

cluster 

None None 

Patient None 

acquisition risk group, 

registration center, age, sex 

RNA-

concentration 
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Figure 1: Graph-representations of 4 different clusters (For a larger selection of clusters, see 

Supplementary Figure 7). Each node represents a single patient. Two linked nodes are patients 

whose HIV-pol-sequences have a Tamura Nei 93-genetic distance of less than or equal to 0.01. 

The sample year refers to the year when the sample for the genotypic drug resistance test was 

taken. A small amount of noise was added to the coordinates of each node for better readibility 

of clusters with many overlapping links. Abbreviations: MSM, men who have sex with men 
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Figure 2: (a) Cluster growth from 2007-12-31 to 2020-12-31 as a function of cluster size in 

2007. Clusters where the most common acquisition risk group did not constitute >50% of all 

members were assigned to a combined (hyphenated) category consisting of the two most 

common risk groups in alphabetical order. (b) Node growth from 2007-12-31 to 2020-12-31 as a 

function of node degree, i.e., the number of links, in 2007. Abbreviations: Het, Heterosexuals; 

IDU, Intravenous drug users; MSM, men who have sex with men 
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Figure 3: (a) Factors associated with the number of nodes gained by a cluster over the span of 3 

years, as assessed by a Poisson regression model. Parameters estimated and 95%-confidence 

interval from univariable (red) and multivariable (blue) regressions are represented. Past cluster 

growth was calculated as the number of nodes gained from 2011-12-31 to 2014-12-31, and 

future cluster growth was calculated as the number of nodes gained from 2014-12-31 to 2017-12-

31. (b) Factors associated with the gain of new links for a node within 3 years, as modeled by a 

logistic regression. Odds ratio and 95% confidence interval from univariable (red) and 

multivariable models (blue) are represented. The outcome was a binary variable based on the 

number of links gained in the first 3 years after the date of the genotypic resistance test.
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Figure 4: Comparison of the predictive abilities of 12 different classification models. These 

models are based on the combination of five different sets of predictors (described in Table 3 and 

Supplementary Table 2) with two different modeling methods: logistic regression and random 

forest, colored red and blue respectively. Each one of these combinations was assessed in a 10-

fold cross validation. Predictive ability was assessed by comparing the areas-under-the curve 

(AUCs) of the receiver-operator-characteristic (ROC)-curves of the models. 
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