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Marginal odds ratios
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and why sociologists might want to use them
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Background

Odds ratios form the backbone of much quantitative sociological
research.

Close to a hallmark of the discipline!

But: Falling out of favor!

▶ Magnitude of odds ratios depends on unmeasured covariates
orthogonal to the predictor of interest.

▶ Noncollapsibility (rescaling bias).

▶ Invalidates cross-model and subgroup coefficient comparisons.
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Background

Solutions?

KHB for cross-model comparisons

Compare sign not magnitude

Average marginal effects (AME)

Linear probability models (LPM)
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Background

AME/LPM might be throwing out the baby with the bathwater,
because . . .

. . . magnitudes depend on the margin

. . . they focus on absolute probability differences, not relative
differences, which is key to much sociological theory and research.
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Background

What we suggest:

Use marginal (log) odds ratios, which . . .

. . . behave like AME but retain the (relative) odds ratio
interpretation!

✔ unaffected by noncollapsibility

✔ an average effect (population-averaged)

✔ comparable across populations/studies
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Marginal odds ratios

Following Zhang (2008) and Daniel et al. (2021) we use potential
outcomes notation to define the marginal odds ratio.

Yt : Potential outcome that would realize if treatment T was set to
level t by manipulation (i.e., without changing anything else).

We focus on binary outcomes only, that is, Yt ∈ {0, 1} (failure or
success).

Thus:

Pr(Yt = 1) = E [Yt ] is the (marginal) probability that Yt will be
equal to 1 (probability of success).
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Marginal odds ratios

Consider a binary treatment T ∈ {0, 1}.

The marginal odds ratio (MOR) of the alternative treatment
(T = 1) versus the standard treatment (T = 0) is defined as

MOR =
υ[Pr(Y1 = 1)]
υ[Pr(Y0 = 1)]

= exp{lnυ[Pr(Y1 = 1)]− lnυ[Pr(Y0 = 1)]}

where υ(p) = p/(1− p) (odds) and lnυ(p) = ln(p/(1− p)) (log
odds).

Interpretation of MOR: The ratio of the odds of success if everyone
would receive the alternative treatment versus the odds of success if
everyone would receive the standard treatment (assuming that there
are no general equilibrium effects, i.e., SUTVA holds).

“Marginal” refers to how a predictor affects the “marginal distribution” of an outcome (i.e., not to a marginal change
in a predictor). “Unconditional” would be another term but we use “marginal” because the term is established in the
literature (Stampf et al. 2010; Karlson, Popham, and Holm 2021).
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Adjusting for covariates

The probability of success may not only depend on T , but also on
other factors X.

Assume that X has a specific distribution in the population and let
Pr(Yt = 1|X = x) = E [Yt |X = x] be the conditional success
probability given X = x.

By the law of iterated expectations,

Pr(Yt = 1) = EX[Pr(Yt = 1|X = x)]

where EX is the expectation over the distribution of X.
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Adjusting for covariates

The marginal odds ratio, adjusting for X, can then be written as

MOR =
υ{EX[Pr(Y1 = 1|X = x)]}
υ{EX[Pr(Y0 = 1|X = x)]}

= exp(lnυ{EX[Pr(Y1 = 1|X = x)]} − lnυ{EX[Pr(Y0 = 1|X = x)]})

We term this the adjusted MOR.

Note:
▶ The adjusted MOR is the same as the unadjusted MOR by definition

(i.e., same estimand)!
▶ However, estimation based on the adjusted MOR formulation can be

used to address confounding bias in observational data. It can also be
used to increase efficiency in analysis of RCTs.

The MOR can be defined in a similar way for continuous treatments.
For details see our (soon completed) paper.
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Relationship to the logistic model

Consider a simple logistic model

Pr(Yt = 1) = logit(α+ δt) where logit(z) =
exp(z)

1 + exp(z)

which implies
lnυ{Pr(Yt = 1)} = α+ δt

Assume T is binary. We then recover the MOR as

MOR = exp{(α+ δ)− (α)} = exp(δ)

Meaning: the (exponent of the) slope coefficient in a simple logistic
regression estimates the MOR.
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Relationship to the logistic model

If we condition on X, then

lnυ{Pr(Yt = 1|X = x)} = α+ δt + xβ

Here exp(δ) is the conditional odds ratio (i.e., the the odds ratio
given a specific value of X).

The conditional odds ratio (COR) is different from the MOR, which
has a more involved form

MOR = exp(lnυ{EX[logit(α+ δ + xβ)]} − lnυ{EX[logit(α+ xβ)]})

and which will be different from COR when β ̸= 0.
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Relationship to the logistic model

The difference between MOR and COR is referred to as
noncollapsibility or rescaling bias.

“Noncollapsibility of the OR derives from the fact that when the
expected probability of outcome is modeled as a nonlinear function
of the exposure, the marginal effect cannot be expressed as a
weighted average of the conditional effects” (Pang et al. 2016).

MOR will be attenuated compared to COR (what is commonly
referred to as rescaling effects).

But more importantly:

They correspond to different estimands!
They are conceptually different.
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Why marginal odds ratios?

1. While there exists only one MOR, there are many CORs, as the
latter depends on the conditioning set X.

2. Given their “on average” interpretation, MORs are easier to compare
across different populations and studies (do not depend on arbitrary
conditioning sets).

3. MORs behave like AMEs: They can be compared across different
conditioning sets and they are “average” effects implied by a model.
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Estimation

Estimand ⇒ Estimation

There are several approaches how we can estimate the MOR.
▶ G-computation (using predictions from a model)
▶ Inverse probability weighting
▶ Unconditional logistic regression (RIF regression)

All are discussed in our forthcoming paper (for binary/categorical as
well as continuous treatments; including formulas for analytic
standard errors).

Here we focus on G-computation as it closely resembles the
formulation of the adjusted MOR above. That is, G-computation
obtains the MOR that is implied by the chosen logit model. The
other methods follow a somewhat different logic.
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G-computation

G-computation estimates the MOR using counterfactual predictions
from a logit model (or any other model in principle).

For example, for a binary treatment, the procedure is as follows.
1. Regress Y on T and X using logistic regression.
2. Use the model estimates to generate two predictions of Pr(Y = 1) for

each observation, one with T set to 0 and one with T set to 1.
3. Predictions are then averaged across the sample to obtain estimates

of the population-averaged success probability by treatment level.
4. These average predictions can then be plugged into the formula for

the MOR:
ln M̂OR = lnυ(pT=1)− lnυ(pT=0)

For continuous treatments we have to evaluate level-specific MORs
and then average over the treatment distribution. An alternative
approach is based on applying fractional logit to counterfactual
predictions (this also works for binary/categorical treatments).
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Software

Software implementing the methods is available from GitHub

▶ https://github.com/benjann/lnmor

▶ https://github.com/benjann/ipwlogit

▶ https://github.com/benjann/riflogit
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Example

Application: gender gap in STEM
. use stem, clear
(Excerpt from TREE cohort 2)
. describe
Contains data from stem.dta
Observations: 6,809 Excerpt from TREE cohort 2

Variables: 7 1 Sep 2022 19:28

Variable Storage Display Value
name type format label Variable label

stem byte %8.0g Is in STEM training
male byte %8.0g Is male
mathscore double %10.0g Math score
repeat byte %8.0g Ever repeated a grade
books byte %19.0g books Number of books at home
wt double %10.0g Sampling weight
psu int %8.0g Sampling unit

Sorted by:
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Example

Probability difference
. mean stem [pw=wt], over(male) cluster(psu)
Mean estimation Number of obs = 6,809

(Std. err. adjusted for 800 clusters in psu)

Robust
Mean std. err. [95% conf. interval]

c.stem@male
0 .163234 .0093646 .1448519 .1816161
1 .2748687 .0145161 .2463745 .3033629

. regress stem i.male [pw=wt], cluster(psu) noheader
(sum of wgt is 78,600.1929332293)

(Std. err. adjusted for 800 clusters in psu)

Robust
stem Coefficient std. err. t P>|t| [95% conf. interval]

1.male .1116347 .0142969 7.81 0.000 .0835708 .1396987
_cons .163234 .0093653 17.43 0.000 .1448506 .1816174
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Example

Unadjusted (gross) OR
. logit stem i.male [pw=wt], or cluster(psu) nolog
Logistic regression Number of obs = 6,809

Wald chi2(1) = 67.37
Prob > chi2 = 0.0000

Log pseudolikelihood = -40949.278 Pseudo R2 = 0.0172
(Std. err. adjusted for 800 clusters in psu)

Robust
stem Odds ratio std. err. z P>|z| [95% conf. interval]

1.male 1.943131 .1572663 8.21 0.000 1.658099 2.27716
_cons .1950773 .0133746 -23.84 0.000 .1705485 .2231338

Note: _cons estimates baseline odds.
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Example

Conventional approach “conditional” OR
. logit stem i.male mathscore i.repeat books [pw=wt], or cluster(psu) nolog
Logistic regression Number of obs = 6,809

Wald chi2(4) = 596.03
Prob > chi2 = 0.0000

Log pseudolikelihood = -31905.554 Pseudo R2 = 0.2343
(Std. err. adjusted for 800 clusters in psu)

Robust
stem Odds ratio std. err. z P>|z| [95% conf. interval]

1.male 1.959295 .1675426 7.87 0.000 1.65696 2.316794
mathscore 2.606164 .1252437 19.93 0.000 2.371897 2.86357
1.repeat .6563627 .0965248 -2.86 0.004 .4920011 .8756321

books 1.087051 .0341241 2.66 0.008 1.022185 1.156034
_cons .1058314 .0166897 -14.24 0.000 .0776926 .1441616

Note: _cons estimates baseline odds.
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Example

G-computation approach (lnmor is a post-estimation command, i.e.
first estimate the model, then apply lnmor)
. lnmor i.male, or
Enumerating predictions:

male[2]..done
Marginal odds ratio Number of obs = 6,809

Command = logit
(Std. err. adjusted for 800 clusters in psu)

Robust
stem Odds Ratio std. err. t P>|t| [95% conf. interval]

1.male 1.677032 .1103015 7.86 0.000 1.473911 1.908145
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Example

Compare results (SEs in parentheses)

ln(MOR) Unadjusted Conditional Adjusted

1.male 0.664 0.673 0.517
(0.0809) (0.0855) (0.0658)

MOR Unadjusted Conditional Adjusted

1.male 1.943 1.959 1.677
(0.157) (0.168) (0.110)
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Example

Using at() to evaluate interactions
. probit stem i.male##c.mathscore##c.mathscore##i.repeat##c.books [pw=wt], ///
> cluster(psu)

(output omitted )
. lnmor i.male, nodots or at(repeat)
Marginal odds ratio Number of obs = 6,809

Command = probit
1: repeat = 0
2: repeat = 1

(Std. err. adjusted for 800 clusters in psu)

Robust
stem Odds Ratio std. err. t P>|t| [95% conf. interval]

1
1.male 1.70093 .1258126 7.18 0.000 1.471059 1.966721

2
1.male 1.525492 .3356916 1.92 0.055 .9904096 2.349659

Ben Jann (ben.jann@unibe.ch) Marginal odds ratios Venice, 14.11.2022 27



Example

Using at() to evaluate nonlinear effects
. lnmor i.male, nodots or at(mathscore = -2(2)2)
Marginal odds ratio Number of obs = 6,809

Command = probit
1: mathscore = -2
2: mathscore = 0
3: mathscore = 2

(Std. err. adjusted for 800 clusters in psu)

Robust
stem Odds Ratio std. err. t P>|t| [95% conf. interval]

1
1.male 1.743237 .7809461 1.24 0.215 .7235215 4.200118

2
1.male 1.882932 .1949999 6.11 0.000 1.536558 2.307387

3
1.male 2.041985 .3518247 4.14 0.000 1.456035 2.863737
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Example

Obtain results for several predictors in one call
. lnmor i.male mathscore i.repeat books, or
(mathscore has 491 levels; using 82 binned levels)
Enumerating predictions:

male[2]..mathscore[82]........................................................
..........................repeat[2]..books[7].......done

Marginal odds ratio Number of obs = 6,809
Command = probit

(Std. err. adjusted for 800 clusters in psu)

Robust
stem Odds Ratio std. err. t P>|t| [95% conf. interval]

1.male 1.677096 .1104903 7.85 0.000 1.473649 1.90863
mathscore 2.636666 .1367985 18.69 0.000 2.38136 2.919342
1.repeat .77176 .0926625 -2.16 0.031 .6097144 .9768729

books 1.061709 .024538 2.59 0.010 1.014619 1.110985
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Discussion

We provide a clear definition of the marginal OR (clarification of
estimand).

We provide flexible software that can estimate the marginal OR for
categorical as well as continuous predictors.

But . . .

. . . is it worth the hassle? How much do sociologists love odds ratios?

. . . will it change practice?

Any other comments/ideas?
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