The most widely read and highly cited peer-reviewed neurology journal The Official Journal of the American Academy of Neurology Neurology Publish Ahead of Print DOI: 10.1212/WNL.0000000000201660 Efficacy and Safety of N-Acetyl-L-Leucine in Children and Adults With GM2 Gangliosidoses #### **Author(s):** Kyriakos Martakis, MD1,2; Jens Claassen, MD3; Jordi Gascon-Bayari, MD4; Nicolina Goldschagg, MD5; Andreas Hahn, MD1; Anhar Hassan, MBBCh6; Anita Hennig, MD5; Simon Jones, MD7; Richard Kay, PhD8; Heather Lau, MD9; Susan Perlman, MD10; Reena Sharma, MD11; Susanne Schneider, MD5; Tatiana Bremova-Ertl, MD, PhD12 Corresponding Author: Kyriakos Martakis, kyriakos.martakis@paediat.med.uni-giessen.de *Neurology*® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes. Copyright © 2022 American Academy of Neurology. Unauthorized reproduction of this article is prohibited **Affiliation Information for All Authors:** 1. Department of Pediatric Neurology, University Children's Hospital (UKGM) and Medical Faculty, Justus Liebig University of Giessen, Giessen, Germany; 2. Department of Pediatrics, Medical Faculty and University Hospital, University of Cologne, Cologne, Germa; 3. Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Germany; Department of Neurocritical Care, Neurological and Neurosurgical First Stage Rehabilitation and Weaning, MediClin Klinik Reichshof, Germany; 4. Department of Neurologic Diseases and Neurogenetics, Institut d'Investigació Biomèdica de Bellvitge, Barcelona, Spain; 5. Department of Neurology, Ludwig Maximilian University of Munich, Germany; 6. Department of Neurology, Mayo Clinic, Rochester, MN, United States; 7. Willink Unit, Manchester Centre for Genomic Medicine, Royal Manchester Children's Hospital, University of Manchester, United Kingdom; 8. RK Statistics, Brook House, Mesne Lane, Bakewell DE45 1AL, United Kingdom 9. Division of Neurogenetics, New York University Langone, NY, United States; 9. Department of Neurology, New York University Langone School of Medicine, NY, United States; 10. Department of Neurology, University of California Los Angeles, CA, United States; 11. Department of Adult Metabolic Medicine, Salford Royal Foundation NHS Trust, United Kingdom; 12. Department of Neurology, University Hospital Bern (Inselspital), Switzerland ## **Equal Author Contribution:** #### **Contributions:** Kyriakos Martakis: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data Jens Claassen: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data Jordi Gascon-Bayari: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data Nicolina Goldschagg: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data Andreas Hahn: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data Anhar Hassan: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data Anita Hennig: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data Simon Jones: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data Richard Kay: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data Heather Lau: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data Susan Perlman: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data Reena Sharma: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data Susanne Schneider: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data Tatiana Bremova-Ertl: Drafting/revision of the manuscript for content, including medical writing for content; Study concept or design; Analysis or interpretation of data **Figure Count: 5** **Table Count: 2** #### **Search Terms:** [163] Gait disorders/ataxia, [312] Cerebellum, GM2 gangliosidoses, Sandhoff, Tay-Sachs, [324] Class IV #### **Acknowledgment:** We thank the study teams and co-investigators from Bellvitge University Hospital, Mayo Clinic (Rochester MN), NIHR Manchester Clinical Research Facility, Salford Trust, University of Giessen, University of Munich Ludwig Maximilian, University of California Los Angeles, and New York University Langone for their participation in the trial. We thank the multi-national Patient Organizations representing the GM2 community and referring physicians. Finally, we thank all of the patients and their families who participated in this study. #### **Study Funding:** The study was funded by IntraBio Ltd. #### **Disclosures:** K. Martakis reports no disclosures relevant to the manuscript. J. Claasen received fees for the blinded rater services from IntraBio. J.G. Bayarri reports no disclosures relevant to the manuscript. N. Goldschagg received fees for the blinded rater services from IntraBio. A. Hahn reports no disclosures relevant to the manuscript. A. Hassan reports no disclosures relevant to the manuscript. A. Hennig reports no disclosures relevant to the manuscript. S. Jones reports no disclosures relevant to the manuscript. R. Kay received consulting fees from IntraBio. H. Lau reports no disclosures relevant to the manuscript. S. Perlman reports no disclosures relevant to the manuscript. R. Sharma reports no disclosures relevant to the manuscript. T. Bremova-Ertl received fees for the blinded rater services from IntraBio. ## **Preprint DOI:** A version of the manuscript remains available on the pre-print server medRxiv (https://www.medrxiv.org/content/10.1101/2021.09.24.21264020v1). ## **Received Date:** 2022-05-26 ## **Accepted Date:** 2022-10-21 ## **Handling Editor Statement:** Submitted and externally peer reviewed. The handling editor was Peter Hedera, MD, PhD. #### **Abstract** **Background and Objective:** GM2 gangliosidoses (Tay-Sachs and Sandhoff diseases) are rare, autosomal-recessive, neurodegenerative diseases with no available symptomatic or disease modifying treatments. This clinical trial investigated N-acetyl-L-leucine (NALL), an orally administered, modified amino acid in pediatric (≥ 6 years) and adult patients with GM2 gangliosidoses. **Methods:** In this Phase IIb, multi-national, open-label, rater-blinded study (IB1001-202), male and female patients aged ≥6 years with a genetically confirmed diagnosis of GM2 gangliosidoses received orally-administered NALL for a 6-week treatment period (4 g/day in patients ≥13 years, weight-tiered doses for patients 6-12 years), followed by a 6-week post-treatment washout period. For the primary Clinical Impression of Change in Severity analysis, patient performance on a pre-determined primary anchor test (the 8-Meter Walk Test or the 9-Hole Peg Test) at baseline, after 6 weeks on NALL, and again after a 6-week washout period, was videoed and evaluated centrally by blinded raters. Secondary outcomes included assessments of ataxia, clinical global impression, and quality of life. **Results:** 30 patients between the age of 6 and 55 were enrolled. 29 had an on-treatment assessment and were included in the primary modified intention-to-treat analysis. The study met its CI-CS primary endpoint (mean difference 0.71, SD=2.09, 90% CI 0.00, 1.50, p=0.039), as well as secondary measures of ataxia and global impression. NALL was safe and well-tolerated, with no serious adverse reactions. Conclusions: Treatment with NALL was associated with statistically significant and clinically-relevant changes in functioning and quality of life in patients with GM2 gangliosidosis. NALL was safe and well-tolerated, contributing to an overall favourable risk: benefit profile. NALL is a promising, easily administered (oral) therapeutic option for these rare, debilitating diseases with immense unmet medical needs. Classification of Evidence: This study provides Class IV evidence that NALL improves outcomes for patients with GM2 gangliosidoses. **Trial Registration Information:** The trial is registered with ClinicalTrials.gov (NCT03759665; registered 30-Nov-2018), EudraCT (2018-004406-25), and DRKS (DRKS00017539). The first patient was enrolled 07-June-2019. #### Introduction GM2 gangliosidoses, i.e. Tay-Sachs and Sandhoff diseases, are rare (incidence 0.28:100,000), autosomal-recessive lysosomal disorders ¹. GM2 gangliosidoses most commonly impact infantile and paediatric patients, and are characterized by progressive neurodegeneration which significantly impacts quality of life and results in premature death ². GM2 gangliosidoses feature a wide spectrum of heterogenous, debilitating symptoms, including cerebellar ataxia, dysphagia, and dysarthria. ² No treatments for GM2 gangliosidoses are currently approved in any jurisdiction worldwide. N-acetyl-L-leucine (NALL) is a modified amino acid and the L-enantiomer of the raceme, approved since 1957 in France as a treatment for acute vertigo (Tanganil^{TM) 3,4}. In observational studies, acetyl-leucine has been demonstrated to have symptomatic and long-term, disease modifying effects in in patients with GM2 gangliosidoses, and other lysosomal disorders like Niemann-Pick disease type C (NPC), ^{3,5–8}. Recently, a parallel, multinational, Phase IIb clinical trial with NALL for NPC showed a statistically significant (primary and secondary endpoints) and clinically-meaningful improvement in symptoms, functioning, and quality of life for children and adults with NPC ³. NALL was observed to be well tolerated in all observational and clinical studies completed to date, with no reports of serious adverse reactions. Animal studies in the GM2 mouse model (*Hexb*^{-/-}) and related NPC mouse model (NPC --/-) have shown that N-acetyl-leucine significantly improved ataxia when administered presymptomatically or symptomatically ^{3,8,9}. In these studies, acetyl-leucine treated animals exhibited slowed disease progression and an extended lifespan. These studies specifically identified the L-enantiomer as the active isomer of the racemate, responsible for the neuroprotective effect, and suggested superior clinical effects when administered independently ^{3,8,9}. Further, pharmacokinetic studies in mice indicate that during chronic dosing of the racemate, the D-enantiomer may accumulate, with the potential for unwanted effects ¹⁰. Recently, it was reported that NALL is taken up and distributed to all tissues including the central nervous system by the monocarboxylate transporter (MCT1) and hydrolyzed to L-leucine ¹¹ thereby functioning as a prodrug for the delivery of L-leucine, a powerful intracellular metabolic signal of pathways such as mTORC1 ¹². Therefore, in this clinical trial, we aimed to investigate the safety and efficacy of NALL on symptoms, functioning, and quality of life for pediatric and adult patients with GM2 gangliosidoses. ## **Methods** ## Standard Protocol Approvals, Registrations, and Patient Consents Approval for the study (clinicaltrials.gov identifier NCT03759665, EudraCT number 2018-004406-25, and DR KS-ID: DRKS00017539) was obtained by National Regulatory Authorities in each country (German Federal Institute for Drugs and Medical Devices, Spain Agency of Medicines and Medical Devices, UK Medicines and Healthcare products Regulatory Agency, and US Food and Drug Administration), and the applicable responsible central research ethics committees / institutional review boards for each center (Ethics Committee of Ludwig Maximilian University of Munich (19-119), Bellvitge Hospital University Clinical Research Ethics Committee (AC004/19), North West – Greater Manchester South (260774), Mayo Clinic Institutional Review Board (19-000373), Office of Science and Research Institutional Review Board, New York University School of Medicine (i17-01666), University of California Los Angeles Institutional Review Board (19-000348)). Written informed consent was obtained for all study participants by the patient or, if applicable, their parent or legal representative. #### Study design The IB1001-202 clinical trial was conducted using a master protocol which was also utilized to assess the efficacy of NALL (Sponsor Code IB1001) for symptoms, functioning, and quality of life in two related = rare, neurodegenerative diseases (NPC [NCT03759639] and Ataxia-Telangiectasia [NCT03759678]) ^{3,4}. Details of the master protocol- including its rationale, methods, study design and procedures, and oversight- have been previously published. The results of the IB1001-201 clinical trial for NPC have also previously been reported ^{3,4}. ## **Participants** Adults and children aged 6 years and older with a confirmed genetic diagnosis of GM2 gangliosidoses were eligible to participate at 8 clinical research Universities and Hospitals in four countries (Germany, Spain, the United Kingdom and the United States). Patients using prohibited medications at screening (i.e. medications which may have confounded the safety or efficacy analysis of the trial, including N-acetyl-DL-leucine, N-acetyl-L-leucine or aminopyridines, [prohibited if not provided as the investigational medicinal product], varenicline, riluzole, sulfasalazine, chlorzoxazone, gabapentin, or rosuvastatin) were required to complete a 42-day washout prior to their first baseline visit. The eligibility criteria was previously published ⁴. #### **Procedures** The IB1001-202 trial consisted of three consecutive study periods: a 2-week (+7 day) baseline period, a 6-week (+7 day) treatment period (in which all patients were to receive NALL), and a 6-week (+7 day) post-treatment washout period. The schedule of events is presented in Table 1. Patients were assessed twice during each study period: i.e., pre-treatment at Visits 1 and 2 (Baseline 1 and 2), during treatment at Visits 3 and 4 (Treatment 1 and 2), and during washout at Visits 5 and 6 (Washout 1 and 2). After the final visit of the Parent Study (Visit 6), patients may have entered an open label "Extension Phase" to explore the long-term benefit of NALL. The Parent Study has been completed and the results are reported below. Due to the exceptional circumstances caused by the Coronavirus Pandemic (COVID-19), necessary deviations from the schedule of events were made for some patients as permitted by national guidance in order to safeguard patients, their families, and study teams. #### **Treatment** Patients aged \geq 13 years or aged 6-12 years weighing \geq 35 kg received 4 g/day three times per day (2 g in the morning, 1 g in the afternoon, and 1 g in the evening). Patients aged 6-12 years weighing <35 kg received weight-tiered doses two or three times per day based on approximately 0.1 g/kg/day. In the parent study, NALL was provided as a powder for suspension, suspended in 40 mL Ora-Blend® to be administered orally at least 30 minutes before or 2 hours after a meal. After finishing the Parent Study, patients were allowed to be involved in a one-year long, openlabel Extension Study that is ongoing. #### **Outcomes** For the primary endpoint, the Clinical Impression of Change in Severity (CI-CS), the patient's performance on either the 9 Hole Peg Test – Dominant Hand (9HPT-D) or the 8 Meter Walk Test (8MWT) was compared based on video-recordings taken at baseline (Visit 2), the end of treatment (Visit 4), and the end of the washout period (Visit 6). For each patient, either the 9HPT-D or 8MWT was chosen as the primary assessment measure by the Principal Investigator at Visit 1, based on their unique individual symptoms. Sites were trained on a standardized protocol to ensure the 9HPT-D and 8MWT were filmed consistently, and the videos were uploaded to be centralized assessed by a team of three-certified neurologists. Two of these neurologists reviewed randomized, blinded video pairs as follows: baseline vs. end of treatment (Pair A), end of treatment vs. end of washout (Pair B), baseline vs. end of washout (Pair C). For each pair, the raters had to assess the change of severity of the patient's signs using a 7-point Likert scale. The third rater acted as an adjudicator, when the results of the assessment of the two primary raters differed by more than one point in the Likert scale. The CI-CS was defined as the change from Pair A minus Pair B; thus, the washout period served as control arm to the treatment period. Secondary efficacy measurements of ataxia and functioning, included the Scale for the Assessment and Rating of Ataxia (SARA) and Spinocerebellar Ataxia Functional Index (SCAFI)¹⁴, and the modified Disability Rating Scale (mDRS)¹³—a measurement of overall neurological status were applied. In addition, subjective impairment and quality of life were evaluated using the Clinical Global Impression (CGI) scale (completed by the Investigator, Caregiver, and Patient)¹⁵ and the EuroQol (EQ) 5Q-5D-5L/-Y, consisting of a descriptive part and a visual analog scale (VAS)¹⁶. Secondary assessments compared the change over the treatment period, i.e., baseline (Visit 2) to the end of treatment (Visit 4) as well as the change over washout period, i.e., the end of treatment (Visit 4) to the end of post-treatment washout (Visit 6). Safety was assessed via the monitoring of adverse events (AEs), vital signs, 12-lead electrocardiograms (ECGs), blood safety laboratory tests, and urinalysis. Treatment-emergent adverse events (TEAEs) were defined as AEs that appeared or worsened during or after study treatment. #### Randomization and masking This study was open label. In order to reduce bias, videos of the 9HPT-D and 8MWT from the baseline, end of treatment, and end of washout visits were randomized by Medpace Core Laboratories (MCL) to create three video pairs. These randomized video pairs were released for review to two central, blinded raters via the secure MCL Clintrak Imaging System Portal. Access to the randomized sequences was restricted to the MCL IB1001 study team. #### Statistical analysis The primary endpoint was defined as the CI-CS comparing performance at the end of treatment with NALL (Visit 4) with the performance at baseline (Visit 2) minus the CI-CS performance at the end of washout (Visit 6) with the one at end of treatment with NALL (Visit 4). The CI-CS endpoint was designed to capture clinical improvement during treatment with NALL as well as deterioration once treatment was stopped. It was estimated that a sample size of 30 patients would be needed to provide the trial with 76% power at a one-sided significance level of 5%, in order to detect a mean effect of at least 0.45 in the primary endpoint (assuming a standard deviation of 1.02). Due to the rarity of GM2 gangliosidosis and the resulting limited potential pool of subjects, it was not feasible to specify a higher level for the power. The data analysis though was not dependent on the value chosen for study power. The analysis of the primary endpoint was performed on the modified intention-to-treat (mITT) population, comprising of all patients who received at least one dose of the study drug and who had one baseline video (Visit 1 or 2, or both) and one treatment period video (Visit 3 or Visit 4, or both). A "last observation carried forward" approach was used for the primary CI-CS endpoint, in which the CI-CS value for Visit 4 to Visit 6 was assigned the value 0 (stable), if both videos from the washout period (i.e., both Visit 5 and Visit 6) were missing. The null hypothesis was that the mean is 0 (no change), with the alternative hypothesis that this mean was >0. A single-sample, one-tailed t-test was used to compare the mean of the CI-CS differences with zero at a significance level of 5%. Non-parametric 90% confidence intervals were calculated using the Hodges-Lehmann method ¹⁷. Secondary endpoints were evaluated either statistically based on a single-sample t-test or a single-sample Wilcoxon Signed Rank test or descriptively. No formal hierarchical structure was defined for the secondary endpoints and analyses presented for these endpoints should be considered exploratory only. Separate analyses were performed for key subgroups as pre-defined in the statistical analysis plan (SAP). The safety population included all patients who received at least one dose of study drug. An independent data safety monitoring board (DSMB) consisting of three independent, non-participating members (including two clinicians and a statistician) monitored safety, study conduct and progress, and was involved in risk-assessments of the impact of COVID-19. ## **Data Availability** All authors were provided with full access to all the data in the study and were responsible for the final decision to submit for publication. The study Sponsor, IntraBio Ltd. is dedicated to sharing anonymized data and information about the clinical study information which supports further scientific research. Requests for this data will be considered in the context of the basis of the request, how the data will be used, and how the data will be analysed to be of value to the scientific community. Therefore, there are circumstances that may prevent IntraBio from sharing the requested data at this time. Request for anonymized data from the clinical trial or additional information about the trial can be submitted after the product is approved in the United States and European Union, or if development of the product is ceased, or as otherwise required by law or regulation. At the time of publication, the product remains under development. ## **Results** ## **Study Population** Thirty-six participants were screened between 07 June 2019 and 01 October 2020, and thirty patients qualified for inclusion (Figure 1). Patient baseline demographic and clinical characteristics are shown in Table 2. The mean age was 27 (SD 15.2) years, with a range of 6 to 55 years. Twenty-seven patients (90%) completed the parent study (Visit 6). A patient was withdrawn after Visit 2 due to a self-reported tremor they believed was related to the investigational medicinal product. The patient did not participate in a follow-up or early termination visit, and thus the Principal Investigator was unable to assess the patient in person/further evaluate the causality of this AE. Another patient was withdrawn after Visit 3, as they were unwilling to travel due to the COVID-19 pandemic outbreak. Patients were exposed to NALL for a median (range) duration of 49 (16-132) days, and a mean duration of 58.8 days. The range varied widely due to the urgent measures implemented in order to safeguard patients from exposure to COVID-19. #### **Efficacy** Overall, patient performance on their primary anchor test, as evaluated by the blinded, independent rates, improved on NALL with a mean difference of 0.34 (standard deviation SD=1.59 median=0.5). Conversely, patient performance worsened during the washout period, with a mean value of -0.36 (SD=1.33, median=-0.50). No difference was observed between the CI-CS comparing the baseline and washout visits (Visit 6 versus Visit 2), with a mean value 0.063 (SD=1.32, median=0, n=30). This demonstrated the absence of a learning effect on the CI-CS anchor tests. The CI-CS primary endpoint of the study reached statistical significance with p=0.039 with mean value=0.71 (SD=2.09, median=1.0) and Hodges-Lehmann 90% confidence interval (CI) of 0.00, 1.50 (Figure 2). The inter-rater correlation of the CI-CS scores was calculated for 81 pairs of videos recorded in the trial. The Spearman Rank correlation was 83%, indicating a high degree of consistency in the blinded raters' assessment of the videos. This result was comparable with the inter-rater correlation of 70% in the NALL clinical trial for NPC (IB1001-201) ³. In the IB1001-201 (NPC) and IB1001-202 (GM2 gangliosidoses) trials, different primary and adjudication raters were used. That this degree of consistency was observed between raters is supportive of the robustness of the CI-CS methodology. Subgroup analysis conducted on the primary CI-CS endpoint for the key predefined populations, including age, age of disease onset, and disease severity indicated the benefits of treatment applied to the entire study population (Figure 3). As expected with the small sample sizes, some variation can be observed, however, the analysis shows that NALL is similarly efficacious across all demographics, with consistent improvement under treatment and a return to baseline after the post-treatment washout. The change of the CGI was evaluated by the Investigator, Caregiver, and Patient to overall assess the patient's physical and cognitive status. Following the 6-week treatment period with NALL, there was consensus between the three evaluating groups that the patient had significantly improved during the treatment period (Investigators: 90% CI (0.5, 1.0), p<0.001; Caregivers: 90% CI (0.5, 1.5), p=0.001; Patients: 90% CI (0.5, 1.5), p<0.001). Comparably, following the post-treatment washout, a mutual deterioration was observed (Investigators: 90% CI (-1.0, -0.5), p<0.001; Caregivers 90% CI (-1.0, -0.5), p<0.001; Patients: 90% CI (-1.0, 0.0), p=0.01) (Figure 4A, 4B, 4C). The SARA score was applied to evaluate cerebellar function and overall neurological status. At baseline, the study population displayed a full range of disease severity. The respective minimum and maximum individual SARA scores were 5 and 33 out of a maximum of 40 points (mean baseline score 14.24). Under treatment with NALL, the average SARA score decreased -1.41 points compared to baseline (90% CI (-1.75, -0.75), p<0.001), indicating an improvement in cerebellar ataxia. After the post-treatment washout, the SARA score increased by 1.43 points compared to the end of the treatment period (90% CI (0.50, 2.00), p<0.001), thus returning to the baseline value and once again showing that the benefits gained during the treatment period were lost upon washout (Figure 5A). The mDRS scores for overall neurological function tracked consistently with the SARA scores for cerebellar ataxia: After the 6-week treatment period with NALL, the mDRS score changed significantly (90% CI (-0.063, 0.00), p=0.020), the benefits of which were lost after patients stopped medication with NALL during the washout period (90% CI (0.021, 0.0635, p<0.001) (Figure 5B). The SCAFI scale lacked sensitivity because of the heterogeneity of symptoms of the enrolled cohort, compromising the individual domains. Only 17 patients were able to complete the 8MWT, and 23 patients able to complete the 9HPT-D or 9HPT-ND at the treatment and washout visits. No overall changes were therefore seen for the SCAFI total score, or these single domains (Figure 5C). However, 29 patients were able to complete the PATA at baseline, and a significant change was observed over the treatment and washout period. The total PATA score was 18.96 at baseline, 20.56 on medication, and 19.28 after the post-treatment washout (Figure 5D), replicating the SARA, and mDRS results, respectively. These changes were statistically significant (Treatment: 90% CI 0.75, 2.50, p<0.001; Washout: 90% CI -2.00, 0.00, p=0.027), demonstrating a clear improvement in speech under NALL. The results of EQ-5D-5L/EQ-5D-Y and EQ-VAS were summarized by visit using descriptive statistics, consistent with the questionnaires. Of the domains, there was a trend for improvement in patient's mental health, as evaluated by the anxiety/depression domain. ## Safety Five AEs assessed as related to treatment were reported in 10% of patients (3 patients in total), which were flatulence, asthenia, acne, and 2 accounts of tremor. None of the related AEs were serious. No deaths occurred during the study. No clinically-relevant changes were observed in safety laboratory tests, urine analysis, vital signs or ECG recordings. In total, this study provides Class IV evidence that NALL improves outcomes for patients with GM2 gangliosidoses. ## **Discussion** In this Phase IIb clinical trial in patients aged 6 years or older with GM2 gangliosidosis, NALL improved cerebellar signs, fine motor skills, ambulation (gait) and stance, and speech. These improvements were observed irrespective of age, gender, age of disease onset, and baseline disease severity, suggesting NALL's applicability as a treatment for all patients with GM2 gangliosidoses. Improvements in neurologic status correlated with improvements in functioning and quality of life. NALL was well tolerated with a low frequency of related AEs, none of which were serious. IB1001-202 is the second multinational, Phase IIb clinical trial to be completed with NALL. The results of the trial are consistent with a parallel trial completed for NPC, where treatment also had a statistically significant and clinically meaningful effect on the primary CI-CS and secondary (SARA, CGI-C) endpoints. ³ As briefly described, these clinical findings correlate directly with studies in the GM2 gangliosidoses mouse model ($Hexb^{-1}$) and NPC mouse model (NPC^{-1}), where acetyl-leucine reduced ataxia when treatment was commenced pre-symptomatically (from 3-weeks of age onward) or symptomatically (for 1-week treatment, starting at 8-weeks of age). ^{3,8,9} NALL restored aerobic (pyruvate dihydrogenase-dependent) and enhanced anaerobic (lactate dehydrogenase-dependent) glycolysis, and returned the glutamate-metabolizing enzyme, glutamate dehydrogenase, to levels observed in $Hexb^{+/+}$ and $NPC^{+/+}$ null mice. In general, considering the normalization of the altered glucose and glutamate metabolism, NALL improves energy production, as well as cellular functions and signalling ^{3,8,9}. This is manifested via the drugs modulation of multiple secondary therapeutic targets, including a reduction in lipid and cholesterol accumulation and lysosomal volume ^{8,9,18}, a reduction in neuroinflammation ¹⁹, and a normalization of neuronal membrane potential ²⁰. These multimodal actions lead to the restoration of neuronal function and improvement of overall brain health, including throughout the cerebellum. These effects correlate to NALLs symptomatic effects (e.g. improvement of postural stability, gait, fine motor skills with diadochokinesia, and speech). These effects also indicate NALL's neuroprotective action—and ability to slow, or neurodegeneration—which is being investigated in the ongoing extension trial. As previously described ^{3,4}, the master protocol utilized has several limitations. This study was single-armed, and participants, caregivers and site staff were aware of the current study phase and treatment. This approach was chosen due to the rarity of the condition and the documented, widespread, unlicensed use of the commercially-available racemate (N-acetyl-DL-leucine; TanganilTM) or even chemical grade NALL within the GM2 gangliosidoses community ²¹. Patients and caregivers were reluctant to discontinue treatment with N-acetyl-leucine to take an inactive placebo, and hence, the open-label, rater-blinded paradigm was implemented. The primary CI-CS assessment minimized the bias of the single-arm, open-label approach through the intra-patient, internal control of each patient's washout arm and the centralized, blinded ratings of randomly-paired videos. Moreover, the majority of patients enrolled in the trial were severely physically impaired with mild to significant levels of cognitive impairment. Given the extent of impairment at baseline, the potential for a placebo-effect on neurological signs and symptoms is fundamentally reduced. However, to further reduce bias and thus to ensure the interpretability of the assessment, execution and video recording of the anchor tests were standardized across sites, with site personnel trained on detailed protocols, detailing precise verbal instructions, encouragement, break times between test trials, and instructions on which trial to record. This single-arm approach is in agreement with principles aiming to minimize the exposure of patients with orphan diseases, and in particular paediatric patients, to placebo²². A further limitation was the novel CI-CS primary endpoint is not yet validated. The CI-CS was chosen as primary endpoint over pre-existing scales, due to the methodological limitations of applying pre-existing ataxia scales in diseases in which neurodegeneration is wide-spread with a variety of symptoms and the neurological progression and severity differ greatly between individuals. In such cases, the scales may be too specific regarding the respective neurological functions, e.g. cerebellar, and therefore not sensitive enough to capture small but meaningful functional changes ^{4,23}. Accordingly, the CI-CS was developed as a more clinically-relevant endpoint capable of recognizing clinically-meaningful treatment effects across the whole patient population. The primary efficacy analysis was supported by significant improvements observed in SARA and CGI, both validated, established scales. Finally, due to the small size sample characteristic of the ultra-orphan setting, a one-tailed p-value with significance level of 5% was used for the primary endpoint. This study demonstrates statistically significant and clinically-meaningful improvements in GM2 gangliosidoses patients treated with NALL. NALL at a dose of up to 4 g/day was safe and well-tolerated. The findings from IB1001-202 in GM2 are in agreement with those from previous studies and provide further evidence that NALL may improve symptoms in patients with GM2 gangliosidoses, as well as similar progressive, life-threatening conditions. ## Figure legends Figure 1. IB1001-202 study flow diagram Figure 2. Primary endpoint: Clinical Impression of Change in Severity (CI-CS) (mITT) The CI-CS was calculated from a 7-point scale, ranging from -3, "significantly worse", to 0, "no change", to +3 "significantly improved". The panel compares the CI-CS score calculated for the end of treatment period versus end of baseline (left-hand column, in blue) with the CI-CS score calculated for the end of washout period versus end of treatment (right-hand column, in orange). The vertical length of the column represents the 90% Hodges-Lehmann (HL) Confidence Interval of the CI-CS. Solid lines are used to denote the Hodges-Lehmann Median Estimator and cross symbols are used to denote the Mean response. ## Figure 3. Forest plot subgroup analyses for the primary endpoint: CI-CS scores (mITT) The change in the CI-CS scores during the treatment period (end of treatment versus baseline; depicted in blue) and during the washout period (end of washout versus end of treatment; depicted in orange) is displayed for individual, pre-defined subgroups. The dots represent the pseudo-medians or Hodges-Lehmann estimators. Some subgroups were large enough to calculate 90% confidence intervals (represented by the horizontal lines). Only values from patients with reported data were included in the subgroup analyses - no last observation carried forward (LOCF) approach was applied. Figure 4. Secondary Endpoint: Clinical Global Impression of Change (mITT) (4A) Physician's CGI-C. (4B) Caregiver CGI-C. (4C) Patient's CGI-C. For each scale, the results comparing baseline to end of treatment (left-hand column, blue) are compared with the results comparing the end of the treatment period to the end of the washout period (right-hand column, orange). The vertical length of the column represents the 90% Hodges-Lehmann (HL) Confidence Interval of the CGI-C. Solid lines are used to indicate the Hodges-Lehmann Median Estimator and cross symbols are used to denote the Mean response. #### Figure 5. Secondary Functional Endpoints (mITT) (A) Scale for the Assessment and Rating of Ataxia (SARA). (B) Modified Disability Rating Scale (mDRS). (C) Spinocerebellar Ataxia Functional Index (SCAFI). (D) PATA Speech Test. For each test, the results comparing baseline to end of treatment (left-hand column, blue) are compared with the results comparing the end of the treatment period to the end of the washout period (right-hand column, orange). The vertical length of the column represents the 90% Hodges-Lehmann (HL) Confidence Interval. Solid lines are used to denote the Hodges-Lehmann Median Estimator and cross symbols are used to denote the Mean response. | Period | Baselin | e Period | Treatme | ent Period | Wash-O | ut Period | Early Term. | |----------------------------------------------------------------------------------|-----------------|----------------------|-------------|-------------|-----------|---------------|-------------| | Duration of the whole period | 1 Day | 2 Weeks | 6 Weeks | | 6 Weeks | | 1 Day | | Visit number | Visit 1 | Visit 2 | Visit 3 | Visit 4 | Visit 5 | Visit 6 / EOS | ET | | Name of the Visit | Screening/Bsl 1 | Baseline 2 | Treatment 1 | Treatment 2 | Washout 1 | Washout 2 | ET | | Timeline (Days) | Day -14 | Day 1, Start
NALL | Day 28 | Day 42 | Day 70 | Day 84 | XX | | Visit Window allowed | na | +7 days | +7 days | +7 days | +7 days | + 7days | na | | Patient information and informed consent process | X | | | | 7 | | | | Inclusion / exclusion criteria, medical history, patient demographics | X | X | | λ | | | | | Classify patient as "Naïve" or "Non-naïve" a | X | | | | | | | | Documentation of therapy & concomitant medications | X | X | X | X | X | X | X | | Vital signs | X | X | X | X | X | X | X | | 12-lead electrocardiogram (ECG) | X | | X | | X | | X | | Urine test for N-Acetyl-D-Leucine | X | X | | | X | X | X | | Blood safety laboratory tests & urinalysis | X | X | X | X | X | X | X | | Blood sample for sparse PK | X | X | X | X | X | X | X | | Quality of Life EQ-5D | X | X | X | X | X | X | X | | Scale for Ataxia Rating (SARA) | X | X | X | X | X | X | X | | Modified Disabling Rating Score (mDRS) | X | X | X | X | X | X | X | | Scale for Spinocerebellar Ataxia Functional Index (SCAFI) | X | X | X | X | X | X | X | | CI-CS Anchor Test Video Record | X | X | X | X | X | X | X | | Clinical Global Impression of Severity (CGI-S) | X | X | X | X | X | X | X | | Clinical Global Impression of Change
(CGI-C) by Physician, Caregiver, Patient | | | | Х | | X | X | | Documentation of adverse events (AEs) | X | X | X | X | X | X | X | a. Patients using prohibited medication at screening (versions of the investigational medicinal product, aminopyridines, riluzole, gabapentin, varenicline, chlorzoxazone, sulfasalazine, or rosuvastatin) were classified as "non-naïve" and allowed to perform a 6-week washout from the medication before returning for the baseline assessment. Table 1: Schedule of Assessments | Table 2 – Subject disposition and baseline information (Safety Analysis Set Population) | | | | | | | | |---|---|-------------|--|--|--|--|--| | Age (years) | Mean (SD) | 27.0 (15.2) | | | | | | | | Median | 28.5 | | | | | | | | Range | 6.0 - 55.0 | | | | | | | | | | | | | | | | Ethnicity, n (%) | Asian | 1 (3.3) | | | | | | | | White | 29 (96.7) | | | | | | | | | | | | | | | | Sex, n (%) | Male | 11 (36.7) | | | | | | | | Female | 19 (63.3) | | | | | | | Age Group, n (%) | Paediatric (<18 years) | 10 (33.3) | | | | | | | | Adult (>=18 years) | 20 (66.7) | | | | | | | | | | | | | | | | Dose, n (%) | Age 6-12 years - 15 to <25kg - 2g per day | 3 (10.0) | | | | | | | | Age 6-12 years - 25 to <35kg - 3g per day | 4 (13.3) | | | | | | | | Age 6-12 years - \geq 35kg - 4g per day | 1 (3.3) | | | | | | | | Age >=13 years - 4g per day | 22 (73.3) | | | | | | | | | | | | | | | | Geographic Location, n (%) | USA | 10 (33.3) | | | | | | | | Europe | 20 (66.7) | | | | | | | | | | | | | | | | Disease, n (%) | Tay-Sachs | 27 (90.0) | | | | | | | | Sandhoff | 3 (10.0) | | | | | | | Selected Primary Anchor Test, n (%) | 8 Meter Walk Test (8MWT) | 12 (40.0) | | | | | | | | 9 Hole Peg Test – Dominant Hand (9HPT-D) | 18 (60.0) | | | | | | ## References - Orphanet. Prevalence and incidence of rare diseases. Epub 2017. Accessed at: https://www.orpha.net/ orphacom/cahiers/docs/GB/Prevalence_of_rare_diseases_by_alphabetical_list.pdf. Accessed February 15, 2020. - 2. Cachon-Gonzalez MB, Zaccariotto E, Cox TM. Genetics and Therapies for GM2 Gangliosidosis. Curr Gene Ther. 2018;18:68–89. - 3. Bremova-Ertl T, Claassen J, Foltan T, et al. Efficacy and safety of N-acetyl-1-leucine in Niemann–Pick disease type C. J Neurol [online serial]. Epub 2021 Aug 13. Accessed at: https://doi.org/10.1007/s00415-021-10717-0. Accessed September 17, 2021. - 4. Fields T, Patterson M, Bremova-Ertl T, et al. A master protocol to investigate a novel therapy acetyl-L-leucine for three ultra-rare neurodegenerative diseases: Niemann-Pick type C, the GM2 gangliosidoses, and ataxia telangiectasia. Trials. 2021;22:84. - 5. Bremova T, Malinová V, Amraoui Y, et al. Acetyl-dl-leucine in Niemann-Pick type C: A case series. Neurology. 2015;85:1368–1375. - 6. Bremova-Ertl T, Platt F, Strupp M. Sandhoff Disease: Improvement of Gait by Acetyl-DL-Leucine: A Case Report. Neuropediatrics. 2020;51:450–452. - 7. Cortina-Borja M, Te Vruchte D, Mengel E, et al. Annual severity increment score as a tool for stratifying patients with Niemann-Pick disease type C and for recruitment to clinical trials. Orphanet J Rare Dis. 2018;13:143. - 8. Kaya E, Smith DA, Smith C, et al. Acetyl-leucine slows disease progression in lysosomal storage disorders. Brain Commun. 2021;3:fcaa148. - 9. Kaya E, Smith DA, Smith C, Boland B, Strupp M, Platt FM. Beneficial Effects of Acetyl-DL-Leucine (ADLL) in a Mouse Model of Sandhoff Disease. J Clin Med. 2020;9:E1050. - 10. Churchill GC, Strupp M, Galione A, Platt FM. Unexpected differences in the pharmacokinetics of N-acetyl-DL-leucine enantiomers after oral dosing and their clinical relevance. PLoS One. 2020;15:e0229585. - 11. Churchill GC, Strupp M, Factor C, et al. Acetylation turns leucine into a drug by membrane transporter switching. Sci Rep. 2021;11:15812. - 12. Ananieva EA, Powell JD, Hutson SM. Leucine Metabolism in T Cell Activation: mTOR Signaling and Beyond. Adv Nutr. 2016;7:798S-805S. - 13. Iturriaga C, Pineda M, Fernández-Valero EM, Vanier MT, Coll MJ. Niemann-Pick C disease in Spain: clinical spectrum and development of a disability scale. J Neurol Sci. 2006;249:1–6. - 14. Schmitz-Hübsch T, du Montcel ST, Baliko L, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology. 2006;66:1717–1720. - 15. Quinn TJ, Dawson J, Walters MR, Lees KR. Variability in modified Rankin scoring across a large cohort of international observers. Stroke. 2008;39:2975–2979. - 16. EuroQol Group. EQ-5D Instruments | About EQ-5D. 2017. [online]. 2017. Accessed at: https://euroqol.org/eq-5d-instruments/eq-5d-5l-about. Accessed February 15, 2020. - 17. Hodges JL, Lehmann EL. Estimates of Location Based on Rank Tests. The Annals of Mathematical Statistics [online serial]. Institute of Mathematical Statistics; 1963;34:598–611. Accessed at: https://www.jstor.org/stable/2238406. Accessed December 21, 2020. - 18. teVruchte D te, Galione A, Strupp M, Mann M. Effects of N-Acetyl-Leucine and its enantiomers in Niemann-Pick disease type C cells [online]. 2019 Oct p. 826222. Accessed at: https://www.biorxiv.org/content/10.1101/826222v1. Accessed September 17, 2021. - 19. Hegdekar N, Lipinski MM, Sarkar C. N-Acetyl-L-leucine improves functional recovery and attenuates cortical cell death and neuroinflammation after traumatic brain injury in mice. Sci Rep. 2021;11:9249. - 20. Vibert N, Vidal PP. In vitro effects of acetyl-DL-leucine (tanganil) on central vestibular neurons and vestibulo-ocular networks of the guinea-pig. Eur J Neurosci. 2001;13:735–748. - 21. Inoue S. GM1 & GM2 Tanganil Health Initiative Update [online]. TREND Community 2018. Accessed at: https://trend.community/news/tanganil-health-initiative-update. Accessed September 17, 2021. - 22. Mulberg AE, Bucci-Rechtweg C, Giuliano J, et al. Regulatory strategies for rare diseases under current global regulatory statutes: a discussion with stakeholders. Orphanet J Rare Dis. 2019;14:36. - 23. Perez-Lloret S, van de Warrenburg B, Rossi M, et al. Assessment of Ataxia Rating Scales and Cerebellar Functional Tests: Critique and Recommendations. Mov Disord. 2021;36:283–297. # Efficacy and Safety of N-Acetyl-L-Leucine in Children and Adults With GM2 Gangliosidoses Kyriakos Martakis, Jens Claassen, Jordi Gascon-Bayari, et al. Neurology published online December 1, 2022 DOI 10.1212/WNL.000000000201660 ## This information is current as of December 1, 2022 **Updated Information &** including high resolution figures, can be found at: Services http://n.neurology.org/content/early/2022/12/01/WNL.0000000000201 660.full **Subspecialty Collections** This article, along with others on similar topics, appears in the following collection(s): Cerebellum http://n.neurology.org/cgi/collection/cerebellum Class IV http://n.neurology.org/cgi/collection/class_iv Gait disorders/ataxia http://n.neurology.org/cgi/collection/gait_disorders_ataxia **Permissions & Licensing** Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: http://www.neurology.org/about/about_the_journal#permissions **Reprints** Information about ordering reprints can be found online: http://n.neurology.org/subscribers/advertise *Neurology* ® is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright © 2022 American Academy of Neurology. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.