
fmed-09-988927 November 12, 2022 Time: 6:28 # 1

TYPE Original Research
PUBLISHED 17 November 2022
DOI 10.3389/fmed.2022.988927

OPEN ACCESS

EDITED BY

Victoria Bunik,
Lomonosov Moscow State University,
Russia

REVIEWED BY

Mark O. Wielpütz,
Heidelberg University, Germany
Alexander Pfeil,
University Hospital Jena, Germany

*CORRESPONDENCE

Hubert S. Gabryś
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Gabryś HS, Gote-Schniering J,
Brunner M, Bogowicz M, Blüthgen C,
Frauenfelder T, Guckenberger M,
Maurer B and Tanadini-Lang S (2022)
Transferability of radiomic signatures
from experimental to human
interstitial lung disease.
Front. Med. 9:988927.
doi: 10.3389/fmed.2022.988927

COPYRIGHT
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Background: Interstitial lung disease (ILD) defines a group of parenchymal

lung disorders, characterized by fibrosis as their common final

pathophysiological stage. To improve diagnosis and treatment of ILD,

there is a need for repetitive non-invasive characterization of lung tissue by

quantitative parameters. In this study, we investigated whether CT image

patterns found in mice with bleomycin induced lung fibrosis can be translated

as prognostic factors to human patients diagnosed with ILD.

Methods: Bleomycin was used to induce lung fibrosis in mice (n_control = 36,

n_experimental = 55). The patient cohort consisted of 98 systemic

sclerosis (SSc) patients (n_ILD = 65). Radiomic features (n_histogram = 17,

n_texture = 137) were extracted from microCT (mice) and HRCT (patients)

images. Predictive performance of the models was evaluated with the area

under the receiver-operating characteristic curve (AUC). First, predictive

performance of individual features was examined and compared between

murine and patient data sets. Second, multivariate models predicting ILD were

trained on murine data and tested on patient data. Additionally, the models

were reoptimized on patient data to reduce the influence of the domain shift

on the performance scores.

Results: Predictive power of individual features in terms of AUC was highly

correlated between mice and patients (r = 0.86). A model based only on

mean image intensity in the lung scored AUC = 0.921 ± 0.048 in mice and

AUC = 0.774 (CI95% 0.677-0.859) in patients. The best radiomic model based
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on three radiomic features scored AUC = 0.994 ± 0.013 in mice and validated

with AUC = 0.832 (CI95% 0.745-0.907) in patients. However, reoptimization

of the model weights in the patient cohort allowed to increase the model’s

performance to AUC = 0.912 ± 0.058.

Conclusion: Radiomic signatures of experimental ILD derived from microCT

scans translated to HRCT of humans with SSc-ILD. We showed that the

experimental model of BLM-induced ILD is a promising system to test

radiomic models for later application and validation in human cohorts.

KEYWORDS

radiomics, preclinical imaging, interstitial lung disease, lung fibrosis, systemic
sclerosis, bleomycin

Introduction

Interstitial lung disease (ILD) defines a group of chronic,
etiologically different parenchymal lung disorders, characterized
by fibrosis as their common final pathophysiological stage.
The prognosis of the most prevalent and severe subtypes,
idiopathic pulmonary fibrosis (IPF) and ILD associated with the
autoimmune disease systemic sclerosis (SSc), is as poor as that
of untreated oncologic diseases (1, 2). Globally, non-malignant
lung diseases including ILD rank third on the mortality scale (3).

Experimental models of fibrosing ILD are paramount for the
identification of cellular and molecular key drivers of disease
and as preclinical test systems for novel targeted drugs (4). The
preferred and best characterized preclinical model of ILD is
the murine model of bleomycin-induced lung fibrosis, which
reflects important features of human ILD such as apoptosis of
epithelial cells, influx of inflammatory cells into the interstitium,
followed by activation of fibroblasts with increased deposition of
extracellular matrix (ECM) proteins (5, 6).

Conventional endpoint measures of lung fibrosis involve
histological and biochemical analyses, which, however, have
certain disadvantages. To recapitulate the dynamic process of
fibrosing ILD at multiple time points and to account for the
high interindividual variability, large numbers of animals are
required to reach significant statistical power (7). Additionally,
lung biopsies are only rarely performed in human ILD (8,
9) and biopsy may not be representative for the whole
lung pathology. Upcoming alternative outcome measures for
translational ILD research include imaging methodologies. An
integral part of the routine clinical management is medical
imaging, particularly high-resolution computed tomography
(HRCT), which allows non-invasive, highly sensitive, time-
and spatially resolved visualization of the entire lung changes
(10) and a correlative estimation of lung function (11).
Similarly, in preclinical models of ILD, small animal microCT
is increasingly recognized as a valuable assessment tool (4,
7). In the model of bleomycin-induced experimental ILD,

the relative comparability of both imaging and molecular
changes with human ILD (5, 12–15) support its suitability for
translational ILD research.

The need for innovative, directly transferable, and readily
applicable readouts in ILD have prompted the herein presented
translational study on the potential value of the model of
bleomycin-induced lung fibrosis as experimental “radiomic
toolbox” for human ILD. Radiomics is a powerful strategy for in-
depth analysis of pathologic tissue phenotypes by computational
extraction of quantitative imaging features from medical images
(16, 17). Radiomic features provide objective information on
tissue shape, intensity, and texture on a molecular scale as
demonstrated by studies on tumor biology showing correlation
with tissue-based genomics and proteomics data (18–21). As
image-derived tissue surrogates, their potential use as virtual
biopsies could make radiomics analyzes an ideal tool for clinical
decision support in ILD especially since radiomic features have
also been shown to predict disease outcome and response to
therapy (18, 19, 22–25). However, compared with oncology
(18, 20–22), research into the potential of radiomics in non-
malignant lung diseases is limited (26–30).

Nevertheless, the available literature on human lung
pathologies, including chronic obstructive pulmonary disease,
radiation-induced pneumonitis and connective tissue disease-
related ILD showed that texture-based analysis of CT images
can be superior compared to the visual or histogram-based
measures for diagnosis (28, 31, 32). Few studies investigated
the use of radiomics in experimental settings. Eresen et al. used
MRI radiomics for prediction of response to vaccine therapy in
a mouse model of pancreatic ductal adenocarcinoma (33, 34).
Nunez et al. analyzed suitability of MRI radiomics for diagnosis
of preclinical GL261 glioblastoma (35). Other researchers
focused on radiomic-based prediction of liver metastases or liver
fibrosis in mice (36, 37).

To date no study has shown the value of animal models in
radiomics research. We are not aware of any studies reporting

Frontiers in Medicine 02 frontiersin.org

https://doi.org/10.3389/fmed.2022.988927
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-988927 November 12, 2022 Time: 6:28 # 3
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transferability of radiomic patterns from experimental model
to clinical setting. Establishing a link between preclinical and
clinical radiomic patterns could enormously facilitate testing
a vast range of hypotheses in an experimental setting. Such
a link is currently missing. In this analysis, we evaluate
if radiomic features and models can be translated from
experimental to human ILD.

Materials and methods

Study design and data sets

Details of the study design and data sets are shown in
Figure 1. In short, we investigated whether radiomic patterns
indicative of ILD in mice were also present in human disease.

The preclinical model of bleomycin (BLM)-induced lung
fibrosis was used to mimic human ILD. The experimental cohort
consisted of 91 8-week-old female mice (C57BL/6J-rj, Janvier
Labs). ILD was induced in 55 mice via intratracheal instillation
of bleomycin (2 U/kg; Baxter 15,000 I.U.) as described in (6,
14, 38). The 36 control animals received equivalent volumes of
0.9% NaCl solution. Mice were randomized into the different
experimental groups and instillation was performed blinded.
Pulmonary micoCT scans were performed at different days

(days 3, 7, 14, 21, 28, and 35) after bleomycin instillation to
reflect different disease stages. Different mice were scanned at
every time point as the animals were euthanized after image
acquisition. Scanning mice at different time points after fibrosis
induction did not serve a particular purpose in this work.
Such design was chosen because this experimental data was
also used in other studies which examined temporal aspect of
fibrotic development.

A cohort of 98 SSc patients being followed at the
Department of Rheumatology, University Hospital Zurich
represented the validation data set. All included patients met
the following criteria: diagnosis of SSc according to the Very
Early Diagnosis of Systemic Sclerosis (VEDOSS) (39) or the
2013 American College of Rheumatology//European League
against Rheumatism (ACR/EULAR) classification criteria (40),
and availability of an HRCT scan. Patient characteristics are
provided in Table 1.

The extent of lung fibrosis was defined as presence
of reticular changes or honeycombing within whole lung
volume (Figure 2). All visual analyses were performed by a
senior radiologist (TF) using a standard picture archiving and
communication system workstation (Impax, Version 6.5.5.1033;
Agfa-Gevaert) and a high-definition liquid crystal display
monitor (BARCO; Medical Imaging Systems).

FIGURE 1

Study design. The mice data set (n = 91) was used to discover radiomic patterns predictive of ILD. The discovered patterns were tested in the
human validation data set (n = 98). 55 mice were given Bleomycin to induce ILD, whereas 36 mice were given NaCl and served as the control
group. The mice were euthanized at day 3, 7, 14, 21, 28, and 35 and scanned with a microCT scanner. Afterward, classification models were
trained to predict occurrence of ILD based on images acquired from the scanner. The 98 patients from the validation data set were
retrospectively collected. All patients were scanned with HRCT and graded according to the Goh scale of pulmonary fibrosis. The radiomic
models built using mice data were tested in patients.
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TABLE 1 Summary of patient’s demographics and clinical baseline
characteristics.

Characteristics Zurich Cohort (n = 98)

Age (year) 60.0 ± 19.0

Sex

Male 21 (21.4%)

Female 77 (78.6%)

Disease duration (year)* 5.0 ± 8.6

SSc subset (LeRoy 1988)

Limited cutaneous SSc 41 (41.8%)

Diffuse cutaneous SSc 37 (37.8%)

No skin involvement 20 (20.4%)

Skin involvement

Limited cutaneous 34 (34.7%)

Diffuse cutaneous 36 (36.7%)

No skin involvement 23 (23.5%)

Only sclerodactyly 5 (5.1%)

Autoantibodies

Anti-centromere positive 26 (26.5%)

Anti-topoisomerase I positive 35 (35.7%)

Anti-RNA polymerase III positive 8 (8.2%)

Anti-PMScl positive 15 (15.3%)

FVC (% predicted) 91.0 ± 37.0

DLCO (% predicted) 70.0 ± 35.0

FEV1 (% predicted) 92.0 ± 27.0

Pulmonary hypertension 18 (18.4%)

PAPsys (MmHg) 24.5 ± 9.8

6 min walk distance (m) 530.0 ± 172.5

SpO2 before 6-MWT (%) 97.0 ± 1.0

SpO2 after 6-MWT (%) 95.0 ± 6.8

Borg scale (unit) 3.0 ± 2.0

Extent of lung fibrosis on CT

None 33 (33.7%)

Present 65 (66.3%)

Ground glass opacification 25 (25.5%)

Reticular changes 64 (65.3%)

Tractions 38 (38.8%)

Honeycombing 21 (21.4%)

Bullae 3 (3.1%)

Radiological subtype#

NSIP 55 (56.1%)

UIP 9 (9.2%)

DIP 1 (1.0%)

Immunomodulatory therapy§ 42 (42.9%)

Continuous variables are described as median ± interquartile range and categorical
variables are present as absolute numbers with relative frequencies (percent).
*Disease duration of SSc was calculated as the difference between the date of baseline CT
and the date of manifestation of the first non-Raynaud’s symptom.

Pulmonary hypertension was assessed by echocardiography or right heart
catheterization.
#Radiological subtypes were only determined for SSc patients with ILD.
§Immunomodulatory therapy included prednisone, methotrexate, rituximab,
cyclophosphamide, mycophenolate mofetil, hydroxychloroquine, tocilizumab, imatinib,
azathioprine, adalimumab, leflunomid, cyclosporine.
PAPsys, systolic pulmonary artery pressure; FVC, forced vital capacity; FEV1, forced
expiratory volume in 1 second; DLCO, diffusing capacity for carbon monoxide; 6-MWT,
6-min walk test; UIP, usual interstitial pneumonia; NSIP, non-specific interstitial
pneumonia; DIP, diffuse interstitial pneumonia.

Imaging and extraction of radiomic
features

Pulmonary microCT scans were acquired in free-
breathing mice with prospective respiratory gating using
Bruker SkyScan 1176. The following scan parameters were
used: tube voltage 50 kV, tube current 500 µA, filter Al
0.5 mm, averaging (frames) 3, rotation step 0.7 degrees,
sync with event 50 ms, X-ray tube rotation 360 degrees,
resolution 35 µm, and slice thickness 35 µm. Images were
reconstructed with NRecon reconstruction software (v.1.7.4.6;
Bruker) using the built-in filtered back projection Feldkamp
algorithm and applying misalignment compensation, ring
artifact reduction, and a beam hardening correction of
10% to the images.

HRCT scans were acquired using Siemens scanners
(SOMATOM Definition AS, SOMATOM Definition Flash,
SOMATOM Force, SOMATOM Sensation 64, SOMATOM
Sensation 16, Biograph 64, LightSpeed Pro 16, LightSpeed
VCT). The scans were acquired in an inspiration (breath
hold) mode. The median slice thickness was 1 mm (range
0.6-2 mm) and the median tube voltage was 120 kVp
(range 80-150 kVp). The reconstruction kernels included
B60f, B70f, and Bl64.

The contouring of whole lungs was performed manually
in mice and semi-automatically in patients (region growing
algorithm followed by manual correction) by two experienced
examiners (JS and MB). Left and right lungs were contoured
independently and then both contours were merged to generate
a single contour including both lungs.

Feature extraction from CT images was performed with
Z-Rad, an IBSI-compliant (41), in-house developed Python
software. CT scans of mice and patients were interpolated to
an isotropic resolution of 0.15 mm and 2.75 mm, respectively.
The interpolation resolutions were chosen to achieve similar
ratio of voxel size to average lung volume in mice and patients.
The region of interest (ROI) for feature extraction was defined
as the right and the left lung considered as a single organ.
Only intensity values within the range from −1,000 HU to
200 HU were considered. We used a fixed bin size of 50 HU.
The radiomic features describing image intensity (histogram,
n = 17) and texture (n = 137) were extracted for each mouse
and patient. The texture features were based on gray level
co-occurrence matrix (GLCM, n = 26), gray level run length
matrix (GLRLM, n = 16), gray level distance zone matrix
(GLDZM, n = 16), gray level size zone matrix (GLSZM, n = 16),
neighboring gray level dependence matrix (NGLDM, n = 16),
and neighborhood gray tone difference matrix (NGTDM, n = 5)
to capture wide variety of intensity patterns. Additionally,
GLCM and GLRLM features were extracted with two different
feature aggregation methods - with and without merging. In
total, 154 features were extracted. The list of radiomic features
is provided in the supplement.
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FIGURE 2

Example CT scans of healthy lungs and lungs affected with lung fibrosis. (A) microCT image of a healthy mice lung, (B) microCT image of a
mice lung with lung fibrosis, (C) HRCT image of a healthy human lung, (D) HRCT image of a human lung with lung fibrosis. Lung contours
marked in different colors show the extent of intra- and interobserver variability in lung segmentations for these two cases.

Statistical analysis

For every radiomic feature, robustness against intra- and
interobserver variability was examined. This was realized
with estimation of the corresponding intraclass correlation
coefficients (ICC). Specifically, we used consistency of ICC
(1, 3) according to the Shorut and Fleiss naming convention
(42). Features with ICC ≥0.75 for intra- and interobserver
settings in both mice and humans were considered stable and
were retained. The rest of the features were excluded from
further analysis.

Univariate predictive power of the radiomic features was
evaluated by estimation of the area under the receiver operating
characteristic curve (AUC). To facilitate comparison of the
AUC values between mice and patient data sets, we adopted a
convention that AUC is equal to the probability that a radiomic
feature value of a randomly chosen patient from the positive
group is greater than the value of a randomly chosen patient
from the negative group. This allowed us to distinguish between
features that were characterized by comparable predictive power
but a different direction of the effect, for example, AUC = 0.3 in
mice and AUC = 0.7 in patients. The linear association of the
AUC scores between mice and patient groups has been evaluated
with Pearson correlation coefficient.

Three model architectures were considered for evaluation of
model transferability from mice to patients: (1) a model based on
mean image intensity (MEAN), (2) a model based on first four

moments of intensity distribution (mean, standard deviation,
skewness, and kurtosis; MSSK), and (3) a machine learning
model based on logistic regression (ML). While the first two
models are based on predefined radiomic features, the machine
learning model employed embedded feature selection methods.
All models were built on the mice data and were validated in
the patient data.

Feature selection and model tuning was realized within
4-times repeated 5-fold cross-validation. The first step of
the feature selection procedure was dimensionality reduction
by removing features that were highly linearly correlated
(Pearson’s r). The correlation threshold was one of tunable
hyperparameters. The second step of feature selection was
fitting a model and selection of most important features from
this model which were then fed to the final classifier. In
the case of a logistic regression model, the feature selection
was realized with another logistic regression. In the case of,
extra-trees model, most important features were extracted
from a gradient tree-boosting model. The number of extracted
features in both cases was one of tunable hyperparameters.
For model tuning, we used 500 randomized hyperparameter
samples. The optimized models were validated in patients.
Additionally, the models were re-optimized in patients to
evaluate transferability and predictive power of the discovered
radiomic signatures rather than the models themselves.
Furthermore, this allowed to reduce the influence of covariate
shift between the data sets.
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For visualization, statistical analysis, model building, and
model testing, the following open-source Python packages were
used: Matplotlib (43), NumPy & SciPy (44), Pandas (45), and
scikit-learn (46).

Results

Influence of intra- and interobserver
delineation variability on radiomic
features

Intra- and interobserver delineation variability were
evaluated separately in mice and patient data sets using 15
randomly selected cases per data set. Intraobserver variability
was assessed based on delineations done by JS. Interobserver
variability was assessed based on delineations provided by JS,
CB, and MBr. Figure 3 shows the proportion of the unstable
features per feature class. In mice, 7 features from the initial
set of 154 were considered unstable (ICC < 0.75) and were

excluded from the further analysis. In patients, all features were
stable (ICC ≥ 0.75) so no further features were excluded.

Discriminative power of radiomic
features is highly correlated between
mice and patient data

The next steps in our analysis were the investigation
of univariate discriminative power of radiomic features
and the correlation of AUC scores between mice and
patients. ICC analysis was performed to compare two feature
aggregation methods of GLCM and GLRLM features. As
both feature aggregation methods rendered highly correlated
results (ICCGLCM = 0.99, ICCGLRLM = 0.83), only one feature
aggregation per feature class method was kept for further
analysis to reduce feature redundancy.

Univariate predictive power of radiomic features in terms of
AUC is presented in Figure 4A. On average, features describing
image intensity tended to perform better than texture-based
features. Radiomic features were on average more predictive

FIGURE 3

Influence of intra- and interobserver delineation variability on radiomic features stability. Proportion of unstable features stratified by feature
type.
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FIGURE 4

Relationship between predictive power of radiomic features in
mice and patient data sets. (A) AUC distribution stratified by
feature type (histogram, gray level co-occurrence matrix (GLCM,
n = 26), gray level run length matrix (GLRLM, n = 16), gray level
distance zone matrix (GLDZM, n = 16), gray level size zone
matrix (GLSZM, n = 16), and neighboring gray level dependence
matrix (NGLDM, n = 16). (B–H) Correlation of the AUC between
mice and patient groups.

in mice than in patients. Most predictive features in mice
achieved AUC = 0.988, whereas in patients AUC = 0.896. The
complete list of feature predictive performance is provided in
the supplement.

Univariate predictive power of the features was highly
correlated between murine and patient groups (Figure 4B)
with Pearson’s r = 0.86. Very high correlation was observed
for histogram-, GLCM-, GLRLM-, and NGLDM-based features
(Figures 4C–E,H). GLSZM- and GLDZM-based features
exhibited more variability (Pearson’s r < 0.6; Figures 4F,G). T
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Radiomic patterns predictive of
interstitial lung disease translate from
experimental interstitial lung disease to
patients

To analyze transferability of radiomic patterns and models
from mice to patients we built and validated four classes of
models: (1) a model based on mean image intensity (MEAN),
(2) a model based on first four moments of intensity distribution
(mean, standard deviation, skewness, and kurtosis; MSSK), and
(3) a machine learning model based on logistic regression (ML).
The models were trained on mice data and tested in patients.
Additionally, the models were reoptimized in patients, that is,
retrained using the features from the mouse models. The results
and comparison of model performance is shown in Table 2.

All models achieved high diagnostic performance in mice.
The baseline MEAN model scored AUC = 0.921 which left
little room for improvement. Nevertheless, the MSSK and
the ML models exceeded AUC = 0.990 resulting in almost
perfect classification performance. Testing model performance
in patients resulted in AUC scores varying from 0.754 (MEAN)
to 0.832 (ML). Model re-optimization in patients allowed to

improve the predictive performance of all models. ROC curves
associated with model tuning, testing, and re-optimization
together with the underlying features are presented in Figure 5.
ROC curves show that re-optimization gave little improvement
for the MEAN and the MSSK models as testing and re-
optimization curves followed similar characteristics. On the
other hand, machine learning models improved significantly in
this process. The corresponding re-optimization ROC curves
detached from the testing curves to position between tuning and
testing curves.

Substantial differences in distribution of radiomic features
included in the models in terms of location and dispersion are
presented in Figure 6. Most of the features exhibit patterns of
the same direction in both mice and patient data sets, that is,
either rising or falling trend from healthy to ILD.

Discussion

In this analysis, we report that radiomic features and
models can be translated from experimental to human ILD.
Collectively, our data suggest that well characterized and

FIGURE 5

Model performance and underlying radiomic features. ROC curves and bar plots of the underlying features. V1 - mean (histogram), V2 -
standard deviation (histogram), V4 - skewness (histogram), V5 - kurtosis (histogram), V16 - root mean square (histogram), V108 - gray level
non-uniformity normalized (GLSZM), V141 - dependence count non-uniformity (NGLDM).
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FIGURE 6

Comparison of feature distribution between mice and patient groups stratified by the ILD stage. V1 - mean (histogram), V2 - standard deviation
(histogram), V4 - skewness (histogram), V5 - kurtosis (histogram), V16 - root mean square (histogram), V108 - gray level non-uniformity
normalized (GLSZM), V141 - dependence count non-uniformity (NGLDM).

representative animal models could represent valuable systems
for defined hypothesis testing in radiomics research, particularly
for evaluating links with pathophysiology or studying responses
to targeted therapies in rare diseases with low number of patients
and limited access to tissue samples.

Radiomic features proved to be highly indicative of
experimental- and SSc-ILD. Furthermore, we observed strong
linear correlation in terms of discriminative power between
features extracted from mice microCT scans and patient HRCT.
We also showed that multivariate models of ILD translated well
from mice to patient data sets. Nevertheless, we observed the
differences between the data sets in terms of feature classes that

were predictive. In mice, most of the feature groups contained
features that reached similar maximum AUC scores. On the
other hand, in patients we observed that even though histogram-
based features achieved high discriminative power, some texture
features were more predictive. This difference could be caused
by inferior quality of microCT compared to HRCT. For this
reason, the assessment of microCT done by our radiologist
might have also been mainly led by first order characteristics
rather than texture. Furthermore, the ILD manifestations can
differ depending on the etiology. As a result, the observed
differences may be caused by the limitation of the bleomycin-
induced ILD being an imperfect model of SSc-ILD. In any case,
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our results are in line with the available literature on human lung
pathologies including chronic obstructive pulmonary disease,
radiation-induced pneumonitis or connective tissue disease-
related ILD, which showed that texture-based analysis of CT
data can be superior compared to the visual or histogram-based
measures for diagnosis (28, 31, 32).

Analysis of feature weights in the MEAN and the MSSK
models showed that higher values of the mean and standard
deviation of the image intensity and lower values of skewness
and kurtosis correspond to larger risk of ILD. Effectively, this
means that presence of ILD shifts the intensity distribution
from a typical “healthy” positively skewed intensity distribution
toward higher intensity values with a more symmetric
distribution and thin tails. The best performing model (ML)
relied on three radiomic features: the root mean square
(histogram), gray level non-uniformity normalized (GLSZM),
and dependence count non-uniformity (NGLDM). Significant
improvement of machine learning models by re-optimization
may suggest the existence of similar predictive radiomic patterns
in training (mice) and test (patients) data sets in presence of
domain shift between both groups.

The presented study has a few limitations. First, the
differences in scanning parameters between microCT and
HRCT cause a significant domain shift between experimental
and patient data sets. Although, we were able to recover
the predictive power of the analyzed multivariate models by
re-optimization in the patient cohort, and by that confirm
transferability of the underlying radiomic signatures, better
calibration of the microCT scanner and selection of scanning
parameters could potentially improve the transferability.
Second, our study focused on CT-derived radiomics approaches,
since HRCT scans are part of the routine work-up of ILD
patients. Other imaging modalities such as nuclear imaging or
MRI, although currently rarely performed in ILD (10), could
be evaluated for radiomic analyses to assess whether they might
provide additional or complementary information.

Conclusion

Radiomic signatures of experimental ILD derived from
microCT scans translated as prognostic factors to HRCT of SSc-
ILD. By this we showed that the well-established experimental
model of BLM-induced ILD is a valuable system to test
defined hypotheses in radiomics research for later validation
in human cohorts.
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Gabryś et al. 10.3389/fmed.2022.988927

43. Hunter JD. Matplotlib: A 2D graphics environment. Comput Sci Eng. (2007)
9:99–104.

44. Van Der Walt S, Colbert SC, Varoquaux G. The NumPy array: A structure for
efficient numerical computation. Comput Sci Eng. (2011) 13:22–30.

45. McKinney W. Data structures for statistical computing in python. In:
Proceedings of the 9th Python in Science Conference. Austin, TX (2010). p. 51–6.

46. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al.
Scikit-learn: Machine learning in python. J Mach Learn Res. (2011) 12:2825–30.

Frontiers in Medicine 12 frontiersin.org

https://doi.org/10.3389/fmed.2022.988927
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/

	Transferability of radiomic signatures from experimental to human interstitial lung disease
	Introduction
	Materials and methods
	Study design and data sets
	Imaging and extraction of radiomic features
	Statistical analysis

	Results
	Influence of intra- and interobserver delineation variability on radiomic features
	Discriminative power of radiomic features is highly correlated between mice and patient data
	Radiomic patterns predictive of interstitial lung disease translate from experimental interstitial lung disease to patients

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


