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Abstract. In this Outlook paper, we explain to the optical neuroimaging community as well as
the psychedelic research community the great potential of using optical neuroimaging with func-
tional near-infrared spectroscopy (fNIRS) to further explore the changes in brain activity induced
by psychedelics. We explain why we believe now is the time to exploit the momentum of the
current resurgence of research on the effects of psychedelics and the momentum of the increasing
progress and popularity of the fNIRS technique to establish fNIRS in psychedelic research. With
this article, we hope to contribute to this development. © The Authors. Published by SPIE under a
Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in
whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.NPh.10.1.013506]

Keywords: functional near-infrared spectroscopy; optical neuroimaging; psychedelics; altered
states of consciousness.

Paper 22059SSKR received Jul. 28, 2022; accepted for publication Nov. 14, 2022; published
online Dec. 2, 2022.

1 Introduction

Although every human experiences two main states of consciousness on a daily basis (i.e., the
waking state and the state of dreaming during sleep),1,2 there are many more tangible states of
consciousness that can be located in a multidimensional state space consisting of different
aspects of conscious experience.3 Altered states or nonordinary states of consciousness can
be induced in various ways, such as training self-awareness while dreaming (lucid dreaming),4

using meditation techniques that can lead to deep meditative absorption,5,6 during life-threaten-
ing situations triggering a near-death experience,7,8 or by the intake of psychoactive substances
(such as psychedelics).9,10 These nonordinary states of consciousness are of interest not only
from a phenomenological11,12 and philosophical13,14 point of view but also with regard to the
specific states of brain activity associated with them.15–19 Functional neuroimaging with its wide
range of different techniques is an excellent way to investigate these specific states of brain
activity.

The aim of this paper is to explain to the optical neuroimaging community as well as the
psychedelic research community the great potential of using optical neuroimaging with func-
tional near-infrared spectroscopy (fNIRS) to further explore the changes in brain activity induced
by psychedelics.

2 Psychology and Neurobiology of Psychedelics

Classic psychedelics or hallucinogens compromise a class of psychoactive com-
pounds that include (i) the naturally occurring indoleamines, such as psilocybin
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(4-phosphoryloxy-N;N-dimethyltryptamine) contained in a variety of fungi, and dimethyltrypt-
amine (DMT) contained in the ayahuasca brew, (ii) the phenylalkylamines, such as mescaline
derived from the peyote cactus, synthetic “amphetamines,” such as 2,5-dimethoxy-4-iodoam-
phetamine, and (iii) ergolines such as the semisynthetic lysergic acid diethylamide (LSD).20

Classic psychedelics induce an altered state of consciousness, characterized by profound
changes in perception, mood, cognitive capacities, and self-experience, including transcendence
of time and space.11 Given these intense mind-altering properties, plant-derived psychedelics
have been used for millennia for spiritual and medicinal purposes.21,22

During the 1950s and 1960s, classic psychedelics (mainly LSD and psilocybin) were exten-
sively investigated in psycholytic (i.e., repeated low doses) and psychedelic (i.e., one or two high
doses) substance-assisted psychotherapy.23 Although these early studies used various psycho-
therapeutic techniques and had serious methodological flaws by contemporary standards, sys-
tematic reviews reported impressive improvement rates in various forms of depression, anxiety
disorders, and alcohol-dependence.24–26 After psychedelics became schedule I substances in
1967, human research with psychedelics became severely restricted in most countries, leaving
many questions unexplored.27

However, since the 1990s, several research groups have started to use modern neuroscience
methods and concepts to characterize the psychological effects of psilocybin,28–30 DMT,31,32 and
LSD.33,34 In addition, the study of the neuronal correlates of these psychological effects were
resumed in healthy volunteers.30,35–38 These phase I studies provide evidence that classic psy-
chedelics have rapid mood-enhancing properties, shift emotion processing in a positive direc-
tion, diminish self-boundaries, and reduce self-focus in combination with prosocial effects via
modulation of neural circuits that are implicated in mood and affective disorders.39–41

Furthermore, psychedelics have been shown to produce lasting positive changes in psychosocial
behavior in healthy subjects.42–44

Recent behavioral and neuroimaging studies demonstrate that psychedelics produce
their psychological effects primarily via agonist action at serotonin 5-HT2A receptors in the
brain,15,45–47 although the 5-HT1A receptor48 and modulatory downstream effects upon the
GABAergic, dopaminergic,49,50 and glutamatergic51 systems are also implicated. Moreover, psy-
chedelics have been shown to increase glutamate-driven neuroplastic adaptations in animals,52–55

which may provide a mechanism for the lasting beneficial outcomes reported in nonclinical and
clinical populations.39

3 Resurgence of Psychedelic-Assisted Psychotherapy

In parallel to the research into the neuronal correlates of the psychedelic experience, the past
decade has seen a resurgence and burgeoning research interest in the clinical potential of
psychedelics in the treatment of various psychiatric disorders.56 Specifically, several recent
pilot and a few controlled studies have demonstrated that psilocybin reduces substance
use in alcohol- and nicotine-dependent patients57–59 and ameliorates both symptoms of
anxiety and depression in major depression,60–62 treatment-resistant depression,63,64 and in
advanced cancer patients65–67 for 3 to 6 months after administration of just one or two doses.
Comparable results were reported for ayahuasca—a brew containing DMT—in major
depression68–70 and for LSD in end-of-life psychological distress related to terminal illness,71

respectively.
These modern clinical trials provide new evidence for the safety, tolerability, and efficacy of

the use of classic psychedelics in a supportive psychotherapeutic framework. It has been shown
that psychedelic 5-HT2A agonists are rapidly acting and produce enduring beneficial effects after
only one or two administrations.56,72 However, the underlying acute and delayed neurophysi-
ological mechanism mediating these clinical effects is yet largely unknown.

Since psychedelics can have anti-inflammatory effects by modulating inflammatory
pathways via novel mechanisms,73 they are currently also being explored for the treatment of
neurodegenerative diseases,74–76 brain injuries,77 autoimmune diseases,78,79 as well as for chronic
pain.80–82
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4 Neuroimaging of Psychedelic Effects

Recent neuroimaging studies using electroencephalography (EEG), magnetoencephalography
(MEG), and functional magnetic-resonance imaging (fMRI) in resting state and in combination
with neuropsychological tasks in healthy subjects have advanced our understanding of the acute
system-level effects and their association with behavioral changes.83 These discoveries provide a
strategic scientific roadmap to further identify circumscribed neurobehavioral responses that
may allow us to pinpoint the neuronal targets that may reflect specific symptom reductions
in patients.

A recent review on human psychedelic research shows that during the 1950s and 1970s
(i.e., the “first wave”),17 most neurophysiological studies into drug action were performed with
EEG and primarily with LSD, whereas since the early 1990s and the recent renewed interest in
the clinical application of psychedelics and related drugs (i.e., the “second wave”), researcher
has begun to employ positron emission tomography (PET), photon emission computed tomog-
raphy, and then later increasingly fMRI as well as EEG and MEG, to identify potential thera-
peutic targets primarily of psilocybin but also of LSD and DMT at the molecular and the neural
system level (see Fig. 1). More recently, a few multimodal neuroimaging studies combining
fMRI with MEG,84 magnetic resonance spectroscopy (MRS),85 and EEG86 have been also con-
ducted. In addition, several neuroimaging studies have investigated the antidepressant of psy-
chedelic-related drugs such as ketamine and 3,4-methylendioxymethampheamine (MDMA) in
healthy subjects and clinical populations. In 2019, we explored in a single-subject pilot study the
feasibility of investigating the effects of psilocybin using optical neuroimaging with fNIRS.87

The results of this pilot study showed that the application of fNIRS is safe and well tolerated
during the induction of a psychedelic-induced altered state, and that this relatively new neuro-
imaging modality, particularly in combination with neuropsychological testing, may help
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Fig. 1 The development of human neuroimaging studies on psychedelics from the 1950s to 2020.
Studies were identified via a search in PubMed and Google Scholar. A total of 141 studies were
identified. Studies were only included when a modality of the acute effect of a psychedelic sub-
stance in a human was investigated. (a) and (c) visualize the number of studies as a function of the
neuroimaging techniques or psychedelic substances used, respectively. Most of the studies
employed fMRI (b) and investigated LSD (d). The “two waves” in the research development about
human neuroimaging studies on psychedelics are clearly visible. In the first wave EEG was mainly
used and the effect of LSD was investigated, whereas in the second wave, research opened up to
other psychedelics and all available neuroimaging techniques were employed. Note: the listing
contains also “salvinorin A,” which is a κ-opioid receptor agonist and considered a dissociative
hallucinogen that can induce psychedelic-like effects. N;N-DMT: N;N-dimethyltryptamine,
5-MeO-DMT: 5-methoxy-dimethytryptamine, MDEA: 3,4-methylenedioxy-N-ethylamphetamine.
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unravel the therapeutic target of psychedelic drug action. This paper discusses new opportunities
of fNIRS neuroimaging for psychedelic research.

5 fNIRS: Neuroimaging Technique with Much Progress and Increasing
Popularity

Over the last decades, optical neuroimaging with fNIRS is rapidly gaining popularity in neuro-
science, which can be seen in the exponential number of articles published88,89 and an increased
number of commercially available fNIRS devices. Both fNIRS and fMRI are techniques that
measure brain activity indirectly by determining the changes in vascular hemodynamics and
oxygenation induced by neuronal activity (neurovascular coupling). fNIRS is based on the prin-
ciple that near-infrared light (with at least two different wavelengths) is shown in the head by
placing light emitters on the scalp and detecting the diffusely back-scattered light at specific
distances apart [Fig. 2(a)]. This allows to perform the spectroscopic determination of changes
in the concentration of oxyhemoglobin (½O2Hb�), deoxyhemoglobin ([HHb]), and total hemo-
globin ð½tHb� ¼ ½O2Hb� þ ½HHb�Þ.90 The measurement determines the color of the blood (light
red versus dark red: oxygen-rich versus oxygen-poor blood) as well as the color intensity (high
color intensity: higher hemoglobin concentration). The light detectors and emitters are normally
mounted on a cap [Fig. 2(b)] and measurements can be made independent of body position and
even in moving subjects.91
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Fig. 2 fNIRS neuroimaging: visualization of key aspects. (a) Illustration of a two-channel fNIRS
measurement using a long and a short separation channel to enable a depth-resolved measure-
ment specifically sensitive to the cerebral tissue layer. (b) A typical fNIRS headgear (covering the
right and left motor cortices in this case). (c) The six main aspects that can be determined with
optical neuroimaging employing fNIRS and NIRS-based oximetry. (d) The six main components of
the fNIRS signal. (e) Two typical fNIRS instrumentations with regard to the spatial positioning of
the light sources and detectors on the head. (f) Visualization of current trajectories of fNIRS devel-
opment. (g) The fNIRS hyperscanning approach.
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The fNIRS signals are rich in information and there are several ways to perform the mea-
surements and analyze the data. In general, fNIRS can be used to measure six physiological
aspects [Fig. 2(c)]:

(i) localized stimulus- or task-induced changes in cerebrovascular hemodynamics and
oxygenation;92–94

(ii) functional and effective connectivity of localized evoked or resting-state changes in
cerebral hemodynamics and oxygenation;95–97

(iii) oscillations and fluctuations of tissue hemodynamics and oxygenation [e.g., changes in
Mayer wave power (around 0.1 Hz)98];

(iv) cerebral pulsatility (i.e., cardiac activity-induced changes in the fNIRS signal99–102);
(v) cerebral tissue oxygenation [which can be measured as relative oxygenation changes

with respect to a baseline (the option available in most of the commercial fNIRS devices
on the market), or absolute tissue oxygenation (i.e., near-infrared spectroscopy-based
oximetry based on frequency-domain, time-domain, or specific types of continuous-
wave domain near-infrared spectroscopy techniques)];103,104 and

(vi) reactivity of extracerebral and cerebral tissue hemodynamics and oxygenation to
systemic physiological changes (i.e., measuring aspects of cerebrovascular reactivity,
cerebral autoregulation, and autonomic cerebrovascular control).105,106

When aiming to measure brain-activity-related changes in cerebrovascular hemodynamics
and oxygenation with fNIRS, one needs to be aware that the measured fNIRS signal generally
comprises six components [Fig. 2(d)]:90,107,108 the first three have their origin in the cerebral
tissue compartment, and the other three in the extracerebral tissue compartment. To detect brain
activity–related changes in vascular hemodynamics and oxygenation due to neurovascular cou-
pling, only changes happening in the cerebral compartment are of interest (i.e., the first com-
ponent). Systemic physiology affects both tissue compartments and can lead to changes in
hemodynamics and oxygenation, for example induced by changes in the cardiorespiratory state
or autonomic nervous system activity. Furthermore, spontaneous fluctuations in tone of blood
vessel walls (vasomotion) cause another component also present in both tissue compartments.109

Finally, muscular evoked changes can be induced by the activity of the temporal muscle on the
head.110,111 The non-neuronal driven components (i.e., components 2 to 6) are a challenge for
fNIRS since they may mimic typical fNIRS signal changes normally observed due to an increase
(or decrease) of brain activity (a “false positive”), or they may mask a neuronal-induced hemo-
dynamic response so that it is not detected anymore (a “false negative”).107,112 Although the
significance of non-neuronal drivers of the fNIRS signal changes is increasingly recognized,
these non-neuronal drivers (e.g., systemic and vascular ones) are also increasingly in the focus
in the field of fMRI due to their impact on the BOLD signal.113,114

Optical neuroimaging with fNIRS can be performed either by measuring regions of interest
with a partial coverage of light emitters and detectors or using a full head coverage [Fig. 2(e)].
Measurements with different source–detector distances (short and long ones) enable depth-
dependent measurements and reduction of the influence from extracerebral tissue layers,115–117

and when combined with a high-density coverage of light emitters and detectors also to perform
a tomographic reconstruction of cerebrovascular hemodynamics and oxygenation (also termed
“diffuse optical tomography” or “near-infrared optical tomography”).118,119

As far as current trends in fNIRS neuroimaging are concerned, there is a development toward
using fNIRS in combination with the measurement of systemic signals [an approach termed
“systemic physiology augmented functional near-infrared spectroscopy” (SPA-fNIRS);92,120

for a review see Ref. 108], or combining fNIRS with other neuroimaging techniques, such
as EEG,121–123 fMRI,121,124 or PET.125–128 Ideally, both approaches can then be combined
[Fig. 2(f)]. In addition, future commercial fNIRS devices will probably also work with even
more wavelengths (“broadband NIRS”, bNIRS), which will enable the direct measurement
of metabolic parameters (e.g., the concentration of cytochrome-c-oxidase).129 Moreover,
time-domain fNIRS devices are expected to play an increasingly important role,130–132 the prom-
ising interferometric NIRS technology is currently being further developed and explored for
fNIRS applications,133–135 and the combination of fNIRS with diffuse correlation spectroscopy
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offers great potential for detailed measurement of hemodynamic changes.136,137 Another trend
is the performance of fNIRS measurements on two or more people at the same time (the
“hyperscanning” approach) [Fig. 2(g)].138–140

6 fNIRS Neuroimaging as a Promising New Technique for Psychedelic
Neuroscience

Optical neuroimaging with fNIRS has specific features that make it a quite unique approach to
measure neurovascular and neurometabolic changes associated with brain activity. Compared to
the other neuroimaging techniques, fNIRS has its advantages but also limitations.

The main advantages are that fNIRS

(i) enables the measurement of a broad set of parameters related to cerebral hemodynamic,
oxygenation, and metabolism [especially when specific advances technical NIRS
implementation are used; see Fig. 2(c)];

(ii) is more cost-effective compared to the purchase and operation of an fMRI scanner;
(iii) does not produce disturbing noise like an fMRI (and thus avoiding stress induced by the

noise in the subjects);

(iv) is much more robust against movement artifacts than an fMRI measurement—it can be
used even when the subject is moving (an aspect that makes it ideally suited for psy-
chedelic research since under the influence of a psychedelic substance the subject can
feel and urge to move the body);

(v) allows measurement of the subject in different body positions (fMRI normally allows
only the supine position);

(vi) makes it possible to perform relatively long measurements (several hours) which could
cover the whole dynamics of the psychedelic experience;

(vii) is ideally suited for multimodal measurements combining different types of neuroimag-
ing as well as to combine fNIRS neuroimaging with monitoring systemic physiological
activity (the SPA-fNIRS approach); and

(viii) enables neuroimaging to be performed in many subjects in parallel (hyperscanning),
ideally suited to investigate the impact of the group-setting and personal interactions
during psychedelic sessions.

With regard to limitations, the main limitations of fNIRS neuroimaging are that

(i) the light penetration is limited so that only tissue hemodynamic, oxygenation, and
metabolism originating from the cerebral cortex can be measured;

(ii) the measured fNIRS signals comprise different components [Fig. 2(d)] that need to be
separated in order to enable a correct physiological interpretation of the signals;

(iii) wearing the fNIRS cap can be uncomfortable (but this can be improved considerably by
optimizing the cap accordingly), which is particularly relevant for longer measurements
or experiments where the subject should not be stressed by additional factors (e.g.,
during a psychedelic experience);

(iv) the fNIRS signal processing and data analysis are complicated, and the related stand-
ardization is currently still subject of discussion and development.141

Psychedelics induce changes in the activity of the autonomic nervous system, cardiorespi-
ratory, and cardiovascular system32,142,143 (Fig. 3) in a subject- and substance-dependent manner.
These systemic physiological changes will influence the fNIRS measurements and it is recom-
mended to use a depth-resolved measurement technique, the SPA-fNIRS approach, and a careful
as well as detailed analysis of the interplay between cerebral fNIRS data and systemic physi-
ology in order to have an optimal separation between brain and systemic physiological effects.
At the same time, the SPA-fNIRS approach also provides completely new insights into the inter-
action between brain activity and systemic physiology induced by a psychedelic. As psyche-
delics are affecting not only brain activity but also the physiological state of the whole
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body, an integrative physiological understanding of the physiological effects of psychedelics will
require to investigate how the brain and the body are affected in parallel and how both interact—
for example, changes in respiration will have an effect on the partial pressure of carbon dioxide
in the arterial blood (PaCO2), changing cerebral hemodynamics, as well as potentially interfer-
ing/modulating neurovascular-coupling.144–146 Therefore, possible PaCO2 changes must be taken
into account for a correct analysis and interpretation of fNIRS data112,147 (which, incidentally,
also applies to fMRI data). Furthermore, changes in cerebral and extracerebral tissue hemo-
dynamics induced by changes in the state of the autonomic nervous system need to be considered
too.148–150 The SPA-fNIRS approach is an ideal method to explore these aspects.

What must also be taken into account is the possibility and already existing initial indications
that psychedelics can alter neurovascular coupling, as has been shown, for example in rats for
psilocin (the active metabolite of psilocybin).151 The authors rightly concluded that “caution is
required when making inferences about drug effects on neuronal activity from changes detected
in neuroimaging signals.” This is true for fMRI as well as fNIRS. More research is urgently
needed to understand how psychedelics (in a dose- and substance-dependent manner) affect
neurovascular coupling and vascular reactivity (e.g., CO2 cerebrovascular reactivity, cerebral
autoregulation, and autonomic cerebrovascular reactivity) in humans. SPA-fNIRS is a useful
technique in this case too.

Regarding the limited depth resolution of fNIRS, the inability to measure subcortical struc-
tures is of course a disadvantage, but it is clear from previous research that the cerebral cortex
(which can be measured with fNIRS) is also always involved in psychedelic effects—for exam-
ple, the prefrontal cortex (PFC) is particularly enriched in 5-HTA receptors expressed in the
apical dendrites of layer 5 pyramidal neurons,152–154 the PFC 5-HT2A receptor occupancy cor-
relates with the psychedelic effects of psilocybin in humans45,155 and prefrontal cortical areas
activated by both psilocybin and ketamine.28,30,36,37,47 Moreover, networks of synchronized brain
activity involve subcortical and cortical areas156,157 that change during the psychedelic
state.35,41,158,159 Such changes in cortical network activity can, of course, also be analyzed with
fNIRS neuroimaging.87,160,161 The principal disadvantage that only cortical areas can be mea-
sured with fNIRS is put into perspective by the fact that the cortex is also always influenced by
psychedelics and brain activity also changes there.

7 Conclusion and Outlook

In summary, fNIRS is a neuroimaging method that has great potential for psychedelic research. It
is expected that in the near future, the number of fNIRS studies investigating psychedelic effects
in humans will increase rapidly, as the technique offers certain advantages over conventional
hemodynamic-based neuroimaging techniques, enables novel study designs, and also has great
potential to be used for multimodal neuroimaging (e.g., fNIRS in combination with fMRI, EEG,
or PET).
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Fig. 3 Examples of changes in cardiovascular and autonomic nervous system activity in humans
induced be the intake of psychedelics. (a), (b) Changes in heart rate and blood pressure receiving
(a) doses of 0.05, 0.1, 0.2, and 0.4 mg∕kg N;N-DMT32 and (b) doses of 50, 100, and 200 μg
LSD.142 New visualization of the data presented in Figs. 9 and 10 of the paper of Strassman and
Qualls, and Fig. 3 of the paper of Holze et al., respectively. Shown are mean values (a), (b) as well
as regression functions and the confidence interval for the regression functions [(b); own
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fNIRS will be a good method to study cognitive control (with the PFC as an important brain
region associated with and the multisource interference task as a typical test), attentional capac-
ity, and possibly emotion processing, as well as the interaction between cognition and emotion,
before, during and after psychedelic administration. fNIRS will also be well suited for longi-
tudinal studies (which are currently scarce). In addition, fNIRS has great potential to investigate
social interaction in a setting with psychedelics [e.g., fNIRS neuroimaging on the subject that got
the psychedelic substance and in parallel on the person that monitors the subject and provides
support when necessary (the “trip sitter”)].

At the same time, certain aspects must be taken into account when using fNIRS in order to
carry out the measurements correctly, to optimally analyze the data and to correctly interpret the
results physiologically. It is important to avoid misinterpretation of fNIRS data [e.g., confusion
between extracerebral and cerebral components in the fNIRS signal or components caused by
changes in systemic physiology (e.g., respiration or blood pressure)] with those induced by neu-
rovascular coupling. Appropriate fNIRS hardware improvements and advanced signal process-
ing methods are necessary to be applied and/or further developed. Good progress has already
been made in this respect, and it is expected to accelerate enormously in the coming years, mak-
ing the measurement and interpretation of fNIRS signals more reliable and accurate.

As far as the availability of commercially available fNIRS devices is concerned, the current
situation is very good: there are many different commercially available fNIRS devices and NIRS
oximeters, and more and more new companies and devices are entering the market. It is
undoubted that fNIRS neuroimaging will be an integral part of the repertoire of modern
neuroimaging.

Now is the time to exploit the momentum of the current resurgence of research on the effects
of psychedelics and the momentum of the increasing progress and popularity of the fNIRS tech-
nique to establish fNIRS in psychedelic research. With this article, we hope to contribute to this
development.
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