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Abstract 21 

Glioblastoma is the most common yet deadliest primary brain cancer1. The neural behavior of 22 

glioblastoma, including the formation of synaptic circuitry and tumor microtubes, is increasingly 23 

understood to be pivotal for disease manifestation2–8. Nonetheless, the few approved treatments for 24 

glioblastoma target its oncological nature, while its neural vulnerabilities remain incompletely mapped 25 

and clinically unexploited. Here, we systematically survey the neural molecular dependencies and 26 

cellular heterogeneity across glioblastoma patients and diverse model systems. In 27 patient tumour 27 

samples taken directly after surgery, we identify a spectrum of cancer cell morphologies indicative of 28 

poor prognosis and discover a set of repurposable neuroactive drugs with consistent anti-glioblastoma 29 

efficacy. Glioblastoma cells exhibit functional dependencies on highly expressed neuroactive drug 30 

targets, while interpretable molecular machine learning (COSTAR) reveals their downstream 31 

convergence on AP-1-driven tumour suppression. This drug-target connectivity signature is confirmed 32 

by highly accurate in silico drug screening on >1 million compounds using COSTAR, as well as by multi-33 

omic profiling of drug-treated glioblastoma cells. Thus, Ca2+-driven AP-1 pathway induction represents 34 

a tumour-intrinsic vulnerability at the intersection of oncogenesis and neural activity-dependent 35 

signaling. Opportunities for clinical translation of this neural vulnerability are epitomized by the 36 

antidepressant Vortioxetine synergizing with current standard of care treatments in vivo. Together, 37 

the results presented here provide a mechanistic foundation and conceptual framework for the 38 

treatment of glioblastoma based on its neural origins.  39 
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Introduction 40 

Glioblastoma is a deadly brain cancer with limited treatment options, shaped by heterogeneous 41 

developmental programs, genetic drivers, and tumor microenvironments 9–13. Despite an increasing 42 

understanding of this heterogeneity, the alkylating agent Temozolomide (TMZ), which prolongs 43 

median survival from 12 to 15 months, remains the only first-line drug approved for glioblastoma 14–44 
16. Targeted therapies have been largely unsuccessful, in part due to the blood-brain barrier (BBB) 45 

limiting tumor accessibility, the presence of treatment-resistant glioblastoma stem cells (GSCs), and 46 

the lack of clinically predictive models 17–22. Systemically addressing these therapeutic roadblocks is an 47 

urgent clinical need. 48 

An emerging paradigm is to consider glioblastoma in the context of the nervous system. Single-cell 49 

RNA sequencing (scRNA-Seq) and lineage tracing studies of glioblastoma have identified stemness 50 

signatures resembling neural development 7,11,12,23–28. At the brain-tumor interface, synaptic 51 

integration of cancer cells into neural circuits regulates tumor growth 5,6. Within the tumor, the 52 

extension of microtubes akin to neuronal protrusions promotes the formation of treatment-resistant 53 

invasive networks 2,4,8. Furthermore, modulating specific neurotransmitter or other secretory 54 

pathways in the tumor microenvironment impairs glioblastoma metabolism and survival 3,29–31. Such 55 

neural aspects of glioblastoma offer new clinically-targetable vulnerabilities that could be exploited by 56 

repurposing approved “neuroactive” drugs (NADs). Neuroactive drugs can cross the BBB and are 57 

routinely prescribed for indications such as psychiatric or neurodegenerative diseases. Yet, as 58 

neuroactive drugs are originally developed to modulate the nervous system, their anti-cancer activity 59 

in glioblastoma patients is largely unknown. 60 

Several key questions arise. First, how does neural intratumor heterogeneity across glioblastoma 61 

patients relate to disease course and response to therapy? Second, are there tumor-intrinsic neural 62 

vulnerabilities that are therapeutically targetable? Third, if so, which molecular dependencies and 63 

associated pathways are involved? 64 

Here, we find morphological and neural stemness features across glioblastomas that relate to disease 65 

prognosis and drug response. Using pharmacoscopy (PCY), an ex vivo imaging platform 32–34 that 66 

captures patient and tumor complexity, we screen repurposable neuroactive drugs and identify a set 67 

with potent anti-glioblastoma activity. Top neuroactive drugs work consistently across patients and 68 

particularly target GSCs with neural morphologies associated with invasion and poor prognosis. These 69 

top drugs are validated across multiple glioblastoma model systems including patient-derived cultures 70 

and orthotopic xenograft mouse models. Integration of anti-glioblastoma response with multiplexed 71 

RNA-Seq, reverse genetic screening, and machine learning of drug-target networks reveals 72 

convergence of neuroactive drugs with anti-glioblastoma activity on AP-1 transcription factor and BTG 73 

tumor suppressor gene families. Using this drug-target connectivity signature, we predict and validate 74 

new candidate drugs across >1 million compounds in silico. The antidepressant Vortioxetine is the top 75 

PCY-hit and inducer of the AP-1/BTG signature, synergizing with both first- and second-line 76 

glioblastoma therapies in vivo. Our study identifies clinically-actionable neuroactive drugs for the 77 

treatment of glioblastoma converging on a gene regulatory network involved in cell proliferation and 78 

neural activity. 79 
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Results 80 

Glioblastoma stem cell morphologies prognostic of poor outcome 81 

Glioblastoma cells adopt unique cellular morphologies and stemness properties to integrate and 82 

survive in the brain 2,4,8,12,35. To comprehensively profile morphological and molecular heterogeneity 83 

within and between glioblastoma patients, we performed high-content confocal imaging of freshly 84 

dissociated surgical samples across 27 patients (prospective cohort; Fig. 1a,b and Extended Data Fig. 85 

1a). In parallel, for all patients, somatic genetic alterations were determined by targeted next-86 

generation sequencing (NGS) and scRNA-Seq was performed for a subset of patients (n=4 patients, Fig. 87 

1a, Extended Data Fig. 1a-f and Supplementary Table 1,2). Glioblastoma cells were identified and 88 

placed along a neural stemness gradient by scRNA-Seq and immunofluorescence against the neural 89 

progenitor marker Nestin and the mature astrocytic marker S100B (Fig. 1c,d and Extended Data Fig. 90 

1c-e). Immune cells present in the tumor microenvironment (TME) were identified by the pan-immune 91 

marker CD45 and T cell marker CD3. Marker negative cells included additional TME cell types observed 92 

by scRNA-Seq or tumor cells with low protein levels of Nestin and S100B (Fig. 1c,d and Extended Data 93 

Fig. 1e,f). Patient samples were highly heterogeneous in composition, with Nestin+ or S100B+ 94 

glioblastoma cells ranging from 4-39%, CD45+ immune cells from 1-82%, and all marker negative cells 95 

13-84% (Fig. 1d). 96 

Nestin+ cells are a proliferative GSC subpopulation at the apex of the neural stemness gradient shown 97 

to sustain long-term tumor growth 17,19,36–38. Upon visual inspection of Nestin+ GSCs, we observed 98 

cellular “morphotypes” distinguishable by the presence of tumor microtubes (TMs) and other 99 

morphological features such as cell size and shape (Fig. 1b,e-g). Using deep learning on 51,028 100 

manually curated single-cell image crops across all patient samples, we trained a convolutional neural 101 

network (CNN) to classify Nestin+ cells into four main morphotypes (M1-M4) with 84.3% accuracy (Fig. 102 

1d,f and Extended Data Fig.2a,b). Single-cell feature maps extracted from the CNN and nuclei 103 

segmentation revealed a continuum of M1-M3 morphotypes and a distinct cluster of small M4 cells 104 

(Fig. 1f,g). M1 (PTM; polygonal TM-containing) and M2 (ETM; elongated TM-containing) GSC 105 

morphotypes had varying distributions of TMs per cell (Fig. 1e), while TM-absent M3 (RB; round big) 106 

and M4 (RS; round small) morphotypes were characterized by their roundness yet differed in cell size 107 

(Fig. 1f,g and Extended Data Fig. 2c). Nestin expression was higher in the more complex M1-M3 108 

morphotypes (Fig. 1g).  109 

GSC morphotype composition varied dramatically across patients (M1: 1.3-31.4%; M2: 0.5-43.4%; M3: 110 

1.9-38.6%; M4: 14-95.1%, Fig. 1d). Abundance of morphotypes was associated with cell proliferation, 111 

where the fraction of complex morphologies (M1-M3) was correlated with Ki67 levels measured by 112 

pathology in patient-matched tissue sections (Fig. 1h, top left). Furthermore, patient stratification 113 

based on morphotype composition was significantly associated with progression-free survival (PFS): 114 

lower baseline abundance of complex morphologies (M1, M3) and higher abundance of the small M4 115 

morphotype was associated with better clinical outcome (n=17 patients with annotated PFS, Fig. 1h 116 

and Extended Data Fig. 2d). We did not observe a survival difference based solely on Ki67 levels, sex, 117 

or the abundance of marker-defined populations (Extended Data Fig. 2e); implying a unique prognostic 118 

contribution of the aggressive GSC morphologies. While MGMT promoter methylation status, a 119 

prognostic factor associated with response to alkylating agents, stratified patient survival, complex 120 

morphotype (M1-M3) abundance was independent of MGMT status (Fisher’s test, P=0.19, Extended 121 
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Data Fig. 2e). Thus, while tumor microtubes have been associated with glioblastoma grade 2, we now 122 

show that GSCs adopt a spectrum of complex morphologies prognostic of poor clinical response also 123 

among glioblastomas. 124 

Clinical concordance of ex vivo single-cell drug profiling 125 

The DNA-alkylating chemotherapy TMZ remains the only approved first-line drug for glioblastoma. To 126 

determine if the chemosensitivity of highly heterogeneous patient samples relates to clinical response, 127 

we tested first- and second-line glioblastoma chemotherapies (n=3 drugs) in two independent 128 

glioblastoma cohorts: our main prospective cohort (n=27 patients) and a bio-banked retrospective 129 

cohort (n=18 patients, Fig.1a,i-l, Extended Data Fig. 3a, and Supplementary Table 1). We utilized 130 

pharmacoscopy (PCY), a clinically predictive ex vivo image-based screening platform developed in-131 

house 32–34,39–42. Pharmacoscopy measures the drug-induced relative reduction of any marker- or 132 

morphology-defined cell population in heterogeneous patient samples. Here, a positive PCY score 133 

indicates a reduction of Nestin+ or S100B+ glioblastoma cells relative to non-malignant TME cells, while 134 

a negative score indicates higher toxicity in the TME (Fig. 1i). Glioblastoma patients exhibited a wide 135 

spectrum of ex vivo responses to the first-line therapy Temozolomide (50-500µM; 2 days of incubation; 136 

Fig. 1j). We performed survival analysis on 16 of the 27 prospectively tested patients, limited to those 137 

patients with primary tumors and having received first-line TMZ treatment with evaluable PFS (n=16 138 

patients, with n=3 ongoing responses). Prospectively stratifying patients by their ex vivo TMZ sensitivity 139 

suggested improved PFS for ex vivo responders, reaching significance at 100µM TMZ (p = 0.041; Fig. 1k 140 

and Extended Data Fig. 3b). We repeated this PCY-based response stratification analysis in a 141 

retrospective validation cohort with documented PFS and OS (n=18 patients). Here, ex vivo TMZ 142 

responders also had significantly longer PFS and OS, evidenced across all four tested TMZ 143 

concentrations (Fig. 1l). In contrast, TMZ sensitivity of CD45+ immune cells or of GSC morphotypes was 144 

not associated with clinical response. Ex vivo TMZ response further related to MGMT status, as we 145 

observed higher sensitivities to low dose TMZ (50µM) in patient tumors with methylated MGMT 146 

promoter (Extended Data Fig. 3c). Taken together, this suggests that ex vivo TMZ response of 147 

glioblastoma cells, as well as the baseline abundance of GSC morphotypes at diagnosis, are both novel 148 

prognostic factors for first-line response. The concurrence of pharmacoscopy with clinical response 149 

establishes the utility of image-based drug screening in patient material for the discovery of new 150 

glioblastoma therapies.  151 

Therapeutically targeting neural tumor heterogeneity 152 

The question arises whether it is possible to pharmacologically target the heterogeneous spectrum of 153 

malignant cells, both in terms of their molecular composition and morphological nature. To find 154 

repurposable drug candidates that target glioblastoma cells and aggressive GSC morphologies, we 155 

tested both neuroactive and oncology drug libraries across the prospective glioblastoma cohort (Fig. 156 

2a-c, Extended Data Fig. 3d,e, and Supplementary Table 3). The neuroactive drug (NAD) library 157 

consisted of drugs approved for neurological diseases such as depression, epilepsy, and Alzheimer’s 158 

disease (n=67 drugs; 20µM). The oncology drug (ONCD) library included therapies approved for solid 159 

tumor indications such as cyclin-dependent kinase (CDK) and receptor tyrosine kinase (RTK) inhibitors 160 

(n=65 drugs; 1 and 10µM). We screened the NAD library across the whole prospective cohort (n=27 161 

patients) and additionally tested the ONCD library in a subset of patients when enough surgical 162 

material was available (n=12 patients). As primary PCY-readouts, we measured on-target reduction of 163 
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Nestin+ or S100B+ cells and GSC morphotype composition changes across patients (Fig. 2b,c and 164 

Extended Data Fig. 3d). Drug responses for other TME populations including immune cells and marker 165 

negative cells were also measured (Extended Data Fig. 3e). 166 

Despite limited success of targeted cancer therapies for glioblastoma, opportunities for molecularly-167 

guided precision oncology and drug repurposing remain. Among ONCDs, the top mean ranking PCY-hit 168 

across patients was Elesclomol, a BBB-penetrant mitochondrial oxidative stress-inducer (Fig. 2c and 169 

Extended Data Fig. 3d) 43,44. Elesclomol represents a compelling therapeutic candidate amidst growing 170 

evidence highlighting the importance of mitochondrial dynamics in brain tumorigenesis 45–47. Among 171 

all tested drugs, Elesclomol response showed the strongest positive correlation with age, suggesting a 172 

potential link with mitochondrial aging and benefit for elderly patients (Fig. 2d). Ranked 2nd and 6th 173 

among the ONCDs were the two structurally-related multi-tyrosine kinase inhibitors, Sorafenib and 174 

Regorafenib. Regorafenib has recently been proposed to mediate a survival benefit over Lomustine in 175 

a randomized phase II clinical trial for patients with recurrent glioblastoma (Fig. 2c and Extended Data 176 

Fig. 3d) 48. Across our cohort, Regorafenib showed one of the strongest positive correlations to Ki67 177 

levels, which could be leveraged to inform future clinical trials (Fig. 2e). Conversely, both of the tested 178 

mTOR inhibitors Temsirolimus and Everolimus showed no ex vivo efficacy, in line with negative results 179 

from randomized clinical trials (Extended Data Fig. 3d) 49–51. As a tumor’s mutational profile often 180 

influences drug response, we examined associations between ONCD responses and genetic alterations 181 

measured by targeted NGS across the cohort. The strongest pharmacogenetic association for ONCDs 182 

was the markedly increased ex vivo sensitivity of patients carrying p53 mutations to the CDK4/6 183 

inhibitor Abemaciclib (Fig. 2f and Extended Data Fig. 3f-g). Our exploratory analysis of oncological 184 

drugs approved for other indications thereby identifies unevaluated treatment opportunities in 185 

glioblastoma. 186 

Neuroactive drugs, in contrast, are developed to cross the blood-brain barrier and act upon the 187 

nervous system. Among NADs, we identified 15 of 67 drugs (22%) with consistent anti-glioblastoma 188 

activity across patients (top NADs; PCY-hits; mean PCY score > 0.03). Top NADs effectively reduced 189 

fractions of aggressive GSC morphologies in patient samples (M1-M3), and showed activity across 190 

patient-derived cultures (PDCs, n=3 lines) and established glioblastoma cell lines (n=4 lines, Fig. 2a,b). 191 

Dose-response relationships were further confirmed in glioblastoma cell lines for selected top NADs 192 

(n=9 drugs, Extended Data Fig. 4a-d). The top mean ranking PCY-hit was Vortioxetine, a safe and novel 193 

class of antidepressant with previously unknown anti-glioblastoma activity (Fig. 2b,c). Strikingly, 194 

Vortioxetine was more potent in patient samples with higher baseline abundance of aggressive GSC 195 

morphologies (Fig. 2g). Vortioxetine was also the most consistently effective drug across all tested 196 

glioblastoma model systems, with ex vivo efficacy surpassing Regorafenib (Fig. 2c). Other clinically 197 

attractive NADs included Paroxetine and Fluoxetine, both antidepressants of the selective serotonin 198 

reuptake inhibitor (SSRI) class, and Brexpiprazole, an atypical antipsychotic used for the treatment of 199 

schizophrenia. Brexpiprazole ex vivo response was related to sex, where men responded better than 200 

women (Fig. 2h and Extended Data Fig. 3g). Not all top NADs were clinically suitable considering the 201 

historically reported side-effects of the cannabinoid receptor blocker Rimonabant and the 202 

antipsychotic Zotepine, yet these could still inform future drug design studies.  203 

Notable exceptions to the pan-patient and model consistency of top NADs were Apomorphine, 204 

Olanzapine, and Sertindole (Fig. 2b). Apomorphine showed high TME toxicity in a subset of patient 205 

samples and diminished efficacy in PDCs and glioblastoma-initiating spheroid cell lines (ZH-161, ZH-206 

562); Olanzapine showed diminished activity against aggressive GSC morphologies, PDCs, and cell lines; 207 
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and Sertindole response was highly variable among patients, despite its potency in glioblastoma 208 

models. Patient variability in ex vivo Sertindole response was related to the loss of FGFR2 (copy number 209 

variation; CNV loss), representing the most significant pharmacogenetic NAD association (Fig. 2i and 210 

Extended Data Fig. 3f).  211 

Here, by comprehensively screening across heterogeneous patients and model systems, we identify a 212 

set of repurposable neuroactive drugs that effectively target the neural heterogeneity of glioblastoma 213 

cells. The consistency of the anti-glioblastoma efficacy of these neuroactive drugs in diverse model 214 

systems even in the absence of the TME suggests that they are targeting tumor-intrinsic vulnerabilities. 215 

Divergent functional dependencies on neuroactive drug targets 216 

The multitude of neuroactive drugs with anti-glioblastoma activity was unexpected, prompting the 217 

question as to whether there could be shared underlying mechanisms. Top NADs represented diverse 218 

drug classes without significant enrichment, indicating that canonical mode-of-action did not explain 219 

drug efficacy (Fig. 3a). This is in line with a previous screen of neurochemical compounds in patient-220 

derived stem cell lines, which found various neurochemical classes represented among their hits 29. 221 

Among our tested serotonin and dopamine pathway modulators, for example, only 4 out of 11 222 

antidepressants (36%) and 6 out of 16 antipsychotics (38%) exhibited anti-glioblastoma activity in 223 

primary patient samples on average (Extended Data Fig. 4e). Such drug classifications, however, 224 

simplify the polypharmacological drug-target profiles of neuroactive drugs. The majority of NADs act 225 

on multiple primary target genes (PTGs). These include ion channels, GPCRs, and enzymes that 226 

modulate neurotransmission in the central nervous system, whose expression remains a largely 227 

unexplored dimension of glioblastoma heterogeneity. Dependency on neuroactive PTGs with high 228 

lineage specificity and consistent expression across patients could explain the activity of top NADs. 229 

We first set out to determine the expression of NAD PTGs by scRNA-Seq. We integrated scRNA-Seq 230 

data from our glioblastoma patient cohort (n=4 patients) with two published data sets (Neftel et al.,n=9 231 

patients; Yu et al., n=9 patients, Fig. 3b,c and Extended Data Fig. 5a,b) 12,28. Collectively, we profiled 22 232 

glioblastoma patient single-cell transcriptomes across 25,510 cells for their expression of PTGs with 233 

biochemical NAD-interactions reported in the Drug Targets Commons database (DTC) 52. Among these 234 

PTGs, certain classes of ion channels and GPCRs were enriched in neural lineage cells (e.g. potassium, 235 

glutamate, and cannabinoid), while other classes showed broader expression patterns (e.g. calcium, 236 

adrenaline, Extended Data Fig. 5a). To quantify PTG expression across cell types and patients, we 237 

defined neural- and patient-specificity scores (NS and PS; Fig. 3b, Extended Data Fig. 5b and Methods). 238 

For detected genes, a higher NS indicates relative enrichment in glioblastoma cells (range -1 to 1) and 239 

a higher PS (range 0 to 1) indicates more patient-specific expression, while both scores will be close to 240 

zero for low-abundance genes. We first benchmarked the neural- and patient-specificity scores against 241 

the whole transcriptome for each dataset, including key glioblastoma (Nestin, S100B, CD133, SOX2) 242 

and immune marker genes (CD45, CD3, CD14) that were on expected opposites of the NS spectrum 243 

(Extended Data Fig. 5b and Supplementary Table 4). Among PTGs, ion channels and receptors with high 244 

neural-specificity included the calcium signaling modulator SIGMAR1, glutamatergic AMPA receptor 245 

subunit GRIA2, and cannabinoid receptor CNR1 (Fig. 3c). Patient-specificity for neurological receptors 246 

SIGMAR1 and CNR1 were on average 1.7 to 3-fold lower than for oncogenic RTKs EGFR and PDGFRA, 247 

despite similar detection levels. Thus, we find abundant and consistent pan-patient expression of 248 

neuroactive drug targets on glioblastoma cells, confirmed across independent cohorts. 249 
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We next tested genetic dependencies on these NAD PTGs by performing an siRNA screen in LN-229 250 

glioblastoma cells (n=59 genes, Fig. 3d and Extended Data Fig. 5c,d). LN-229 cells were confirmed to 251 

have patient-comparable PTG expression as well as neuroactive drug responses (Fig. 2b, Fig. 3d and 252 

Extended Data Fig. 5d). A significant decrease in cell viability was observed upon knockdown of 9 PTGs, 253 

including ADRA2B, SIGMAR1, DRD1, HTR3A, and MC3R (Fig. 3d and Extended Data Fig. 5c,d). Of these, 254 

ADRA2B and MC3R expression levels stratified glioblastoma patient survival in The Cancer Genome 255 

Atlas (TCGA) cohort (Extended Data Fig. 5e). However, these primary drug targets representing genetic 256 

dependencies were all annotated in DTC to predominantly interact with drugs that showed no activity 257 

by pharmacoscopy. Inversely, top neuroactive drugs had many annotated targets not representing 258 

genetic dependencies. For example, based on DTC, only 6 of the 17 NADs interacting with ADRA2B 259 

were PCY-hits, and only 1 out of 11 NADs interacting with HTR3A was a PCY-hit (Fig. 3e). Therefore, 260 

while presenting novel neural vulnerabilities, no PTG dependency uniquely explained the majority of 261 

our top neuroactive drugs.  262 

Anti-glioblastoma activity explained by drug-target convergence 263 

Despite their chemical and primary target diversity, our top NADs may still converge upon common 264 

downstream signaling pathways. To test this, we developed an interpretable machine learning 265 

approach called COSTAR: convergence of secondary drug targets analyzed by regularized regression. 266 

COSTAR is designed to identify the minimal drug-target connectivity signature predictive of efficacy. 267 

We expanded the drug-target search space to include PTGs with any bioactivity annotated by DTC, 268 

termed extended PTGs (ePTGs). Secondary target genes (STGs) downstream of ePTGs were 269 

subsequently mapped by high-confidence protein-protein interactions annotated in the STRING 270 

database (Fig. 3f). This resulted in a drug-target connectivity map, or “COSTAR constellation”, of all 271 

DTC-annotated drugs in our NAD and ONCD libraries (n=127 of 132 tested drugs) with 975 extended 272 

primary targets, 10,573 secondary targets, and 114,517 network edges (Fig. 3f). Using logistic LASSO 273 

regression, we trained a multi-linear model that identifies the minimal set of STGs that maximally 274 

discriminates PCY-hit drugs (n=30; top-15 drugs from both NADs and ONCDs) from PCY-negative drugs 275 

(n=97; all other tested drugs) in a cross-validation setting (Fig. 3f,g Extended Data Fig. 6a, and 276 

Methods). Thereby, COSTAR converged upon the most simplistic connectivity signature that was 277 

predictive of anti-glioblastoma drug efficacy (Fig. 3h and Extended Data Fig. 6a,b). Encouragingly, 278 

COSTAR identified a signature that classified the 127 drugs in our training data with 92.1% accuracy, 279 

correctly predicting 20/30 PCY-hits and 96/97 negative drugs (Fig. 3g).  280 

The COSTAR connectivity signature predominantly linked PCY-hit NADs to the secondary target BTG2 281 

through JUN/TP53 ePTGs (Fig. 3h and Extended Data Fig. 6b). BTG2 and TP53 are both tumor 282 

suppressors that control cell cycle and differentiation, while JUN is a member of the AP-1 transcription 283 

factor (TF) family that regulates gene expression in response to stimuli such as neural activity 53,54. 284 

Conversely, the majority of PCY-hit ONCDs were connected to the secondary target AP1S2, a protein 285 

involved in clathrin assembly, through the cyclin G-associated kinase GAK (Fig. 3h and Extended Data 286 

Fig. 6b). A subset of PCY-hit ONCDs were also linked to BTG2 through cyclins CCND1 and CCNH, while 287 

a subset of PCY-hit NADs were linked to AP1S2 through RAB9A, a member of the RAS oncogene family 288 

(Fig. 3h). Taken together, this reveals pathway convergence on AP-1 transcription factors and cell cycle 289 

regulation as a unique signature predictive of anti-glioblastoma activity of neuroactive drugs.  290 
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COSTAR can be utilized as a powerful in silico drug screening tool. It can match the drug-target profile 291 

of any annotated compound with the identified connectivity signature to predict its hit probability 292 

(COSTAR score). To experimentally validate the COSTAR signature and find additional neuroactive drug 293 

candidates with anti-glioblastoma activity, we computationally screened across 1,120,823 DTC-294 

annotated compounds and selected 48 previously untested repurposable and BBB-permeable drugs 295 

among the top and bottom scoring compounds (COSTAR-hits and COSTAR-negs resp.; Fig. 3i-k). All 296 

predicted COSTAR-hits (n=23 drugs) were linked to the secondary target BTG2. Conversely, none of 297 

the COSTAR-negs (n=25 drugs) had annotated connections to BTG2 (Extended Data Fig. 6c). To validate 298 

these COSTAR predictions, we tested all 48 drugs across four GBM patient samples ex vivo (P030, P032, 299 

P034, P042), and observed excellent agreement between COSTAR predictions and experimental results 300 

(mean AUC=0.94, Fig. 3j,k). The new COSTAR-hits again represented diverse drug classes, including the 301 

antipsychotic Trifluoperazine, antiparkinsonian Ethopropazine, antidepressant Sertraline, and 302 

bronchodilator Salmeterol (Fig. 3j). These results validate our interpretable molecular machine 303 

learning approach for in silico drug discovery, and confirm AP-1 and cell cycle pathway convergence as 304 

a predictive signature of neuroactive drugs with ex vivo anti-glioblastoma activity. 305 

From neural activity-dependent signaling to tumor suppression 306 

Convergent drug targets of top NADs represent transcription factors and tumor suppressors, 307 

suggesting common gene regulatory networks (GRNs) underlying the anti-glioblastoma activity of 308 

NADs. To determine transcriptional changes upon drug perturbation, we profiled 20 drug responses 309 

across two time-points (6 and 22 hours) in LN-229 cells by DRUG-Seq 55,56. These 20 drugs were selected 310 

to include PCY-hit NADs spanning diverse drug classes (n=11), PCY-hit ONCDs (n=7), PCY-negative NADs 311 

(n=2), and a DMSO control (Fig. 4a-d, Extended Data Fig. 7a,b, and Supplementary Table 3). Differential 312 

gene expression analysis upon PCY-hit NAD treatment compared to the PCY-negative NADs and DMSO 313 

control revealed a strong transcriptional drug response, with upregulated genes enriched in ‘MAPK 314 

signaling’ and ‘transcriptional misregulation of cancer’ pathways at both time-points (Fig. 4b and 315 

Extended Data Fig. 7c,d).  316 

In remarkable alignment with COSTAR, AP-1 and BTG family member genes were strongly upregulated 317 

in response to the PCY-hit NADs (Fig. 4b,d and Extended Data Fig. 7e). This upregulation was observed 318 

even for Vortioxetine and Brexpiprazole, both lacking DTC-annotations at the time of analysis and thus 319 

not contributing to the COSTAR training (Fig. 4d). We saw rapid and sustained upregulation of AP-1 TFs 320 

JUN and FOS, as well as BTG1, a close homologue of BTG2 identified by COSTAR 57,58 (Fig. 4b,d). JUN 321 

and FOS are context-dependent oncogenic factors as well as canonical ‘immediate-early genes’ (IEGs) 322 

that are rapidly induced upon neural activity 53,54,59. The presence of other upregulated IEGs, including 323 

NR4A1, EGR1 and ARC, strengthened this surprising involvement of neural-activity dependent signaling 324 

in glioblastoma (Fig. 4b). 325 

To find key upstream regulators mediating the transcriptional response to PCY-hit NADs, we performed 326 

transcription factor binding-site (TFBS) enrichment analysis of the upregulated genes (Fig. 4c and 327 

Extended Data Fig. 7f). The most significantly enriched TF motifs at 6 hours were AP-1, ATF (a member 328 

of the AP-1 superfamily), and CREB (a calcium-activated regulator of AP-1 transcription) 53,60,61 (Fig. 4c). 329 

Not only were AP-1 TFs the most enriched binding domain, but their own expression was also directly 330 

induced upon PCY-hit NAD treatment (Fig. 4b,d and Extended Data Fig. 7e). ATF3 was the most 331 

significantly upregulated gene across both time-points, while ATF4, JUN, JUNB, FOS, and FOSB were 332 

among top differentially expressed genes (Fig. 4b,d and Extended Data Fig. 7c). Induction of AP-1 333 
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factors was primarily NAD-specific, where ONCD treatment did not elicit a similar global transcriptional 334 

response (Fig. 4d and Extended Data Fig. 7c). Though NAD-induced AP-1 expression was sustained 335 

across both time-points, TFBS enrichment analysis of upregulated genes at the 22 hour time-point 336 

identified forkhead TF family members (e.g. FOXO1, FOXO3, FOXD3, HFH1) as a gene regulatory 337 

module succeeding AP-1 Extended Data Fig. 7f). AP-1 and forkhead TFs have well-established roles in 338 

mediating immediate-early response to neural activity and regulating long-term cell differentiation, 339 

respectively 53,54,62–64.  340 

Upstream of AP-1, a rapid Ca2+ influx and calcium-dependent signaling typically precede IEG expression 341 

and AP-1 activation 53,61,65,66. We therefore measured both NAD-mediated endoplasmic reticulum (ER) 342 

calcium store release as well as extracellular calcium influx in LN-229 cells by high-throughput FLIPR 343 

calcium assays (n=17-18 drugs; Supplementary Table 3). While none of the tested drugs triggered ER 344 

Ca2+ store release, we observed an immediate and strong extracellular Ca2+ influx in response to 5 out 345 

of 8 of our PCY-hit NADs (Fig. 4e,f and Extended Data Fig. 8a,b). The strongest Ca2+ influx was observed 346 

upon Vortioxetine treatment, while two additional antidepressant hits, Paroxetine and Fluoxetine, also 347 

elicited strong responses (Fig. 4e,f). In contrast, the PCY-neg NADs (n=6) including two other 348 

antidepressants, and ONCD-hits (n=2; Elesclomol, TMZ) did not trigger calcium influx (Fig. 4e,f). These 349 

results demonstrate that, for the majority of our top NADs, a rapid drug-induced Ca2+ influx precedes 350 

IEG upregulation and subsequent anti-glioblastoma activity. 351 

Downstream of AP-1, we evaluated whether BTG tumor suppressors could be direct effectors of the 352 

AP-1 gene regulatory network. BTG1 was one of the top 20 most significantly induced genes by the 353 

PCY-hit NADs (Fig. 4b,d and Extended Data Fig. 7c). BTG2 was strongly induced in specific conditions, 354 

including Vortioxetine and Paroxetine treatment (Fig. 4d). To delineate regulators of BTG family genes, 355 

we leveraged genome-wide mapping of transcriptional regulatory networks by PathwayNet, a tissue-356 

aware data integration approach that utilizes 690 ChIP-Seq datasets from the ENCODE project 67. The 357 

most enriched transcriptional regulators of BTG1/2 were members of the AP-1 TF network (e.g. JUN, 358 

ATF3, FOS), implying BTG tumor suppressor gene expression is directly mediated by AP-1 factors (Fig. 359 

4g).  360 

Congruence between NAD-induced AP-1 activation and its anti-glioblastoma activity would strengthen 361 

a causal role for this gene regulatory network. Remarkably, drug-induced expression of AP-1 TFs and 362 

BTG genes (the ‘COSTAR signature’) was highly correlated with a drug’s ex vivo anti-glioblastoma 363 

efficacy in patient samples (R=0.72, P=1.4e-05; Fig. 4h). We additionally performed BTG1/2 and JUN 364 

loss-of-function experiments by siRNA-mediated knockdown in LN-229 cells. Quantitative RT-PCR after 365 

72 hours of gene silencing confirmed reduced expression of BTG1/2 and JUN and revealed 366 

interdependent regulatory interactions governing their expression (Extended Data Fig. 8c). BTG1 but 367 

not BTG2 inhibition accelerated cell growth measured by live-cell imaging across 7 days (Fig. 4i). 368 

Increased cell proliferation upon BTG1 inhibition was also validated by endpoint pharmacoscopy after 369 

3 days (Fig. 4j). By DRUG-Seq analysis, BTG1 induction represented a pan-NAD signature, while BTG2 370 

was induced only in specific drug conditions such as Vortioxetine treatment (Fig. 4d). Vortioxetine also 371 

triggered the strongest calcium increase and represented the most effective NAD overall by 372 

pharmacoscopy. We therefore next evaluated the functional dependencies of Vortioxetine anti-373 

glioblastoma efficacy on BTG1/2 and JUN. After two days of siRNA-mediated gene silencing and one 374 

subsequent day of drug treatment, BTG1 inhibition rescued Vortioxetine-mediated cell death (Fig. 4j).  375 

Together, these results propose a model in which a subset of neuroactive drugs mediate anti-376 

glioblastoma activity by triggering a rapid calcium influx, IEG and AP-1 transcription factor activation, 377 
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followed by engagement of an antiproliferative program that includes BTG-driven tumor suppression 378 

(Fig. 4k). 379 

Potent and rapid AP-1 induction by Vortioxetine 380 

To closer examine the temporal dynamics of the most effective neuroactive drug, Vortioxetine, we 381 

performed in-depth transcriptomic and proteomic profiling at 3-6 time-points in LN-229 cells (Fig. 5a 382 

and Extended Data Fig. 8d-h). Gene expression change over time was the strongest driver of variance 383 

in Vortioxetine-treated RNA samples analyzed by principal component analysis (Extended Data Fig. 384 

8d). Among the top 100 gene loadings for PC1 (38.9% explained variance), we observed induction of 385 

AP-1 TFs FOS, JUNB, ATF4, and the AP-1 effector gene ARC already at 3 hours (Fig. 5a and Extended 386 

Data Fig. 8e). At the RNA level, 10 AP-1 TFs were significantly upregulated at all time-points, with 387 

temporal dynamics depending on individual TFs (Fig. 5a and Extended Data Fig. 8e). At the protein 388 

level, gene set enrichment analysis (GSEA) at 3 hours revealed DNA-binding transcription activator 389 

activity as the most over-represented gene ontology (GO) term (Extended Data Fig. 8f-h). Rapid and 390 

sustained protein expression of AP-1 TFs was observed between 3 and 9 hours, coinciding with 391 

upregulation of BTG1/2 and other negative regulators of cell cycle such as CDKN1B and PPM1B (Fig. 5a 392 

and Extended Data Fig. 8f,h). Significant activation of MAPK, ER stress response, and DNA damage 393 

pathways were also observed (Fig. 5a). Conversely, cytoskeletal components and oncogenic RTKs 394 

associated with the malignant phenotype of glioblastoma, including EGFR, NTRK2, and PDGFRA, were 395 

downregulated upon Vortioxetine treatment (Fig. 5a). 396 

AP-1 activity and function in tumorigenesis can be context- and cell type-dependent 59. Consequently, 397 

we set out to confirm AP-1 induction upon NAD treatment in compositionally heterogeneous 398 

glioblastoma patient samples taken directly after surgery. We examined AP-1 expression both at the 399 

single-cell gene and protein level. 400 

We first performed scRNA-Seq on cells from patient P024 following 3 hours of ex vivo Vortioxetine 401 

treatment (Fig. 5b,c and Extended Data Fig. 9a,b). Analysis of 1736 single-cell transcriptomes revealed 402 

4 main clusters with intermixed Vortioxetine-treated and DMSO-control cells (Extended Data Fig. 9a). 403 

Cluster 1 represented the most malignant cluster with highest expression levels of glioblastoma 404 

stemness markers such as Nestin, Ki67, CCND2, and VEGFA. Cluster 2 and 3 also expressed 405 

glioblastoma stemness markers, at lower levels than cluster 1. Cluster 4 represented an immune 406 

cluster, with the highest expression of the pan-immune marker CD45 (Fig. 5b and Extended Data Fig. 407 

9b). Per-cluster comparison of Vortioxetine-treated versus DMSO-control cells revealed glioblastoma-408 

specific induction of AP-1 factors upon Vortioxetine treatment (Fig. 5c). For example, JUNB, JUND, and 409 

AP-1 effector gene ARC were upregulated in cluster 1, while ATF4 and MAF were induced in all three 410 

glioblastoma clusters (cluster 1-3), with a more pronounced induction of ATF4 in clusters 2 and 3 (Fig. 411 

5c).  412 

Next, we performed immunofluorescence against JUND, ATF4, FOS and the AP-1 effector gene 413 

HOMER1 in three additional glioblastoma patient samples (P039, P040, P042) after Vortioxetine 414 

treatment (Fig. 5d,e). AP-1 factor induction in Nestin+ glioblastoma cells was observed in a patient-, 415 

time-point, and concentration-dependent manner. The strongest induction of all tested AP-1 factors 416 

was seen in patient sample P040 that had high abundance of complex morphotypes (M1-M3), which 417 

were reduced upon Vortioxetine treatment (Fig. 5d,e). HOMER1 and ATF4 were induced in all three 418 

patient samples, while FOS and JUND exhibited more patient variability (Fig. 5d). Together, this 419 
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detailed analysis of Vortioxetine response highlights the added layer of complexity relating to 420 

heterogeneous cellular states across cell types and patients, and supports our transcriptomic and 421 

functional data elucidating AP-1 induction to be a key neural vulnerability hijacked by PCY-hit NADs. 422 

Preclinical translation of neuroactive drugs 423 

Vortioxetine elicits a strong Ca2+ influx and subsequent AP-1 response, reduces aggressive GSC 424 

morphologies, and potently induces cell death of glioblastoma cells ex vivo. To determine if 425 

Vortioxetine affects other tumor properties that contribute to recurrence such as invasiveness and 426 

long-term growth, we performed a series of experiments to test the effect of Vortioxetine on cell 427 

invasion, clonogenic survival, and spheroid formation using established human long-term glioma cell 428 

lines (LN-229, LN-308) and glioma-initiating cells (ZH-161, ZH-562) (Extended Data Fig. 9c-f). In a 429 

collagen-based spheroid invasion assay, Vortioxetine decreased the average migration distance and 430 

reduced the number of invading cells in 3 out of 4 lines (Extended Data Fig. 9c,d). In a resazurin-based 431 

clonogenic survival assay, Vortioxetine strongly impaired long-term cell viability in a concentration-432 

dependent manner across all cell lines (4 out of 4 lines, Extended Data Fig. 9e). In a complementary 3D 433 

spheroid-formation assay, Vortioxetine potently inhibited tumor growth over time (Extended Data Fig. 434 

9f). These results demonstrate the multifaceted anti-tumor effects of Vortioxetine upon glioblastoma 435 

invasion, survival, and proliferation.  436 

Finally, we tested the top ex vivo NAD hits including Vortioxetine (PCY-hit NADs; n=4 or 5 drugs across 437 

different drug classes) in orthotopic human-xenograft glioblastoma mouse models (Fig. 5f and 438 

Extended Data Fig. 10a-c). To account for the variability observed in different orthotopic models, we 439 

tested two different models (LN-229, ZH-161) across three independent trials (Trials I-III) of drug-440 

testing in vivo (Fig. 5f and Extended Data Fig. 10a). We included Temozolomide (TMZ) as a positive 441 

control, and as negative controls we tested one PCY-neg NAD Paliperidone and a vehicle control. Since 442 

all tested NADs have confirmed BBB-penetrance and are approved for other neurological disorders, in 443 

vivo concentrations were determined a priori based on literature and clinical evidence 68–73. 444 

Vortioxetine was consistently the most effective drug (in 3/3 trials) and showed significant survival 445 

benefit comparable to TMZ despite being tested at considerably lower dosage (Fig. 5f). Brexpiprazole 446 

was the 2nd-best PCY-hit NAD in vivo (2/3 trials), while other NADs showed a significant survival benefit 447 

in 1 out of 3 trials (Extended Data Fig. 10a). Consistent with PCY, the negative control Paliperidone did 448 

not show a significant survival benefit (2/2 trials) (Fig. 5f). In the most aggressive orthotopic model 449 

with the shortest median survival of the vehicle control, Vortioxetine and TMZ were the only effective 450 

drugs (Trial II: ZH-161; Fig. 5f, right), whereas for the least aggressive model, all tested PCY-hit NADs 451 

(5/5 NADs) significantly prolonged survival (Trial III: ZH-161; Extended Data Fig. 10a). MRI images of 452 

ZH-161 transplanted mice (Trial II) after 15 days of Vortioxetine, Apomorphine, and Temozolomide 453 

treatment showed marked reduction of tumor size (Extended Data Fig. 10b,c). The striking consistency 454 

of our patient ex vivo and mouse in vivo results demonstrate strong translatability of PCY-based NAD 455 

discovery and confirm Vortioxetine as the most promising clinical candidate. 456 

Given the different mechanisms of neuroactive drugs and approved chemotherapies, their successful 457 

combination could facilitate the rapid adoption of NADs into clinical routine. Therefore, we tested the 458 

combination of Vortioxetine with either first- or second-line standard of care drugs for glioblastoma, 459 

TMZ and Lomustine (CCNU) in vivo (Trial IV: ZH-161; Fig. 5g). All three single agents significantly 460 

prolonged survival, with Vortioxetine results now confirmed in 4 out of 4 in vivo trials (Fig. 5f,g). 461 

Remarkably, compared to TMZ or CCNU single agents, the combination of Vortioxetine with either 462 
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drug provided even further survival benefit, with a median survival increase of 20-30% compared to 463 

the single agents (Fig. 5g). Given the dire need for effective treatment options in glioblastoma, this 464 

strong preclinical evidence of the safe antidepressant Vortioxetine urges for clinical investigation in 465 

patients. 466 

Discussion 467 

Here we present the first therapeutic single-cell map across glioblastoma patient samples that reveals 468 

the morphological and neural molecular heterogeneity of glioblastoma. Glioblastoma stem cells adopt 469 

distinct cell morphological states that encode clinical prognostic value. While the presence of tumor 470 

microtubes has been associated with tumor grade 2, we show that even within glioblastoma, complex 471 

GSC morphologies are prognostic of shorter progression-free survival. Image-based drug screening in 472 

the context of heterogeneous patient samples predicted clinical response to chemotherapy and 473 

enabled the discovery of repurposable neuroactive drugs that target the spectrum of glioblastoma 474 

cells across 27 patients and various model systems, greatly expanding upon prior literature 74–76.  475 

A number of new personalized therapeutic opportunities emerge from our exploratory drug response 476 

analysis across a genetically and clinically heterogeneous patient cohort. These include Elesclomol 477 

sensitivity increasing with age, Abemaciclib response associating with p53 mutant status, and higher 478 

Brexpiprazole response in men. Response to the antidepressant Vortioxetine, the most promising 479 

preclinical candidate, was particularly aligned with aggressive GSC morphotypes present in patients 480 

with poor prognosis. These efforts contribute to the nascent community of glioblastoma research 481 

focusing on the investigation of patient-derived tumor explants that facilitate translational 482 

investigation of complex tumor behavior, including the development of genetically characterized 483 

patient cultures, organoid biobanks, and regionally annotated samples 29,77–82.  484 

Our systematic analysis of the neuroactive drug mechanisms, drug target expression, and functional 485 

genetic dependencies indicated a diverse set of possible neural vulnerabilities of glioblastoma. Given 486 

this diversity, it is surprising that our interpretable machine learning approach COSTAR identified a 487 

simple drug-target connectivity signature predictive of anti-glioblastoma efficacy. COSTAR effectively 488 

applies Occam’s razor to the collective biochemical drug-protein-protein interaction networks, offering 489 

a novel conceptual framework applicable to all fields of drug discovery. Through COSTAR, we 490 

uncovered a convergence of AP-1 transcription factor activity and cell cycle regulation on BTG-491 

mediated tumor suppression. AP-1 and BTG upregulation was a defining feature of the response to 492 

neuroactive drugs with anti-glioblastoma activity, where a growth-suppressing role for BTG1 was 493 

confirmed by functional genetics. While the defining pharmacological properties remain to be 494 

identified, our results indicate a plurality of drug mechanisms converging on this novel tumor-495 

suppressing pathway. 496 

Previous studies have demonstrated the role of neuronal activity in regulating glioblastoma growth at 497 

the brain-tumor interface, highlighting the influence of the tumor microenvironment in mediating the 498 

neural behavior of the tumor. Here we reveal that cell-intrinsic neural activity in glioblastoma mimics 499 

those of neural lineage cells, offering a therapeutic vulnerability that enables direct targeting of the 500 

tumor. In neurons, immediate early gene expression including AP-1 is typically a hallmark of neural 501 

activity or insult, but in cancer cells, AP-1 factors were originally described as context-dependent 502 

oncogenes. We now find that neuroactive drugs can hijack this activity-dependent neural signaling, 503 

triggering a strong transcriptional response that, in the context of glioblastoma cells, leads to rapid cell 504 
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death. Treating glioblastoma tailored to the cellular history and lineage of the cancer rather than its 505 

unstably transformed state may represent new hope for this devastating disease. 506 
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Figure Legends 520 

Fig. 1: Neural intratumor heterogeneity across glioblastoma patients relates to 521 

disease prognosis and response to first-line therapy 522 

a, Comprehensive workflow integrating glioblastoma disease models with image-based ex vivo drug 523 

screening (pharmacoscopy; PCY), machine learning methods, clinical data, and next-generation 524 

sequencing (NGS) to discover therapeutic neural vulnerabilities underlying glioblastoma. Glioblastoma 525 

disease models include surgery material from glioblastoma patient samples (prospective cohort; n=27 526 

patients, retrospective cohort; n=18 patients), patient-derived lines (PDCs, n=3 lines), glioblastoma cell 527 

lines (n=4 lines), and mouse models (n=2 human xenograft models). Different cell types present in the 528 

tumor microenvironment (TME) of glioblastoma patient samples are identified by both 529 

immunofluorescence (S100B, Nestin, CD3, CD45, DAPI) and single-cell RNA-Seq (10x). Glioblastoma 530 

stem cell (GSC; Nestin+ cells) morphologies are classified into four morphotypes by deep learning 531 

(convolutional neural network; CNN). Pharmacoscopy measures the relative changes in TME 532 

composition and GSC morphotypes across drug treatments to identify drugs with anti-glioblastoma 533 

efficacy (PCY-hit). Drug-target connectivity mapping of PCY-hit drugs by a novel machine learning 534 

method (convergence of secondary drug-targets by analyzed by regularized regression; COSTAR) 535 

together with multiplexed RNA-Seq (DRUG-Seq) enables the discovery of convergent gene regulatory 536 

networks involved in glioblastoma suppression. b, Compositional and morphological diversity of 537 

glioblastoma patient samples are captured with single-cell resolution by high-content imaging. 538 

Glioblastoma cells (Nestin+ or S100B+) include S100B only cells (S100B+Nestin-CD45-) and four 539 

Nestin+CD45- GSC morphotypes: M1 polygonal multi-tumor microtube cells (M1:PTM), M2 elongated 540 

uni/bi-tumor microtube cells (M2:ETM), M3 round big cells (M3:RB), and M4 round small cells (M4:RS). 541 

Other cell types include immune cells (CD45+ only, CD45+CD3+) and marker-negative cells. Scale bar, 542 

30µm. c, UMAP projection of 7684 single-cell transcriptomes from four glioblastoma patient samples 543 

(P007, P011, P012, P013) colored by cluster-id (see legend). Clusters are based on Leiden community 544 

detection and cell types assigned by marker expression (Extended Data Figure 1f). Glioblastoma (GBM) 545 

clusters (1-10) are numbered in descending order based on cluster-averaged expression of the Gene 546 

Ontology term “stem cell differentiation” (GO:0048863). OPC; oligodendrocyte precursor cells. EC; 547 

endothelial cell. TAM; tumor-associated macrophage. NK; natural killer cell. TME; tumor 548 

microenvironment. d, Cellular (top) and morphological (bottom) composition across the prospective 549 

glioblastoma cohort (n=27 patients; columns). Cellular composition is based on glioblastoma and TME 550 

populations defined by marker expression and morphological composition is based on Nestin+ GSCs 551 

classified by deep learning into four morphotypes (M1-M4). e, Frequency of tumor microtubes (TMs) 552 

per cell in TM-containing morphotypes M1 (n=180 cells) and M2 (n=264 cells). f-g, UMAP projection of 553 

the morphological CNN feature space of 84,180 single-cells (up to n=1000 cells per morphotype and 554 

patient, n=27 patients). CNN feature space consists of ten-dimensional activations taken from the 2nd-555 

last fully connected layer of the network. f, Cells are colored by their assigned morphotype (M1-M4). 556 

g, Cells are colored by the local median of selected single-cell features (see also Extended Data Figure 557 

2c). Eccentricity and form factor are shape indices related to the irregularity and circularity of a cell. 558 

Nestin Int.; Nestin expression measured by immunofluorescence. h, (Top left) Correlation of 559 

histopathological Ki67 labeling index with abundance of M1-M3 morphotypes per patient. Linear 560 

regression line (dark blue) with a 95% confidence interval (light grey). Pearson correlation coefficient 561 

R=0.44, P-value 0.023. (Top right and bottom panels) Morphotype abundance-based stratification of 562 
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progression-free survival (PFS) in primary glioblastoma patients (n=17 patients) plotted as Kaplan-563 

Meier survival curves. (Top right) M4-high; n=12, M4-low; n=5 patients; P=0.0047. (Bottom left) M1-564 

high; n=4, M1-low; n=13 patients; P=0.021. (Bottom right) M3-high; n=3, M3-low; n=14 patients; 565 

P=0.018. i, Schematic illustrating pharmacoscopy (PCY) score calculation. The PCY score quantifies 566 

drug-induced on-target killing by measuring the change in fraction of a defined target population (blue; 567 

relative reduction, red; relative increase) compared to vehicle control (-). Bar plot example of two 568 

opposing cases scoring a relative 50% decrease (score=0.5) or relative 50% increase (score -0.5) of 569 

glioblastoma cells in response to a drug. j, Temozolomide (TMZ) ex vivo drug response across four TMZ 570 

concentrations 50, 100, 250, and 500µM (rows) per patient (columns) for two patient cohorts (top: 571 

prospective cohort, n=27 patients; bottom: retrospective cohort, n=18 patients). Heatmap color scale 572 

indicates the PCY score of glioblastoma cells (Nestin+ or S100B+). Outliers beyond color scale limits 573 

were correspondingly set to minimum and maximum values. k-l, Temozolomide (TMZ) ex vivo 574 

sensitivity-based stratification of primary glioblastoma patient survival plotted as Kaplan-Meier curves. 575 

All patients received TMZ as 1st-line treatment in the clinic with censored patients in the prospective 576 

cohort indicating ongoing responses (tick marks). Ex vivo TMZ sensitivity is calculated as the mean PCY 577 

score across four TMZ concentrations 50, 100, 250, and 500µM. k, Progression-free survival (PFS) of 578 

the prospective glioblastoma cohort (n=16 patients; P=0.089). l, Progression-free survival (PFS; 579 

P=0.0031; left) and overall survival (OS; P=0.016; right) of the retrospective validation cohort (n=18 580 

patients). h,k-l, Survival curves are compared using the log-rank (Mantel-Cox) test and the optimal cut-581 

point (high, low) for continuous parameters to stratify patients was determined by maximally selected 582 

rank statistics. P-values: not significant (ns), P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, 583 

****P < 0.0001.  584 
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Fig. 2: Image-based single-cell drug profiling across a heterogeneous patient cohort 585 

and model systems identifies repurposable drugs for glioblastoma treatment 586 

a, Representative immunofluorescence images of a glioblastoma patient sample (P040; scale bar, 587 

100µM), a patient-derived cell line (P040.PDC; 100µM), an adherent glioblastoma cell line (LN-229; 588 

scale bar, 150µm), and a glioblastoma-initiating cell line (ZH-562, scale bar, 250µm). Cells are labeled 589 

with the nuclear stain DAPI (blue), mature astrocyte marker S100B (green), and neural progenitor 590 

marker Nestin (yellow). Other markers are indicated in their respective colors. b, Drug response matrix 591 

of neuroactive drugs (NADs, n=67 drugs) across glioblastoma patient samples (n=27 patients), GSC 592 

morphotypes (n=4 classes), patient-derived lines (PDCs; n=3 lines, denoted by “.C” following patient 593 

id), and glioblastoma cell lines (n=4 lines). Heatmap color scale indicates the PCY score of glioblastoma 594 

cells (defined as Nestin+ or S100B+ cells in patient samples; Nestin+ cells in PDCs; total cell number in 595 

LN-229/308 lines; spheroid area in ZH-161/562 lines) or the average PCY score of GSC morphotypes 596 

(M1-M4) across patients. Outliers beyond color scale limits were correspondingly set to minimum and 597 

maximum values. Annotations per patient sample (rows; left of heatmap) indicate the clinical 598 

parameters Ki67 labeling index, MGMT promoter methylation status (unmethyl; unmethylated, 599 

methyl; methylated, nd; not determined), Sex, and recurrent tumor status (Status). See also Extended 600 

Data Figure 1a and Supplementary Table 2 for tumor mutational status. Annotation per drug (columns; 601 

underneath heatmap) indicates neuroactive drug class. Asterisks (*) denote FDR-adjusted P < 0.05. c, 602 

Drug ranking (n=132 repurposable drugs) according to their mean Nestin+ or S100B+ PCY scores across 603 

glioblastoma patients (NADs; n=27 patients, ONCDs; n=12 patients). Annotations per drug indicate 604 

drug type (NADs; n=67 drugs, ONCDs; n=65 drugs) and drug class. RTK; receptor tyrosine kinase, alkyl; 605 

alkylation, rep; replication. d-i Genetic and clinical associations with ex vivo drug response across 606 

patients. Glioblastoma PCY scores (y-axis) are plotted per patient against selected parameters (x-axis). 607 

d, Correlation of patient age at diagnosis with ex vivo Elesclomol response (R=0.74; P = 0.006). e, 608 

Correlation of histopathological Ki67 labeling index with ex vivo Regorafenib response (R=0.87; P = 609 

0.0002). f, Association of TP53 mutational status with ex vivo Abemaciclib response (P = 0.0025). g, 610 

Correlation of complex GSC morphotype abundance (M1-M3) at baseline with ex vivo Vortioxetine 611 

efficacy. h, Association of sex with ex vivo Brexpiprazole response (P = 0.0063). i, Association of FGFR2 612 

copy number loss with ex vivo Sertindole response (P = 0.0008). CNV; copy number variation. 613 

High.conf; high confidence. Low.conf; low confidence. See Extended Data Figure 3f,g for full 614 

pharmacogenetic analysis results. d,e,g, Linear regression line with a 95% confidence interval. Pearson 615 

correlation coefficients with P-values annotated. f,h,i, P-values calculated from a two-sided Wilcoxon 616 

rank sum test. P-values: not significant (ns), P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, 617 

****P < 0.0001. Boxplots show 25th–75th percentiles with a line at the median; whiskers extend to 618 

1.5 times the interquartile range.  619 
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Fig. 3: Neuroactive drugs with anti-glioblastoma efficacy converge upon a predictive 620 

AP-1 and cell cycle connectivity signature through divergent primary targets 621 

a, Drug mode-of-action for all neuroactive drugs (n=67 drugs; left) and top neuroactive drug hits (n=15 622 

drugs with a mean patient PCY score > 0.03; right) represented as stacked bar plots. Hypergeometric 623 

test shows no enrichment in mode-of-action: n.s., not significant. b, Primary target gene (PTG) 624 

expression of neuroactive drugs in 22 glioblastoma patient samples across three independent scRNA-625 

Seq datasets (Lee et al., this study; n=4 patients, n=7684 cells; Neftel et al., n=9 patients, n=13519 cells; 626 

Yu et al., n=9 patients, n=4307 cells) plotted as the neural specificity score (x-axis) versus patient 627 

specificity score (y-axis) for each PTG. See also Extended Data Figure 5b & Methods. Each dot 628 

represents a gene, shape corresponds to the dataset, and size scales with percent of expressed cells. 629 

Color represents the receptor class of each PTG. c, scRNA-Seq log10(expression) of selected 630 

neuroactive PTGs (SIGMAR1, CNR1, GRIA2) and oncogenic RTK (PDGFRA) visualized on a UMAP 631 

projection of 7684 single-cell transcriptomes (Lee et al., this study, n=4 glioblastoma patients). d, 632 

siRNA-mediated gene silencing of PTGs in LN-229 cells. Total cell number reduction (TCN) and cleaved 633 

CASP3+ fraction increase (CASP3+) depicted as a circle per gene. Circle sizes scale with the –log10 (FDR-634 

adjusted P-value) and color represents the receptor class of each PTG. See also Extended Data Figure 635 

5c,d for additional receptor classes and PCY scores. Adjacent horizontal bar plot represents baseline 636 

expression (DESeq2 vsd-normalized RNA-Seq counts) of each PTG in LN-229 cells. Asterisks (*) denote 637 

FDR-adjusted P < 0.05. e, Fraction of PCY-HIT vs PCY-NEG drugs associated with PTGs based on the 638 

Drug Target Commons (DTC) 52, where the number of drugs (n) denotes drugs with annotations for a 639 

given gene. Representative PTGs with the strongest glioblastoma gene dependencies of each receptor 640 

class visualized. Inner circle color corresponds to receptor class in Figure 3d for PCY-HIT drugs, while 641 

PCY-NEG drugs are in grey. PCY-HIT drugs are subdivided and colored according to their drug class. AP; 642 

antipsychotic, AD-TCA; antidepressant -tricyclic, AD-SSRI; antidepressant-selective serotonin reuptake 643 

inhibitor, PD; Parkinson’s disease. f, Convergence of secondary drug targets analyzed by regularized 644 

regression (COSTAR). For all tested drugs, the extended primary targets (ePTG; Ext. 1’’) were retrieved 645 

from DTC, and expanded to include secondary targets (STG; 2’’) based on protein-protein interactions 646 

annotated by STRING-DB 83 (left). The resulting network, or ‘COSTAR constellation’ (right), contains 127 647 

drugs, 975 ePTGs, 10573 STGs, and 114517 edges. g, Logistic LASSO regression is performed on the 648 

COSTAR constellation to learn a linear model that discriminates pharmacoscopy hits (n=30, equally 649 

split across NADs and ONCDs) from negative drugs (n=97) based on their secondary drug-target 650 

connectivity (left). COSTAR training model performance is represented as a confusion matrix, where 651 

the ‘true’ class denotes PCY-based experimental ground truth, and the ‘predicted’ class denotes the 652 

COSTAR-prediction (right). h, COSTAR connectivity (solid lines) reveals convergence of NAD (red) and 653 

ONCD (blue) hits to key ePTGs (grey) and STGs (yellow). See Extended Data Figure 6b for the full model. 654 

Representative proteins/protein families with high confidence STRING-DB interactions to STGs are 655 

shown as context (dashed lines). i, In silico COSTAR predictions based on drug-target connectivity 656 

across 1,120,823 drugs annotated in DTC. Drugs are ranked (x-axis) by their predicted PCY-hit 657 

probability (COSTAR score; y-axis). Predicted drug hits (COSTAR-HIT; mint green) and predicted non-658 

hits (COSTAR-NEG; black) selected for experimental validation are indicated. j, Experimental validation 659 

of COSTAR-HIT (n=23; mint green) and COSTAR-NEG (n=25; black) drugs (columns) across four 660 

glioblastoma patient samples (rows). Heatmap color scale indicates the PCY score of glioblastoma cells. 661 

Additionally, positive (PCY-HITs; pink; n=3) and negative (PCY-NEG; dark grey; n=1) control drug 662 

responses are shown. Outliers beyond color scale limits were correspondingly set to minimum and 663 

maximum values. Asterisks (*) denote FDR-adjusted P < 0.05. k, Receiver Operating Characteristic 664 
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(ROC) curves describing the COSTAR validation accuracy in glioblastoma patient samples of the 665 

COSTAR-predicted drugs (n=48 drugs). ROC curves per patient sample (grey, n=4 patients) and mean 666 

across all patients (mint green) and corresponding Area Under the Curve (AUC) are shown. Dashed red 667 

line denotes the ROC curve of a random classifier. Patient drug responses correspond to Figure 3j.  668 
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Fig. 4: Glioblastoma suppression is driven by a tumor-intrinsic AP-1 gene regulatory 669 

network upon neural activity 670 

a, Multiplexed RNA-Seq (DRUG-Seq) measures the transcriptional response to pharmacoscopy-hit 671 

neuroactive drugs (PCY-hit NADs, n=11 drugs), pharmacoscopy-hit oncology drugs (PCY-hit ONCDs, n=6 672 

drugs), and negative control drugs (NEGs, n=2 PCY-neg NADs and DMSO vehicle control). LN-229 cells 673 

were treated with drugs across two different time-points (6, 22 hours) and uniquely barcoded for 674 

sequencing (n=4 replicate wells per drug). b, Transcriptional response of PCY-hit NAD-treated cells 675 

compared to NEG-treated cells(6h) shown as a volcano plot. X-axis: log2(fold change); y-axis: –676 

log10(adjusted P-value). A positive log2(fold change) indicates upregulated genes upon PCY-hit NAD 677 

treatment. Genes above a –log10(0.05 adjusted P-value) threshold plotted as light grey dots, and non-678 

significant genes as dark grey dots. Highlighted genes (blue) include AP-1 transcription factor (TF) 679 

network genes (Pathway Interaction Database; PID AP1 PATHWAY; 84) and key COSTAR signature 680 

genes. c, Transcription factor binding site enrichment analysis of significantly upregulated genes upon 681 

PCY-hit NAD treatment (6 hours) in Figure 4b. Circles correspond to TF annotations, circle sizes scale 682 

with the percent of genes present in the annotation, and colors indicate –log10(false discovery rate). 683 

d, Expression of AP-1 TF and BTG family genes that are significantly upregulated upon PCY-hit NAD 684 

treatment compared to negative controls (6 hours) plotted as DESeq2 vsd-normalized RNA-Seq counts 685 

(y-axis). Box plot groups correspond to drug categories and dots represent the average expression per 686 

drug. Drug categories ‘PCY-hit NAD’ and ‘PCY-hit ONCD’ abbreviated to NAD and ONCD, respectively. 687 

Two-sided t-test. Significant P-values in order of appearance per gene: ATF3, P=1.1e-05, P=0.039; ATF4, 688 

P=7.8e-08, P=0.036; FOS, P=0.0005, P=0.035; FOSB, P=0.0006, P=0.01; BTG1, P=9.3e-06; MAFF, 689 

P=0.0053, P=8.3e-05; JUN, P=0.0006, P=0.023; JUNB, P=0.0025; JUND, P=0.0023, P=0.0013. e, Calcium 690 

response over baseline of LN-229 cells upon drug treatment measured by high-throughput FLIPR assay. 691 

(Top) Timeline depicts assay setup, where cells were treated with their respective PCY-drug after 692 

equilibration in 2mM calcium-containing buffer. (Bottom) Among 17 tested conditions, representative 693 

traces following drug treatment from 8 conditions including 5 antidepressants on the left panel (PCY-694 

hit NADs: VORT/FLUO/PARO; PCY-neg NADs: CITA/MITR), and 2 ONCDs on the right panel (PCY-hit 695 

ONCDs, ELES/TEMO). DMSO vehicle control traces shown in both. RFU; relative fluorescence units. f, 696 

Fold change in extracellular calcium influx upon drug treatment relative to DMSO vehicle control 697 

measured by FLIPR assays in LN-229 cells (n=8 assay plates; n=17 conditions; n=18-30 wells/drug; 698 

DMSO, n=47 wells). Normalized calcium levels for each drug were calculated by averaging calcium 699 

levels after drug treatment (400-600 seconds interval) divided by the basal level of calcium prior to 700 

drug administration (200-300 seconds interval) where experimental time corresponds to Figure 4e. 701 

Different drug categories including PCY-hit NADs, n=8 drugs; PCY-neg NADs, n=6 drugs; PCY-hit ONCDs, 702 

n=2 drugs were compared. Two-sided t-test against DMSO vehicle control. P-values adjusted for 703 

multiple comparisons by Holm correction. P-values: VORT, n=27, P=2.4e-26; PARO, n=29, P=9.1e-27; 704 

FLUO, n=30, P=3.2e-23; ZOTE, n=30, P=2.9e-12; SERT, n=30, P=6.5e-07; RIMO, n=30, P=8.3e-05; MITR, 705 

n=18, P=3.2e-02; QUET, n=18, P=2.2e-03; TEMO, n=18, P=2.5e-03. Asterisks in parentheses denote 706 

drug treatment conditions where the median [Ca2+ fold change] < 0. Black line indicates the median 707 

value. g, Transcriptional regulation of BTG1/2 based on PathwayNet 67. Query genes (BTG1/2, black 708 

nodes) and the top-13 inferred transcription factor interactions (grey nodes) are shown. Color of 709 

network edges indicates relationship confidence (see colorbar). h, Correlation of COSTAR signature 710 

expression (x-axis) with ex vivo patient neuroactive drug response (y-axis) plotted per drug (color) and 711 

time-point (shape). Mean glioblastoma PCY score across patients (n=27 patients, prospective cohort) 712 

of neuroactive drugs (n=11 PCY-H NADs, n=3 NEGs) plotted against their corresponding geometric 713 
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mean expression of AP-1 TFs and BTG1/2 genes measured by DRUG-seq as shown in Figure 4d. Linear 714 

regression line (black) with a 95% confidence interval (light grey). Pearson correlation coefficient 715 

R=0.72, P-value 1.4e-05. i, Confluency of LN-229 cells measured by IncuCyte live-cell imaging (y-axis) 716 

across seven days (x-axis) in two siRNA knockdown conditions (BTG1, BTG2) and a negative firefly 717 

luciferase control (FLUC). Mean of n=4 replicate wells shown with +/- one standard deviation. j, Effect 718 

of target gene siRNA knockdown (columns) on LN-229 viability (y-axis) at baseline (DMSO; left panel) 719 

and upon Vortioxetine treatment (VORT; 10µM; right panel). Knockdown of kinesin-like motor protein 720 

KIF11 used as a positive (+) control. Cell count normalized (norm. cell count) to the FLUC negative (-) 721 

control siRNA within each experiment (n=9-14 replicate wells/condition, n=2 experiments). Two-sided 722 

t-test. P-values adjusted for multiple comparisons by Holm correction. P-values: DMSO; BTG1 vs FLUC, 723 

P=6.99e-05; KIF11 vs FLUC, P=3.33e-08. VORT; BTG1 vs FLUC, P=0.0008; KIF11 vs FLUC, P=0.0006. k, 724 

Pathway diagram summarizing mechanistic pathways by which neuroactive drugs target glioblastoma. 725 

GRN; gene regulatory network. IEG; immediate early gene. CKI: cyclin-dependent kinase inhibitor. CRE; 726 

cAMP response element. FKH; forkhead binding motif. a,d-f,h, Colors correspond to drugs and drug 727 

name abbreviations annotated in Supplementary Table 3. P-values: not significant (ns), P > 0.05, 728 

*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Boxplots show 25th–75th percentiles with a line 729 

at the median; whiskers extend to 1.5 times the interquartile range.  730 
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Fig. 5: The antidepressant Vortioxetine induces a potent AP-1 response that 731 

synergizes in vivo with current standard of care drugs for glioblastoma  732 

a, Time-course visualization of AP-1 (PID) and MAPK (KEGG) pathway induction following Vortioxetine 733 

treatment (20µM) in LN-229 cells. Six time-points were measured by RNA-Seq and three time-points 734 

by proteomics (n=3 replicates/time-point). Genes selected for visualization are significantly 735 

differentially expressed by RNA-Seq at all time-points compared to the first time-point (0h). Heatmap 736 

color scale represents log2(fold change) compared to the 0h time-point. b, scRNA-Seq expression 737 

log2(UMI) of selected glioblastoma and top cluster marker genes from glioblastoma patient sample 738 

P024. Cluster ids are based upon UMAP clustering of both DMSO and Vortioxetine (VORT, 20µM) 739 

treated cells (3h) shown in Extended Data Figure 9a. Black lines indicate the median value. c, 740 

Differentially expressed AP-1 transcription factors and downstream effector gene ARC per scRNA-Seq 741 

cluster upon VORT treatment compared to DMSO in P024. Circle sizes scale with the –log10 (adjusted 742 

P-value) and heatmap color scale represents VORT-induced log2(fold change) compared to DMSO 743 

treated cells per cluster. d, Induction of AP-1 transcription factors and downstream effector gene 744 

HOMER1 in glioblastoma patient samples (n=3 additional patients; P039, P040, P042) upon 745 

Vortioxetine treatment in Nestin+ cells. Immunofluorescence measurements across different time-746 

points (3-6 and 24 h) and different Vortioxetine concentrations (10, 20µM). e, Representative single-747 

cell image crops from glioblastoma patient P040 of Nestin+ cells stained with different AP-1 748 

transcription factors and downstream effector gene HOMER1 after Vortioxetine treatment (+; 20µM) 749 

and DMSO vehicle control (-) at 24 hours. Cells are pseudo-colored with DAPI (blue), Nestin (yellow) 750 

and AP-1 transcription factors/HOMER1 (red). Two-sided t-test compared to negative control. Scale 751 

bar, 15µm. f, Survival analysis of Trial I: LN-229 (left) or Trial II: ZH-161 (right) tumor-bearing mice (n=6-752 

7 mice per group). Mice were treated intraperitoneally (i.p.) between days 5-21 after tumor 753 

implantation with a PCY-HIT NAD, Vortioxetine (VORT; 10mg/kg; Trial I, P=0.0001; Trial II, P=0.0016), a 754 

positive control, Temozolomide (TMZ; 50mg/kg; Trial I, P=0.0009 ; Trial II, P=0.0002), a PCY-NEG NAD, 755 

Paliperidone (PALI; 5mg/kg), and a negative vehicle control. See also Extended Data Fig. 10a for Trial 756 

III: ZH-161 and full results of in vivo Trials I and II including other PCY-hit NADs tested. g, Trial IV: in vivo 757 

treatment of Vortioxetine (VORT; 10mg/kg) in combination with 1st- and 2nd-line glioblastoma 758 

chemotherapies; Temozolomide (TMZ; 50mg/kg) and Lomustine (CCNU; 20mg/kg) compared to single-759 

agent treatments and negative vehicle control in ZH-161 tumor-bearing mice (n=5-6 mice per group). 760 

Combination treatments, TMZ+VORT/CCNU+VORT, both P=0.0007; Single-agents, TMZ/CCNU/VORT, 761 

all P=0.0018. f-g, Survival plotted as Kaplan–Meier curves and P values calculated using log-rank 762 

(Mantel-Cox) test. Censored mice denoted as tick marks. P-values: not significant (ns) P > 0.05, 763 

*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.   764 
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Extended Data Figure Legends 765 

Extended Data Fig. 1: Glioblastoma prospective cohort overview and single-cell RNA-766 

sequencing of four patient samples 767 

a, Overview of the glioblastoma prospective patient cohort (n=27 patients) visualized as a circos plot. 768 

Concentric circles from outermost to innermost show primary versus recurrent tumor status, Ki67 769 

labeling index, sex, MGMT promoter methylation status, and the most frequent genetic alterations 770 

(n=11) determined by targeted next-generation sequencing (NGS). Asterisks (*) denote patient 771 

samples for which scRNA-Seq was also performed (black, n=4 patients at baseline; pink, n=1 patient 772 

after drug treatment). CNV; copy number variation. See Supplementary Table 1,2 for full cohort 773 

information. b, Representative FACS gates of patient sample P011 to enrich for glioblastoma cells prior 774 

to scRNA-Seq (50,000 cells shown). Live viable cells were enriched by first gating DRAQ5+DAPI- cells, 775 

then sorting CD45+ and CD45- populations separately. c, UMAP projection of 7684 single-cell 776 

transcriptomes from four glioblastoma patient samples colored by patient (P007; 3475 cells, P011; 777 

1490 cells, P012; 330 cells, P013; 2389 cells). d, UMAP projection of 7684 single-cell transcriptomes as 778 

in Figure 1c colored by cell type lineage. e, scRNA-Seq log10(expression) of key glioblastoma and 779 

immune marker genes. f, Top marker genes per scRNA-Seq cluster in Figure 1c that are expressed in 780 

more than 10 percent of cells in the respective cluster. Columns correspond to cluster ids and circle 781 

sizes scale with the percent of cells within each cluster expressing each gene. Color scale represents 782 

log10(mean+0.1) expression.   783 
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Extended Data Fig. 2: Deep learning of glioblastoma stem cell morphologies and 784 

clinical parameter-based stratification of patient survival  785 

a, Architecture of the convolutional neural network (CNN) used to train the glioblastoma stem cell 786 

(GSC) morphologies, derived from a modified AlexNet 85. b, Performance of the trained GSC 787 

morphology CNN in classifying the manually curated test image dataset consisting of Nestin+ single-788 

cell crops (n=10,204 images) into the corresponding four GSC morphotypes (M1-M4). Accuracy of cell 789 

classification shown as a confusion matrix. c, UMAP projection of the morphological CNN feature space 790 

of 84,180 single cells (up to n=1000 cells per morphotype and patient, n=27 patients). CNN feature 791 

space consists of ten dimensional activations taken from the 2nd-last fully connected layer of the 792 

network. Cells are colored by the local median of selected single-cell features as in Figure 1g. d, 793 

Morphotype (M2) abundance-based stratification of progression-free survival (PFS) in primary 794 

glioblastoma patients (n=17 patients) plotted as Kaplan-Meier survival curves. M2-high; n=11, M2-low; 795 

n=6 patients; P=0.22 (ns). e, Clinical parameter-based stratification of progression-free survival (PFS) 796 

in primary glioblastoma patients (n=17 patients) plotted as Kaplan-Meier survival curves. From left to 797 

right, histopathological Ki67% labeling index, sex, and MGMT promoter methylation status (n=1 798 

patient with undertermined MGMT status ommitted). d-e, For continuous parameters such as M2 799 

morphotype abundance and Ki67%, the optimal cut-point for patient stratification (high, low) is 800 

determined by maximally selected rank statistics. Survival curves are compared using the log-rank 801 

(Mantel-Cox) test. Censored patients in the prospective cohort indicating ongoing responses (tick 802 

marks).  803 
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Extended Data Fig. 3: Patient ex vivo drug response relates to clinical parameters, 804 

tumor composition, and mutational profiles  805 

a, Glioblastoma drug (GSDs; rows; n=3 drugs) response across glioblastoma patient samples (columns; 806 

prospective cohort, n=27 patients; retrospective cohort, n=18 patients). Glioblastoma drug response 807 

is averaged across four concentrations for Temozolomide (TMZ; 1st-line chemotherapy; 50, 100, 250, 808 

500µM; annotated green) and Lomustine/Carmustine (Lomustine, CCNU; Carmustine, BCNU; 2nd-line 809 

chemotherapies; 10, 50, 100, 250µM; annotated orange). Heatmap color scale indicates the PCY score 810 

of Nestin+ or S100B+ cells. b, Temozolomide (100µM) ex vivo sensitivity-based stratification of 811 

progression-free survival (PFS) in the prospective glioblastoma cohort (n=16 patients; P=0.041) plotted 812 

as Kaplan-Meier curves. All patients received TMZ as 1st-line treatment in the clinic with censored 813 

patients in the prospective cohort indicating ongoing responses (tick marks). Survival curves are 814 

compared using the log-rank (Mantel-Cox) test and optimal cut-point for patient stratification 815 

determined by maximally selected rank statistics. c, Temozolomide (50µM) ex vivo response of 816 

glioblastoma patients (n=41 patients across both cohorts; y-axis) stratified by MGMT promoter 817 

methylation status. Only patients with an annotated MGMT status were included for this analysis. 818 

Unmethyl; unmethylated, Methyl; methylated. Wilcoxon rank sum test, P=0.037. Boxplots show 25th–819 

75th percentiles with a line at the median; whiskers extend to 1.5 times the interquartile range. Dots 820 

indicate individual patient values colored by cohort. d, Drug response matrix of oncology drugs 821 

(ONCDs; columns; n=65 drugs) across glioblastoma patient samples (rows; n=12 patients). Heatmap 822 

color scale indicates the PCY score of glioblastoma cells (Nestin+ or S100B+). Annotations per patient 823 

sample (rows; right of heatmap) indicate the clinical parameters Ki67 labeling index, MGMT promoter 824 

methylation status (unmethyl; unmethylated, methyl; methylated, nd; not determined), Sex, and 825 

recurrent tumor status (Status). Annotation per drug (columns; underneath heatmap) indicates 826 

oncology drug class as in Figure 2c. Asterisks (*) denote FDR-adjusted P < 0.05. e, Drug response matrix 827 

of neuroactive drugs (NADs, n=67 drugs) averaged across glioblastoma patient samples (n=27 patients) 828 

for each cell population defined by immunofluorescence markers (Nestin, S100B, CD3, and CD45) and 829 

total cell number (TCN). Heatmap color scale indicates the mean PCY score of each respective 830 

population and drug classes are annotated as in Figure 2c. f, Pharmacogenomic analysis of the most 831 

common genetic alterations (n=11) in glioblastoma patients and ex vivo drug response. Each datapoint 832 

represents a [gene:drug] association, where x-axis denotes the percent of patients for which the 833 

respective drug’s PCY score >0.03 and the y-axis denotes FDR-adjusted P-values for the association. g, 834 

As in f, but for associations between clinical parameters in glioblastoma patients and ex vivo drug 835 

response. Each datapoint represents a [clinical parameter:drug] association, where x-axis denotes the 836 

percent of patients for which the respective drug’s PCY score >0.03 and the y-axis denotes FDR-837 

adjusted P-values. f,g Colored by gene and shape denote drug category. Red dashed line indicates the 838 

significance threshold. Significant associations are annotated. P-values were calculated using the 839 

Wilcoxon rank sum test for two groups, and for three or more groups, the Kruskal-Wallis test was used. 840 

For ONCD associations, the following genetic mutations or clinical parameters had less than 3 patients 841 

in any category and were thus not analyzed: Genetic, EGFRvIII, NF1, TERT, RB1; Clinical, Recurrent 842 

status. a,d,e, Outliers beyond color scale limits were correspondingly set to minimum and maximum 843 

values. P-values: *P < 0.05.  844 
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Extended Data Fig. 4: Dose-response to top neuroactive drugs across glioblastoma 845 

cell lines and patient ex vivo drug response to antidepressants and antipsychotics 846 

a-d, Dose-response curves of glioblastoma cell lines (a, LN-229; b, LN-308; c, ZH-161; d, ZH-562) of a 847 

subset of top neuroactive drugs (n=9 drugs) across five different concentrations. X-axis represents 848 

logarithmically spaced drug concentrations while y-axis denotes for a-b, Relative cell count normalized 849 

to DMSO control and for c-d, Relative area of 2D-projected spheroids normalized to DMSO control. 850 

Individual well replicates are plotted as black dots (n=3-5 replicate wells/drug, n=15 DMSO wells). 851 

Dose-response curves (solid lines) are fitted when possible with a two-parameter log-logistic 852 

distribution with 95% confidence intervals (colored per cell line) and ED50 (red vertical dashed lines). 853 

e, Drug response matrix of antidepressants (left, n=11 drugs) and antipsychotics (right, n=16 drugs) 854 

across glioblastoma patient samples (n=27 patients) subsetted from the original matrix shown in Figure 855 

2b. Color scale depicts the PCY score of glioblastoma cells (Nestin+ or S100B+). Outliers beyond color 856 

scale limits were correspondingly set to minimum and maximum values. Annotations per patient 857 

sample (rows; left of heatmap) indicate the clinical parameters Ki67 labeling index, MGMT promoter 858 

methylation status (unmethyl; unmethylated, methyl; methylated, nd; not determined), Sex, and 859 

recurrent tumor status (Status). Asterisks (*) denote FDR-adjusted P < 0.05.  860 
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Extended Data Fig. 5: Single-cell heterogeneity and functional dependencies of 861 

primary neuroactive drug targets 862 

a, UMAP projection of 7684 single-cell transcriptomes from four glioblastoma patient samples (P007, 863 

P011, P012, P013) as in Figure 1c, colored by aggregate scRNA-Seq expression across primary target 864 

genes (PTG) per receptor class in Figure 3b. Color scaled to percent of maximum expression per 865 

receptor class. b, Neural specificity score (x-axis) versus patient specificity score (y-axis) for three 866 

independent glioblastoma scRNA-Seq datasets. Each dot represents a gene, with key marker genes 867 

from Extended Data Figure 1e annotated with labels. Key marker gene color represents mean 868 

expression across cells in which the gene was detected and dot size scales with percent of expressed 869 

cells. All other genes detected in the respective datasets are colored in grey. (Lee et al., this study; n=4 870 

patients, n=7684 cells, n=15668 genes; Neftel et al., n=9 patients, n=13519 cells, n=22160 genes; Yu et 871 

al., n=9 patients, n=4307 cells, n=19098 genes; see Methods for further detail). c-d, siRNA-mediated 872 

gene silencing of PTGs in LN-229 cells. Total cell number reduction (TCN) and cleaved CASP3+ fraction 873 

increase (CASP3+) depicted as a circle per gene (columns). Circle sizes scale with the –log10(FDR-874 

adjusted P value). c, Color represents the PCY score calculated using the FLUC siRNA condition as a 875 

negative (-) control reference including all tested PTGs corresponding to Supplementary Table 5 (n=59 876 

siRNA conditions). d, Color represents the receptor class of each PTG including PTGs not visualized in 877 

Figure 3d shown. Asterisks (*) denote FDR-adjusted P < 0.05. Adjacent bar plot represents baseline 878 

expression (DESeq2 vsd-normalized RNA-Seq counts) of each PTG in LN-229 cells. e, Survival analysis 879 

and associated risk tables of the TCGA primary glioblastoma cohort (n=120 patients) based on MC3R 880 

(left) and ADRA2B (right) expression measured by RNA-Seq. Optimal cut-point for patient stratification 881 

(high, low) is determined by maximally selected rank statistics. Survival curves are compared using the 882 

log-rank (Mantel-Cox) test. 95% confidence intervals are indicated in shaded curves.   883 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.10.07.511321doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.07.511321
http://creativecommons.org/licenses/by-nc-nd/4.0/


10-410-310-210-1

Lambda

100

200

300

400

500

600

700

800

900

1000

C
ro

ss
-V

al
id

at
io

n 
D

ev
ia

nc
e Deviance with Error Bars

LambdaMinDeviance
Lambda1SE

a

-0.7

0

0.7

Target Level
Primary
Secondary

Drug Type
Neuroactive (NADs)
Oncology (ONCDs)

COSTAR subscore

b

LRP1
NRF1
SLC5A4
SEC24C
MRPL19
NR1I2
SULT1A1
PDE1A
DOCK11
ADK
ETV6
HCRTR1
CYP4A11
C4BPA
GPKOW
BATF3
GFER
EPHX2
BTG2
VPS11
AP1S2

Zo
ni

sa
m

id
e 

C
ob

im
et

in
ib

 
El

es
cl

om
ol

 
Pe

ro
sp

iro
ne

 
Le

ve
tir

ac
et

am
 

Lu
ra

si
do

ne
 

D
ro

xi
do

pa
 

M
ln

22
38

 
Zo

te
pi

ne
 

C
lo

m
ip

ra
m

in
e 

R
ib

oc
ic

lib
 

O
si

m
er

tin
ib

 
Ap

om
or

ph
in

e 
R

im
on

ab
an

t 
C

er
iti

ni
b 

Pa
no

bi
no

st
at

 
R

eg
or

af
en

ib
 

Po
na

tin
ib

 
Af

at
in

ib
 

O
la

nz
ap

in
e 

Vi
np

oc
et

in
e 

Ab
em

ac
ic

lib
 

D
as

at
in

ib
 

Pa
ro

xe
tin

e 
Fl

uo
xe

tin
e 

C
hl

or
pr

om
az

in
e 

So
ra

fe
ni

b 
M

id
os

ta
ur

in
 

Id
el

al
is

ib
 

R
ilu

zo
le

 

c

SLC5A4
LRP1
NRF1
SEC24C
MRPL19
NR1I2
SULT1A1
DOCK11
BATF3
C4BPA
AP1S2
BTG2
VPS11

R
es

er
pi

ne
Ve

ra
pa

m
il

C
hl

or
zo

xa
zo

ne
D

ro
pe

rid
ol

Es
ci

ta
lo

pr
am

Pr
im

id
on

e
D

ih
yd

ro
er

go
ta

m
in

e
Ac

et
az

ol
am

id
e

N
ifl

um
ic

 a
ci

d
So

ta
lo

l
O

nd
an

se
tro

n
N

ad
ol

ol
M

et
op

ro
lo

l
Li

do
ca

in
e

Bu
pr

op
io

n
Ph

ys
os

tig
m

in
e

D
ilt

ia
ze

m
Am

itr
ip

ty
lin

e
O

xc
ar

ba
ze

pi
ne

Lo
sa

rta
n

En
al

ap
ril

C
ar

bi
do

pa
D

es
ip

ra
m

in
e

Le
vo

do
pa

Ac
et

am
in

op
he

n
Am

itr
ip

ty
lin

e 
H

C
L

Tr
ifl

uo
pe

ra
zi

ne
Fl

up
he

na
zi

ne
C

yp
ro

he
pt

ad
in

e
Tr

ifl
up

ro
m

az
in

e 
H

C
L

C
an

de
sa

rta
n 

ci
le

xe
til

Et
ho

pr
op

az
in

e 
H

C
L

N
or

tri
pt

yl
in

e
Se

lic
ic

lib
H

yd
ra

la
zi

ne
Al

lo
pu

rin
ol

Pe
rp

he
na

zi
ne

Pi
m

oz
id

e
Th

io
rid

az
in

e
M

ia
ns

er
in

M
ap

ro
til

in
e

M
et

er
go

lin
e

Se
rtr

al
in

e
Lo

ra
ta

di
ne

Fl
us

pi
ril

en
e

Fl
up

en
tix

ol
Sp

ip
er

on
e

Sa
lm

et
er

ol
 x

in
af

oa
te

-0.7

0

0.7

Target Level
Primary
Secondary

Drug Type
COSTAR-HIT
COSTAR-NEG

COSTAR subscore

Extended Data Figure 6
.CC-BY-NC-ND 4.0 International licensemade available under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 
The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.10.07.511321doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.07.511321
http://creativecommons.org/licenses/by-nc-nd/4.0/


Extended Data Fig. 6: Convergence of secondary drug targets analyzed by regularized 884 

regression (COSTAR) identifies a drug-target connectivity signature predictive of anti-885 

glioblastoma efficacy 886 

a, Visualization of the local optimum in the cross-validated predictive power of COSTAR LASSO 887 

regression when fitting a binomial model to predict drug activity by PCY (hit vs neg) based on a drugs 888 

connectivity pattern (COSTAR constellation). X-axis denotes the Lambda regularization parameter and 889 

the y-axis denotes the goodness-of-fit indicating the cross-validated error of the model (deviance). Red 890 

dots and light grey error bars indicate the average and standard deviation in deviance across 20 891 

bootstrapped runs. Vertical dashed lines and colored circles indicate either the Lambda value with the 892 

minimal mean squared error (green, MSE) or the more conservative Lambda value with minimal MSE 893 

plus one standard deviation (blue, MSE+1STD). b, Heatmap visualizing the COSTAR subscores of PCY-894 

hit drugs that were part of the COSTAR training data (columns; n=30 drugs) to primary and secondary 895 

drug targets (rows). Drug type (NAD, ONCD) is annotated above. c, COSTAR subscores of COSTAR-896 

predicted drugs that were chosen for experimental validation in glioblastoma patient samples 897 

(columns; n=23 COSTAR-HIT drugs; n=25 COSTAR-NEG drugs) to primary and secondary drug targets 898 

(rows). Drug type (COSTAR-HIT, COSTAR-NEG) is annotated above. b-c, Heatmap color scale indicates 899 

the COSTAR subscore which is the LASSO model coefficient multiplied by the integrated connectivity 900 

of drug to target mapping. Target genes with COSTAR LASSO coefficients >0.1 are displayed. Target 901 

level (primary or secondary target) is annotated per gene on the left.  902 
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Extended Data Fig. 7: DRUG-Seq reveals a consistent transcriptional response to 903 

neuroactive drugs with anti-glioblastoma efficacy 904 

a, Number of genes detected (y-axis) per drug condition (columns) and by time-point (left and right 905 

panel) in the DRUG-Seq data (n=20 drugs, n=2 time-points, n=4 replicates per drug/time-point). b, 906 

Principal component analysis (PCA) of averaged DESeq2 vsd-normalized RNA-Seq counts per drug. 907 

Points are colored by drug and shape indicates time-point. c, Comparisons of drug induced 908 

transcriptional profiles by DRUG-Seq shown as Volcano plots (log2(fold change) versus –log10(adjusted 909 

P-value)) for NADs vs NEGs (22h, left), ONCDs vs CTRLs (6h, middle), and ONCDs vs CTRLs (22h, right). 910 

Genes above a –log10(0.05 adjusted P-value) threshold plotted as light grey dots, and non-significant 911 

genes as dark grey dots. Highlighted genes (blue) include AP-1 transcription factor (TF) network genes 912 

(Pathway Interaction Database; PID AP1 PATHWAY; 84) and key COSTAR signature genes. d, Top 913 

enriched KEGG terms for differentially expressed genes based on DESeq2 comparisons of NADs vs 914 

NEGs (6h, left) and NADs vs NEGs (22h, right). Bars represent the number of differentially expressed 915 

genes present in the annotation, and colors indicate –log10(false discovery rate). e, Expression of AP-916 

1 transcription factor family and BTG genes additional to Figure 4d. Visualization and statistical tests 917 

as in Figure 4d. P-values: not significant (ns) P > 0.05, *P < 0.05, **P < 0.01 f, Transcription factor 918 

binding site enrichment analysis of genes that were upregulated in NAD treated cells in Extended Data 919 

Figure 7c (22h, left). Circles correspond to transcription factor annotations, circle sizes scale with the 920 

fraction of genes present in the annotation, and colors indicate –log10(false discovery rate). a,e 921 

Boxplots show 25th–75th percentiles with a line at the median; whiskers extend to 1.5 times the 922 

interquartile range.  923 
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Extended Data Fig. 8: Measuring ER calcium store release, siRNA-mediated silencing 924 

of COSTAR signature genes, and Vortioxetine-induced transcriptomic and proteomic 925 

response 926 

a, ER calcium store release upon drug treatment relative to DMSO vehicle control (fold change) 927 

measured by FLIPR assays in LN-229 cells (n=4 assay plates; n=18 conditions; n=12 wells/drug; DMSO 928 

and Thapsigargin, n=24 wells each). Thapsigargin (TG) was used as a positive control that induces ER 929 

calcium store depletion. Calcium levels for each condition were calculated by averaging calcium levels 930 

after drug treatment (190-430 seconds interval). Different drug categories including PCY-hit NADs, n=8 931 

drugs; PCY-neg NADs, n=6 drugs; PCY-hit ONCDs, n=2 drugs; and TG were compared. Two-sided t-test 932 

against DMSO vehicle control. P-values adjusted for multiple comparisons by Holm correction. P-933 

values: TG, 2.86e-16. ****P < 0.0001. Line indicates the median value. b, Representative traces of ER 934 

calcium store release following drug treatment corresponding to Extended Data Figure 8a. RFU; 935 

relative fluorescence units. c, Relative gene expression (y-axis) of BTG1, BTG2, JUN and Ki67 (panels) 936 

upon siRNA knockdown of FLUC, BTG1, BTG2, and JUN (columns) normalized to the FLUC negative 937 

control siRNA (n=3 biological replicates; black dots). Boxplots show 25th–75th percentiles with a line 938 

at the median; whiskers extend to 1.5 times the interquartile range. d, Principal component analysis 939 

(PCA) of averaged DESeq2 vsd-normalized RNA-Seq counts following Vortioxetine treatment (20µM) 940 

in LN-229 cells (n=3 replicates/time-point). Points are colored by time-point. e, Heatmap of log2(fold 941 

change) in gene expression per time-point (rows; relative to 0h) for the top 100 genes (columns) 942 

contributing to the first principal component (PC1) in Extended Data Figure 8d. TP; time-point. AP-1 943 

transcription factors and AP-1 effector genes are labeled in red. f, Volcano plots of log2(fold change) 944 

versus –log10(P-value) corresponding to 3 hours versus 0 hours (top; Vort.3h vs. Vort.0h ) and 9 hours 945 

versus 0 hours (bottom; Vort.9h vs. Vort.0h) comparisons of proteomics measurements following 946 

Vortioxetine treatment (Vort, 20µM; n=3 biological replicates/condition) in LN-229 cells. Plotted are 947 

proteins above a –log10(0.05 P-value) threshold (purple), and non-significant proteins (grey). Select 948 

gene names are shown. g, Gene Ontology (GO) gene set enrichment analysis of signed –log10(P-values) 949 

of both time-point comparisons from Extended Data Figure 8f. Bars represent the normalized 950 

enrichment score (NES) and colors indicate –log10(false discovery rate). h, Heatmap depicting 951 

log2(fold change) in protein expression per time-point (rows; relative to 0h) for the proteins (columns) 952 

contributing to enriched GO term “GO:0001216 DNA-binding transcription activator activity” in 953 

Extended Data Figure 8g. TP; time-point. AP-1 transcription factors are labeled in red.  954 
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Extended Data Fig. 9: Single-cell RNA-sequencing of Vortioxetine-treated patient 955 

cells and the multi-faceted anti-glioblastoma effects of Vortioxetine 956 

a, UMAP projection of 1736 single cells from glioblastoma patient sample P024 upon 3 hours of 957 

treatment with Vortioxetine (P024::VORT; n=577 cells; purple; 20µM) or DMSO vehicle control 958 

(P024::DMSO; n=1159 cells; grey). b, Expression levels of the top six marker genes per scRNA-Seq 959 

cluster in Extended Data Figure 9a that are expressed in more than 10% of cells in the respective 960 

cluster. Columns correspond to cluster ids and circle sizes scale with the percent of cells within each 961 

cluster expressing each gene. Color scale represents log10(mean+0.1) expression. c, Mean cell 962 

migration distance per condition (n=5 replicate wells) and d, number of migrated cells measured in a 963 

collagen-based spheroid invasion assay after 36 hours of Vortioxetine treatment (2, 3.5, 5µM) across 964 

four glioblastoma cell lines; LN-229 (n=560-1125 cells/well), LN-308 (n=137-426 cells/well), ZH-161 965 

(n=200-574 cells/well), ZH-562 (n=38-253 cells/well). e, Clonogenic survival measured by a resazurin-966 

based cell viability assay after 11-13 days of Vortioxetine treatment (7 concentrations; 0.625-20µM) 967 

across four glioblastoma cell lines; LN-229 LN-308, ZH-161, ZH-562. Cells were seeded in 96-well plates 968 

(50-500 cells/well) and normalized intensity (λEm = 590 nm) measured across six replicate 969 

wells/concentration. Dose-response fitted with a two-parameter log-logistic distribution with 95% 970 

confidence intervals (light grey) and ED50 (dashed lines). g, Spheroid formation analyzed by the 2D 971 

area of the ZH-562 line measured after 12 days of Vortioxetine treatment (0.1-5µM). Approximately 5 972 

cells/well initially seeded in low-attachment U-bottom 384-well plates. DMSO; 0µM, n=45 replicate 973 

wells; 0.1µM, n=46, P=0.005; 1µM, n=47, P=0.00027; 5µM, n=46, P<0.0001. Data is shown per 974 

concentration as boxplot, individual data points, and histogram.  975 
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Extended Data Figure 10
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Extended Data Fig. 10: Top neuroactive drugs confer a significant survival benefit in 976 

orthotopic in vivo mouse models of glioblastoma 977 

a, Complete survival analysis across three independent in vivo trials: Trial I: LN-229, Trial II: ZH-161, 978 

and Trial III: ZH-161, each with n=6-7 tumor-bearing mice per drug treatment group and n=7 drug 979 

treatments per trial. Mice were treated with their respective drugs for each trial intraperitoneally (i.p.) 980 

between days 5-21 after tumor implantation. PCY-HIT NADs: Vortioxetine (VORT; 10mg/kg; Trial I, 981 

P=0.0001; Trial II, P=0.0016; Trial III, P=0.0006); Brexpiprazole (BREX; 1mg/kg; Trial I, P=0.0249; Trial II, 982 

ns; Trial III, P=0.0002); Aprepitant(APRE; 20mg/kg; Trial I, ns; Trial II, ns; Trial III, P=0.0006); 983 

Apomorphine (APOM; 5mg/kg; Trial I, ns ; Trial II, ns; Trial III, P=0.0005); Chlorpromazine(CHLO; 984 

10mg/kg; Trial III, P=0.011). Positive control (+): Temozolomide (TMZ; 50mg/kg; Trial I, P=0.0009 ; Trial 985 

II, P=0.0002; Trial III, P=0.0011). PCY-NEG NAD: Paliperidone (PALI; 5mg/kg; Trial I, ns; Trial II, ns), and 986 

a negative vehicle control. Drug names with asterisk (*) denote drugs used in a subset of the three in 987 

vivo trials. Survival plotted as Kaplan–Meier curves and P-values calculated using log-rank (Mantel-988 

Cox) test. Censored mice denoted as tick marks. b, Representative MRI images of three ZH-161 989 

transplanted mice (columns) after 15 days per drug treatment (n=7 drugs). Tumor perimeters are 990 

indicated in yellow. c, Quantification of tumor perimeters corresponding to Extended Data Figure 10b. 991 

Dots represent the perimeter in mm (y-axis) for individual mice per drug (columns), red lines indicate 992 

mean value. Two-sided t-test. P-values: Apomorphine (APOM; P=0.0014); Vortioxetine (VORT; 993 

P=0.034); Temozolomide (TMZ; P=0.0284). P-values: not significant (ns) P > 0.05, *P < 0.05, **P < 0.01, 994 

***P < 0.001, ****P < 0.0001.   995 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.10.07.511321doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.07.511321
http://creativecommons.org/licenses/by-nc-nd/4.0/


Methods 996 

Patient sample processing and drug testing 997 

Surgically removed tumors were collected at the University Hospital of Zurich (Universitätsspital 998 

Zürich, USZ) with approval by the Institutional Review Board, ethical approval number KEK-StV-999 

Nr.19/08, BASEC number 2008-02002. Metadata of the prospective and retrospective glioblastoma 1000 

patient cohorts including clinical parameters, experiment inclusion, and genetics summary can be 1001 

found in Supplementary Table 1. The prospective cohort consists of patients where fresh tissue was 1002 

taken directly after surgery (n=27 patients for drug screening, plus an additional n=3 patients for 1003 

validation experiments). The retrospective cohort (n=18 patients) consists of patients for which snap-1004 

frozen bio-banked tissue was available covering a broad spectrum of progression-free survival. 1005 

Retrospective samples were further selected based on quality control measures including cell viability, 1006 

cell number, and the amount of debris present in the sample.  1007 

Tissue samples were first washed with PBS and cut into small pieces using single-use sterile scalpels. 1008 

Subsequent dissociation was performed in reduced serum media (DMEM media; #41966029 with 2% 1009 

FBS; #10270106, 1% Pen-strep; #15140122, and 25mM HEPES; #15630056, all products from Gibco) 1010 

supplemented with Collagenase IV (1mg/ml) and DNaseI (0.1mg/ml) using the gentle MACS Octo 1011 

Dissociator (Miltenyi Biotec, 130-096-427). Homogenates were filtered through a 70um Corning cell 1012 

strainer (Sigma-Aldrich, CLS431751) and washed once with PBS containing 2mM EDTA. Myelin and 1013 

debris removal was performed by a gradient centrifugation of the cell suspension in a 7:3 mix of 1014 

PBS:Percoll (Sigma-Aldrich, P4937) and washed again with PBS. Dissociated patient cells were seeded 1015 

at 0.5-1.5x10^4 cells/well into clear-bottom, tissue-culture treated, CellCarrier-384 Ultra Microplates 1016 

(Perkin Elmer, #6057300). Prior to cell seeding, tested drugs were re-suspended as 5mM stock 1017 

solutions and dispensed into the 384 well plates using an Echo 550 liquid handler (Labcyte) at their 1018 

respective concentrations in a randomized plate layout to control for plate effects. Information 1019 

regarding drugs used in this study can be found in Supplementary Table 3. For drug library testing 1020 

(glioblastoma drugs, GSDs; neuroactive drugs, NADs; oncology drugs, ONCDs) cells were incubated in 1021 

reduced serum media at 37°C, 5% CO2 for 48 hours with drugs.  1022 

Targeted Next Generation Sequencing (NGS, Oncomine Comprehensive Assay v3) 1023 

Tissue blocks from patient-matched glioblastomas were used to determine genetic alterations 1024 

including mutations, copy number variation and gene fusion. Formalin-fixed paraffin-embedded (FFPE) 1025 

tissue blocks were collected from the Tissue Biobank at USZ archives. Tumor area was marked on the 1026 

HE slide and relative tumor cell content was estimated by a trained pathologist. 1-3 cores cylinders 1027 

(0.6 mm diameter) or 40 um from the tumor area of the FFPE blocks were used for DNA and RNA 1028 

isolation. DNA was isolated with the Maxwell 16 FFPE Tissue LEV DNA Purification Kit (Promega, 1029 

#AS1130) according to the manufacturer’s recommendations. The double-strand DNA concentration 1030 

(dsDNA) was determined using the fluorescence-based Qubit dsDNA HS Assay Kit. RNA was extracted 1031 

with the Maxwell 16 FFPE Tissue LEV RNA Purification Kit (Promega, #AS1260) according to the 1032 

manufacturer’s recommendations. To avoid genomic DNA contamination, samples were pretreated 1033 

with DNase1 for 15 min at room temperature (RT). Library preparation with 20 ng DNA or RNA input 1034 

was conducted using the Oncomine Comprehensive Assay v3 following the manufacturer's 1035 

instructions. Adaptor/barcode ligation, purification and equilibration was automated with Tecan Liquid 1036 

Handler (EVO-100). NGS libraries were templated using Ion Chef and sequenced on a S5 (Thermo Fisher 1037 
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Scientific), and data were analyzed using Ion Reporter Software 5.14 with Applied Filter Chain: 1038 

Oncomine Variants (5.14) settings and Annotation Set :Oncomine Comprehensive Assay v3 1039 

Annotations v1.4.  1040 

For NGS data analysis, the Ion Reporter Software within Torrent Suite Software was used, enabling 1041 

detection of small nucleic variants (SNVs), copy number variations (CNVs), gene fusions and indels from 1042 

161 unique cancer driver genes. Detected sequence variants were evaluated for their pathogenicity 1043 

based on previous literature and the ‘ClinVar’ database 86. Gene alterations described as benign or 1044 

likely benign were not included in our results. Non-pathogenic mutations harboring a Minor Allele 1045 

Frequency higher than 0.01 were not selected. The Default Fusion View parameter was selected. For 1046 

CNV confidence range, the default filter was used to detect gains and losses using the confidence 1047 

interval values of 5% confidence interval for Minimum Ploidy Gain over the expected value and 95% 1048 

confidence interval for Minimum Ploidy Loss under the expected value. CNV low confidence range was 1049 

defined for gain by copy number from 4 to 6 (lowest value observed for CNV confidence interval 1050 

5%:2.9) and loss from 0.5 to 1 (highest value observed for CNV confidence interval 95%:2.43). High 1051 

confidence range was defined by gain up to 6 copy number (lowest value observed for CNV confidence 1052 

interval 5%:4.54) and loss below 0.5 copy number (highest value observed for CNV confidence interval 1053 

95%:1.37). 5% and 95% interval confidence of all selected loss and gain are available in Supplementary 1054 

Table 2. The minimum number of tiles required was eight. Results are reported as detected copy 1055 

number. 1056 

Cell culture 1057 

The adherent human glioblastoma cell lines LN-229 (ATCC, #CRL-2611) and LN-308 were cultured in 1058 

Dulbecco’s modified Eagle medium (DMEM, #41966, Gibco) supplemented with 10% fetal bovine 1059 

serum (FBS, #10270106, Gibco). LN-229 and LN-308 cells were passaged using Trypsin-EDTA (0.25%, 1060 

Gibco, #25200056). For DRUG-seq, RNA-Seq, siRNA knockdown, and proteomics measurements using 1061 

LN-229 cells, low-passage cells below passage 15 were used. The spheroid human glioblastoma-1062 

initiating cell lines ZH-161 and ZH-562 was generated from freshly isolated tumor tissue and cultured 1063 

in Neurobasal medium (NB, #21103049, Gibco) supplemented with B27 (Gibco, #17504044), 20 ng/mL 1064 

b-FGF (Peprotech, #AF-100-18B), 20 ng/mL EGF (Peprotech, #AF-100-15), 2 mM L-glutamine (Gibco, 1065 

#25030081). ZH-161 and ZH-562 cells were passaged using Accutase (Stemcell Technologies, #07920). 1066 

Cell lines were authenticated at the Leibniz Institute DSMZ (Braunschweig, Germany) and regularly 1067 

tested negative for mycoplasma. 1068 

Immunocytochemistry 1069 

Cells were fixed with 4% PFA (Sigma-Aldrich, #F8775) in PBS and blocked in 5% FBS and 0.1% Triton 1070 

containing PBS. For characterization of cellular composition across glioblastoma patient samples, cells 1071 

were stained overnight at 4°C in blocking solution with the following antibodies and dilutions: Alexa 1072 

Fluor® 488 anti-S100 beta (1:1000, Abcam, #ab196442, clone EP1576Y), PE anti-Nestin (1:150, 1073 

Biolegend, #656806, clone 10C2), Alexa Fluor® 488 anti-CD3 (1:300, Biolegend, #300415, clone 1074 

UCHT1), Alexa Fluor® 647 anti-CD45 (1:300, Biolegend, #368538, clone 2D1) and DAPI (1:1000, 1075 

Biolegend, #422801, stock solution 10mg/ml). Due to the manufacturer discontinuation of the Alexa 1076 

Fluor® 488 anti-S100 beta antibody, from patient sample P30 and onwards in the prospective cohort, 1077 

samples were either stained with a self-conjugated Alexa Fluor® 488 anti-S100 beta antibody, where 1078 

Alexa Fluor™ 488 NHS Ester (Thermo Scientific, #A20000) was conjugated to the anti-S100 beta 1079 

antibody (Abcam, #ab215989, clone EP1576Y) or the following antibody combinations where the 488 1080 
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and 555 channel markers were swapped: Alexa Fluor® 488 anti-Nestin (1:150, Biolegend, #656812, 1081 

clone 10C2), Alexa Fluor® 555 anti-S100 beta (1:1000, Abcam, #ab274881, clone EP1576Y), PE anti-CD3 1082 

(1:300, Biolegend, #300441, clone UCHT1), Alexa Fluor® 647 anti-CD45 (1:300, Biolegend, #368538, 1083 

clone 2D1).  1084 

Other antibodies used in this study include the following: Alexa Fluor® 647 anti-Tubulin Beta 3 (1:1000, 1085 

Biolegend, #657406, clone AA10), Alexa Fluor® 555 anti-Cleaved Caspase-3 (1:500, Cell Signaling 1086 

Technology, #9604S), Alexa Fluor® 546 anti-HOMER (1:300, Santa Cruz Biotechnology, #sc-17842 1087 

AF546, clone D-3), PE anti-CFOS (1:300, Cell Signaling Technology, #14609S, clone 9F6), FITC anti-ATF4 1088 

(1:300, Abcam, #ab225332), Alexa Fluor® 488 anti-JUND (1:300, Santa Cruz Biotechnology, #sc-271938 1089 

AF488, clone D-9), Alexa Fluor® 594 anti-CD45 (1:300, Biolegend, #368520, clone 2D1). 1090 

Confocal microscopy and image analysis 1091 

Imaging of the 384 well plates was performed with an Opera Phenix automated spinning-disk confocal 1092 

microscope at 20x magnification unless otherwise specified (Perkin Elmer, HH14000000). Single cells 1093 

were segmented based on their nuclei (DAPI channel) using CellProfiler 2.2.0. Downstream image 1094 

analysis was performed with MATLAB R2019a-R2020a. Fractions of marker positive cells for each 1095 

condition were derived for each patient sample based on the histograms of the local background 1096 

corrected intensity measurements. Marker positive fractions were averaged across each 1097 

well/condition and compared to the negative DMSO control.  1098 

Deep learning of glioblastoma stem cell morphologies 1099 

To generate a training dataset, Nestin+CD45- cells identified by immunofluorescence across the whole 1100 

prospective glioblastoma patient cohort were cropped as 150x150 pixel images. These single-cell 1101 

image crops were then manually-curated and labeled as four morphological classes (M1-M4 1102 

morphotypes) based on their shape, size, and presence of tumor microtubes. A convolution neural 1103 

network (CNN) with a modified Alexnet architecture 85 as shown in Extended Data Figure 2a was then 1104 

trained on this manually-curated training data with 12,757 images per class and 51,028 images in total. 1105 

CNN training included usage of the Adam optimizer, with a mini-batch size of 150 and a maximum 1106 

number of 30 epochs. The initial learning rate was set to 0.001 with a piecewise learning rate schedule 1107 

and a drop factor of 0.01 every 6 epochs. 1108 

Network performance is shown as a confusion matrix in Extended Data Figure 2b. All Nestin+ single-1109 

cell images were subsequently classified by this pre-trained CNN to determine morphotype 1110 

abundances across patients and drug conditions. For visualization of the CNN-based GSC morphotypes, 1111 

UMAP plots were generated based on the CNN feature space that consists of ten dimensional 1112 

activations taken from the 2nd-last fully connected layer of the network. The CNN feature space of 1113 

84,180 cells (maximally 1000 cells per class and patient, n=27 patients) was projected on the UMAP 1114 

using the following parameters: distance metric, seuclidean; number of neighbors, 10; minimal 1115 

distance, 0.06. Different morphological and marker-based features from the original cell segmentation 1116 

determined by CellProfiler 2.2.0 such as cell area, eccentricity, and roundness, and mean marker 1117 

intensity were selected for visualization. 1118 

siRNA knockdown and quantitative real-time PCR  1119 

All siRNAs used in the study were part of the MISSION® esiRNA (Sigma-Aldrich, Euphoria Biotech) 1120 

library (Supplementary Table 5) and ordered as custom gene arrays (esiOPEN, esiFLEX). FLUC esiRNA 1121 
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(EHUFLUC) targeting firefly Luciferase was used as a negative control, and KIF11 esiRNA (EHU019931) 1122 

was used as a positive control for transfection and viability. For all siRNA experiments, low-passage LN-1123 

229 cells were used. siRNAs were transfected at 10ng/well in 384 well plates and 40ng/well in 96 well 1124 

plates using Lipofectamine RNAiMAX (Invitrogen, #13778075). Imaging and drug incubation 1125 

experiments were conducted in 384 well plates, while Incucyte live cell imaging and cell lysis 1126 

preparation for RNA extraction and quantitative real-time PCR was performed in 96 well plates. For 1127 

384 well plates, both the siRNAs and Lipofectamine transfection reagent were dispensed using a 1128 

Labcyte Echo liquid handler in a randomized plate layout to control for plate effects when possible. For 1129 

data presented in Figure 3d, Extended Data Figure 5c,d, and Extended Data Figure 8c, cells were 1130 

incubated at 37°C, 5% CO2 for 48 hours following siRNA transfection before fixing, 1131 

immunohistochemistry, and RNA extraction. For data presented in Figure 4j, following 48 hours of 1132 

siRNA transfection, cells were incubated for an additional 24 hours with either DMSO vehicle control 1133 

or Vortioxetine (10µM) before fixing and subsequent analysis.  1134 

siRNA knockdown efficiency and relative abundance for the following target genes; BTG1, BTG2, JUN, 1135 

and MKI67 was measured by TaqMan™ Array plates (Applied Biosystems, Standard, 96-well Plate; 1136 

Format 16 with candidate endogenous controls) using the TaqMan™ Fast Advanced Master Mix 1137 

(Thermo Scientific, #A44360) on a QuantStudio™ 3 Real-Time PCR System (Applied Biosystems, 1138 

#A28567). Total RNA from LN-229 cells was extracted using the Direct-zol RNA MicroPrep Kit (Zymo 1139 

Research, #R2062), RNA concentration was measured using the Qubit 4 Fluorometer (Thermo 1140 

Scientific), and cDNA synthesized with the iScript™ cDNA Synthesis Kit (Bio-Rad, #1708890). For each 1141 

TaqMan biological replicate assay (n=3 replicates) 25ng of cDNA per sample was used. To calculate the 1142 

relative abundance of each target gene, the geometric mean Ct value of four endogenous control 1143 

genes (18s rRNA, GAPDH, HPRT, GUSB) was subtracted from each [sample-target gene] Ct value to 1144 

derive the deltaCt (dCt) value. Then, the mean deltaCt value from FLUC negative control samples was 1145 

subtracted from each [sample-target gene] deltaCt value to derive the delta-deltaCt (ddCt) value. 1146 

Finally, relative abundance (fold-difference) of each [sample-target gene] was calculated as the 2^(-1147 

ddCt). 1148 

COSTAR: Convergence of secondary drug-targets analyzed by regularized regression 1149 

COSTAR is an interpretable molecular machine learning approach that utilizes logistic LASSO regression 1150 

in a cross-validation setting to learn a multi-linear model that identifies the minimal set of drug-target 1151 

connections that maximally discriminates PCY-hit drugs from PCY-negative drugs.  1152 

Drug-target connections were retrieved from the Drug Target Commons (DTC) 52. DTC is a crowd-1153 

sourced platform that integrates drug-target bioactivities curated from both literature and public 1154 

databases such as PubChem and ChEMBL. Drug-target annotations (DTC bioactivities) listed as of 1155 

August 2020 were included, with the target organism limited to Homo sapiens. Among PCY-tested 1156 

drugs in our NAD and ONCD libraries, 127 out of 132 drugs had DTC ‘bioactivity’ annotations. PTGs 1157 

with biochemical associations to a given drug correspond to bioactivities with the inhibitory constant 1158 

‘KI’ as the ‘End Point Standard Type’. Extended PTGs (ePTGs) include all annotated drug bioactivities. 1159 

Secondary target genes (STGs) down-stream of ePTGs were retrieved by high-confidence protein-1160 

protein interactions annotated in the STRING database (interaction score≥0.6). The final drug-target 1161 

connectivity map that was used for COSTAR consisted of 127 PCY-tested drugs, 975 extended primary 1162 

targets, 10,573 secondary targets, and 114,517 network edges. The 127 drugs were labeled either as 1163 

PCY-hits (n=30, equally split across NADs and ONCDs) or PCY-negative drugs (n=97) based on the 1164 

ranked mean PCY score across patients.  1165 
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A 20-fold cross-validated LASSO generalized linear model was trained in Matlab with the drug-target 1166 

connectivity map as the predictor variable and PCY-hit status (hit vs. neg) as the binomially-distributed 1167 

response variable to identify the optimal regularization coefficient (lambda) across a geometric 1168 

sequence of 60 possible values. Final model coefficients were fitted using the lamba value 1169 

corresponding to the minimum deviance in the cross-validation analysis shown in Extended Data Figure 1170 

6a. COSTAR performance was first evaluated on the training dataset, represented as a confusion matrix 1171 

in Figure 3g. Using this trained linear model, COSTAR was next utilized as an in silico drug screening 1172 

tool to predict the PCY-hit probability (COSTAR score) based on the connectivity of 1,120,823 1173 

compounds annotated in DTC (Supplementary Table 6). For interpretability, COSTAR subscores, 1174 

defined as the individual connectivity to target genes multiplied by their respective coefficients (betas) 1175 

in the linear model, can be investigated in Extended Data Figure 6b,c. COSTAR predictions from this in 1176 

silico screen were further experimentally validated in glioblastoma patient samples on a set of new 1177 

drugs predicted as either COSTAR-hits or COSTAR-negs (n=48 drugs total; n=23 COSTAR-hits; n=25 1178 

COSTAR-negs).  1179 

Single-cell RNA-Seq and analysis of other published datasets  1180 

Cryopreserved single-cell suspensions of glioblastoma patient samples that were part of the 1181 

prospective cohort were thawed in reduced serum media (DMEM containing 2% FBS) and used for 1182 

single-cell RNA-Seq experiments. Viability markers SYTOX Blue (1 μM, Thermo Fisher, #S11348) and 1183 

DRAQ5 (1 μM, Biolegend, #424101) were added to the cell suspension at least 15 minutes before 1184 

sorting. FACS gates were set based on CD45 (Alexa Fluor® 594 anti-CD45, 1:20, Biolegend, #368520, 1185 

clone 2D1), SYTOX Blue and DRAQ5 intensities to isolate live CD45+ and CD45- populations as shown 1186 

in Extended Data Figure 1b using the BD FACSAriaTM Fusion Cell Sorter. Cells were sorted into DNA 1187 

LoBind® Eppendorf tubes (VWR, #525-0130), then CD45- cells were mixed with CD45+ cells at 2:1 to 1188 

10:1 ratios depending on cell availability to enrich for glioblastoma cells. For patient sample P024 that 1189 

was used to measure the effect of Vortioxetine drug treatment, FAC-sorted cells were incubated for 3 1190 

hours with or without 20µM Vortioxetine before proceeding to library preparation. Single-cell RNA-1191 

Seq library preparation was performed using the Chromium Next GEM Single Cell 3' v3.0 and v3.1 kits 1192 

(10x Genomics) according to the manufacturer’s protocol. Libraries were sequenced on the Novaseq 1193 

6000 (Illumina). Read alignment to the GRCh38 human reference genome, generation of feature-1194 

barcode matrices, and aggregation of multiple samples were performed using the Cell Ranger analysis 1195 

pipeline (10x genomics, versions 3.0.1 and 6.1.1). Four patient samples (P007, P011, P012, P013) were 1196 

processed in November 2019 with the earlier version of 10x Genomics library prep kits and Cell Ranger 1197 

analysis pipeline while the later sample (P024) was processed in September 2021. Quality control for 1198 

this in-house dataset was performed by only analyzing high-quality cells with fewer than 10% of 1199 

mitochondrial transcripts and genes that had at least a count of 2 in at least 3 cells.  1200 

To analyze additional glioblastoma patient samples by single-cell RNA-Seq, we utilized two published 1201 

datasets: (Neftel et al. 2019) and (Yu et al. 2020). For Neftel et al., we removed cells with less than 2^9 1202 

detected genes and/or more than 15% of mitochondrial transcripts. For Yu et al. the data was already 1203 

prefiltered, but patient samples (7-9, 14-15) that did not correspond to glioblastoma (grade IV 1204 

astrocytomas) were not included. For both datasets only genes that had at a count of 2 in at least 2 1205 

cells were included in the analysis.  1206 

Neural patient specificity scores and patient specificity scores for each gene were defined as follows: 1207 

using the in-house dataset, we identified putative cell types by unsupervised clustering using Monocle 1208 
87 and annotated the clusters based on known marker genes as being either immune or neural cells. 1209 
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We then obtained a list of differentially expressed genes between immune and neural cells using 1210 

DESingle 88, using a logFC cutoff of 0.5. This yielded a list of 11571 neural-specific and 1157 immune 1211 

specific genes. Using these lists as cell-type specific gene sets, we calculated an immune- and a neural 1212 

score for each cell using singscore, and classified every cell in the additional datasets as either neural 1213 

or immune based on a linear combination of both scores. To assess how specifically a gene is expressed 1214 

in neural cells, we defined a ‘neural specificity score’ as follows: [neural specificity = fraction of neural 1215 

cells expressing gene – fraction of immune cells expressing gene] where we define expression of a gene 1216 

in a cell as having any non-zero count. Thus, a positive score indicates that a gene is more often found 1217 

in neural cells than in immune cells, and vice versa for negative scores. This score ranges from -1 (gene 1218 

is expressed in all immune cells and no neural cells) to =1 (gene is expressed in all neural cells and no 1219 

immune cells). Note that for low expressed genes, this score will be close to 0, reflecting the fact that 1220 

we cannot make clear statements about cell type specificity for genes with expression values close to 1221 

the detection limit of scRNA-Seq. To assess how much gene expression for a single gene varies across 1222 

patients, we defined a ‘patient specificity score’ as follows: First, for every gene gi and every patient pj 1223 

we calculated a cell type composition independent fraction of cells expressing gene gi as 1224 

[Fraction_expressing_ij = fraction_expressing_immune_ij + fraction_expressing_neural_ij]. We then 1225 

defined patient specificity as the median absolute deviation (MAD) of fraction_expressing across all 1226 

patients, thus defining [Patient_specificity_i = mad(Fraction_expressing_i,:)].  1227 

DRUG-Seq 1228 

High-throughput multiplexed RNA sequencing was performed with the Digital RNA with pertUrbation 1229 

of Genes (DRUG-Seq) method as described in (Ye et al. 2018) with a few modifications. Modifications 1230 

to the published method are the following: 1) extraction of RNA prior to cDNA reverse transcription 1231 

with the Zymo Direct-zol-96 RNA isolation kit (Zymo, #R0256) 2) change of reverse transcription 1232 

primers for compatibility with standard Illumina sequencing primers 3) cDNA clean-up prior to library 1233 

amplification performed with the DNA Clean & Concentrator-5 kit (Zymo, #D4013) 3) tagmentation 1234 

was performed with 2ng input and sequencing library generated using the Nextera XT library prep kit 1235 

(Illumina, #FC-131-1024). In short, 1x10^4 LN-229 cells were plated in CellCarrier-96 Ultra Microplates 1236 

(PerkinElmer, #6055302) and incubated overnight in reduced serum media at 37°C, 5% CO2 prior to 1237 

drug treatment. A total of 20 drugs (Supplementary Table 3) were profiled across two different time-1238 

points (6 hours and 22 hours; n=4 replicates per drug and time-point). These 20 drugs were selected 1239 

to include PCY-hit NADs spanning diverse drug classes (n=11), PCY-hit ONCDs (n=7), PCY-negative NADs 1240 

(n=2), and a DMSO control. Cells in drug-treated 96-wells were lysed with TRIzol™ Reagent 1241 

(ThermoFisher, #15596018) and then subsequent cDNA and library prep was performed as described 1242 

above. 100bp (80:20) paired-end reads were generated using Illumina’s NextSeq 2000 platform.  1243 

Calcium assays on the FLIPR platform 1244 

For calcium assays, 24 hours prior to the experiment, LN-229 cells were seeded at a density of 70,000 1245 

cells/well on poly-D-Lysine-coated ViewPlateTM-96 F TC 96-well black polystyrene clear bottom 1246 

microplates (PerkinElmer, #6005182) in 100µl full medium. Calcium 6 dye stock solution was prepared 1247 

by dissolving a vial from Calcium 6 assay kit (Molecular Devices, #5024048) in 10 ml sterile-filtered 1248 

nominal Ca2+ free (NCF), modified Krebs buffer containing 117mM NaCl, 4.8mM KCl, 1mM MgCl2, 5mM 1249 

D-glucose, 10mM HEPES (pH 7.4) and 500µl aliquots were stored at -20°C. Before each experiment, 1250 

the dye stock was freshly diluted 1:10 in NCF Krebs buffer and after removing the medium from the 1251 

cells, 50µl of the diluted dye was applied per well. In order to allow the cells to absorb the dye into 1252 

their cytosol, they were incubated at 37°C for 2 hours in the dark. The fluorescence Ca2+ measurements 1253 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.10.07.511321doi: bioRxiv preprint 

https://paperpile.com/c/fVo72U/yYtZ
https://doi.org/10.1101/2022.10.07.511321
http://creativecommons.org/licenses/by-nc-nd/4.0/


were carried out using FLIPR Tetra® (Molecular Devices) where cells were excited using a 470–495nm 1254 

LED module and the emitted fluorescence signal was filtered with a 515–575nm emission filter 1255 

according to the manufacturer’s guidelines. 1256 

In the ER Ca2+ store release assay, the stable baselines were established for 50 seconds before 50µl of 1257 

2µM (2X) Thapsigargin (Sigma-Aldrich, #T9033) or 40µM (2X) drug solutions freshly prepared in NCF 1258 

Krebs buffer were robotically dispensed to the cells to determine whether the drugs impact the ER Ca2+ 1259 

stores. Next, the cells were incubated and fluorescence was monitored in the presence of Thapsigargin 1260 

or drugs for another 5 min. In the extracellular Ca2+ uptake assay, after initial recording of the baseline, 1261 

50µl of 4mM CaCl2 (2X) prepared in NCF Krebs buffer was dispensed onto the cells to re-establish a 1262 

physiological 2mM calcium concentration and the fluorescence was monitored for 5 min. Next, 60µM 1263 

(3X) drug solutions freshly prepared in Krebs buffer containing 2mM CaCl2 were robotically dispensed 1264 

to the cells and the fluorescence was recorded for an additional 4 min. The raw data was extracted 1265 

with the ScreenWorks software version 3.2.0.14. The values represent average fluorescence level of 1266 

the Calcium 6 dye measured over arbitrary selected and fixed time frames. 1267 

Time-course RNA-Seq library preparation and sequencing 1268 

Low passage LN-229 cells (passage 5-6) were seeded at 2x10^5 cells/well into in 6-well Nunc™ Cell-1269 

Culture Treated Multidishes (ThermoFisher, #140675) and incubated overnight in reduced serum 1270 

media at 37°C, 5% CO2 prior to drug treatment. The following day, Vortioxetine (Avachem Scientific, 1271 

#3380) was manually added to each well at a final concentration of 20µM. At the start of the 1272 

experiment, LN-229 cells that were not treated with Vortioxetine were collected as the 0 hour time-1273 

point. After 3, 6, 9, 12, and 24 hours following Vortioxetine treatment, drug-containing media was 1274 

removed and cells were collected in TRIzol™ Reagent (ThermoFisher, #15596018). Total RNA was 1275 

isolated using Direct-zol RNA MicroPrep Kit (Zymo Research, #R2062) according to the manufacturer’s 1276 

protocol and RNA quality and quantity was determined with the Agilent 4200 TapeStation. Sample RIN 1277 

scores ranged from 5.9-10 (mean: 9.33). RNA input was normalized to 300-400 ng and RNA libraries 1278 

were prepared using the Illumina Truseq stranded mRNA library prep following manufacturer’s 1279 

protocols. 100bp single-end reads were generated using Illumina’s Novaseq 6000 platform with an 1280 

average sequencing depth of approximately 50 million reads per replicate. Reads were mapped and 1281 

aligned to the reference human genome assembly (GRCh38.p13) using STAR/2.7.8a and counts were 1282 

extracted using featureCounts. Subsequent read normalization (variance stabilizing transformation, 1283 

vsd-normalized counts) and RNA-Seq analysis including differential expression (DE) analysis was 1284 

performed with the R package ‘DESeq2’ 89. 1285 

Time-course Proteomics 1286 

Cell preparation and Vortioxetine treatment was performed as in ‘Time-course RNA-Seq library 1287 

preparation’ except cell numbers were scaled to be seeded in T-150 culture flasks and 3 time-points 1288 

were measured (0, 3, 9 hours). Peptides for mass spectrometry measurements were prepared using 1289 

the PreOmics iST kit (PreOmics) on the PreON (HSE AG). The robot was programmed to process 8 1290 

samples in parallel. During the first step of processing, cell pellets were resuspended in 50ul of lysis 1291 

buffer and denatured for 10 minutes at 70°C. According to the manufacturer’s protocol, this step was 1292 

followed by 3 hours of digestion with trypsin and Lys-C. Peptides were dried in a speed-vac (Thermo 1293 

Fisher Scientific) for 1 hour before being resuspended in LC- Load buffer at a concentration of 1 ug/ul 1294 

with iRT peptides (Biognosys). 1295 
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Samples were analyzed on an Orbitrap Lumos mass spectrometer (Thermo Fisher Scientific) equipped 1296 

with an Easy-nLC 1200 (Thermo Fisher Scientific). Peptides were separated on an in-house packed 30 1297 

cm RP-HPLC column (Michrom BioResources, 75 μm i.d. x 30 cm; Magic C18 AQ 1.9 μm, 200 Å). Mobile 1298 

phase A consisted of HPLC-grade water with 0.1% formic acid, and mobile phase B consisted of HPLC-1299 

grade ACN (80%) with HPLC-grade water and 0.1% (v/v) formic acid. Peptides were eluted at a flow 1300 

rate of 250 nl/min using a non-linear gradient from 4% to 47% mobile phase B in 228 min. For data-1301 

independent acquisition (DIA), DIA-overlapping windows were used and a mass range of m/z 396-1005 1302 

was covered. The DIA isolation window size was set to 8 and 4 m/z, respectively, and a total of 75 or 1303 

152 DIA scan windows were recorded at a resolution of 30,000 with an AGC target value set to 1200%. 1304 

HCD fragmentation was set to 30% normalized collision. Full MS were recorded at a resolution of 1305 

60,000 with an AGC target set to standard and the maximum injection time set to auto. DIA data were 1306 

analyzed using Spectronaut v14 (Biognosys). MS1 values were used for the quantification process, 1307 

peptide quantity was set to mean. Data were filtered using Qvalue sparse with a precursor and a 1308 

protein Qvalue cut-off of 0.01 FDR. Interference correction and local cross-run normalization was 1309 

performed. For PRM measurements, peptides were separated by reversed-phase chromatography on 1310 

a 50 cm ES803 C18 column (Thermo Fisher Scientific) that was connected to a Easy-nLC 1200 (Thermo 1311 

Fisher Scientific). Peptides were eluted at a constant flow rate of 200 nl/min with a 117 min non-linear 1312 

gradient from 4–52% buffer B (80% ACN, 0.1% FA) and 25-50%B. Mass spectra were acquired in PRM 1313 

mode on an Q Exactive HF-X Hybrid Quadrupole-Orbitrap MS system (Thermo Fisher Scientific). The 1314 

MS1 mass range was 340–1,400 m/z at a resolution of 120,000. Spectra were acquired at 60,000 1315 

resolution (automatic gain control target value 2.0*10e5); Normalized HCD collision energy was set to 1316 

28%, maximum injection time to 118 ms. Monitored peptides were analyzed in Skyline v20 and results 1317 

were uploaded to PanoramaWeb.  1318 

Incucyte live cell imaging 1319 

To measure cell proliferation in real-time, 2.5x10^3 LN-229 cells/well were plated in CellCarrier-96 1320 

Ultra Microplates (PerkinElmer, #6055302) 24 hours prior to the experiment, and transfected with 1321 

BTG1, BTG2, and FLUC (-) MISSION® esiRNAs (Sigma-Aldrich, Euphoria Biotech, 40ng/well) using 1322 

Lipofectamine RNAiMAX (Invitrogen, #13778075). Further details regarding siRNAs can be found in 1323 

Supplementary Table 5 and Methods related to ‘siRNA knockdown and quantitative real-time 1324 

PCR’. Real-time confluence of cell cultures (n=4 replicate wells/condition) was monitored by imaging 1325 

every 2 hours for 7 days at 10x magnification with the ‘phase’ channel using the Incucyte live-cell 1326 

analysis system S3 (Sartorius). Automatic image segmentation and analysis of the phase contrast 1327 

images was performed by the Incucyte base analysis software (version 2020B). 1328 

Clonogenic survival assay 1329 

Adherent cells (LN-229: 50 cells; LN-308: 300 cells) were seeded in six replicates in 100 µL per well in 1330 

96-well plates and incubated overnight. On the following day, medium was replaced by fresh medium 1331 

containing indicated final concentrations of Vortioxetine or DMSO. Glioblastoma-initiating cells (500 1332 

cells) were seeded in 75 µL medium and incubated overnight. Treatment was initiated by addition of 1333 

75 µL medium containing 2x concentrated Vortioxetine or DMSO to reach indicated final 1334 

concentrations. DMSO concentration was kept at 0.5% for all treatments and controls. Following 1335 

treatment addition, cells were cultured for 11 (LN-229) to 13 days (other cell lines) and clonogenic 1336 

survival was estimated from a resazurin-based assay 90 using a Tecan M200 PRO plate reader (λEx = 1337 

560 nm / λEm = 590 nm). 1338 
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Collagen-based spheroid invasion assay 1339 

Spheroid invasion assay was performed as described in (Kumar et al. 2015). Briefly, 2000 cells were 1340 

seeded in six replicates into cell-repellent 96 U-bottom well plates (Greiner, #650979) and incubated 1341 

for 48 hours to allow spheroid formation. Subsequently, 70 µL medium were removed, spheroids were 1342 

overlaid with 70 µL 2.5% Collagen IV (Advanced Biomatrix, #5005-B) in 1xDMEM containing sodium 1343 

bicarbonate (Sigma-Aldrich #S8761) and collagen was solidified in the incubator for 2 hours. Collagen-1344 

embedded spheroids were then overlaid with 100 µL chemoattractant (NIH-3T3-conditioned medium) 1345 

containing 2x concentrated Vortioxetine/DMSO (0.5% final DMSO concentration across conditions) 1346 

and incubated for 36 hours. Spheroids were stained with Hoechst and images were acquired on a 1347 

MuviCyte imaging system (Perkin Elmer, #HH40000000) using a 4x objective. Images were contrast-1348 

enhanced and converted to binary using ImageJ/Fiji and quantified with the automated Spheroid 1349 

Dissemination/Invasion counter software (aSDIcs), which quantifies the migration distance from the 1350 

center of the spheroid for each detected cell nucleus 91. 1351 

In vivo drug testing 1352 

All animal experiments were done under the guidelines of the Swiss federal law on animal protection 1353 

and were approved by the cantonal veterinary office (ZH98/2018). CD1 female nu/nu mice (Janvier, Le 1354 

Genest-Saint-Isle, France) of 6 to 12 weeks of age were used in all experiments and 100’000 LN-229-1355 

derived- or 150’000 ZH-161-derived cells were implanted 92. Tumor-bearing mice were treated from 1356 

day 5 – day 21 after tumor implantation with intraperitoneally (i.p.) administered Vortioxetine daily 1357 

10mg/kg, Paliperidone daily 5mg/kg, Apomorphine daily 5mg/kg, Aprepitant daily 20mg/kg, 1358 

Brexpiprazole daily 1mg/kg, Chlorpromazine three time per week 10mg/kg, Temozolomide 50mg/kg 1359 

for five consecutive days, CCNU 20mg/kg at day 7 and 14 after tumor implantation, or daily DMSO 1360 

control. Magnetic resonance imaging (MRI) was performed with a 4.7 T imager (Bruker Biospin, 1361 

Ettlingen, Germany) when the first mouse became symptomatic. Coronal T2-weighted images were 1362 

acquired using Paravision 6.0 (Bruker BioSpin).  1363 
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