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Abstract
The microstructure of trabecular bone is known to adapt its morphology in response to mechanical loads for achieving a 
biomechanical homeostasis. Based on this form–function relationship, previous investigators either simulated the remodeling 
of bone to predict the resulting density and architecture for a specific loading or retraced physiological loading conditions 
from local density and architecture. The latter inverse approach includes quantifying bone morphology using computed 
tomography and calculating the relative importance of selected load cases by minimizing the fluctuation of a tissue load-
ing level metric. Along this concept, the present study aims at identifying an optimal, personalized, multiaxial load case at 
the distal section of the human radius using in vivo HR-pQCT-based isotropic, homogenized finite element (hFE) analysis. 
The dataset consisted of HR-pQCT reconstructions of the 20 mm most distal section of 21 human fresh-frozen radii. We 
simulated six different unit canonical load cases (FX palmar–dorsal force, FY ulnar–radial force, FZ distal–proximal force, 
MX moment about palmar–dorsal, MY moment about ulnar–radial, MZ moment about distal–proximal) using a simpli-
fied and efficient hFE method based on a single isotropic bone phase. Once we used a homogeneous mean density (shape 
model) and once the original heterogeneous density distribution (shape + density model). Using an analytical formulation, 
we minimized the deviation of the resulting strain tensors ε(x) to a hydrostatic compressive reference strain ε0, once for the 
6 degrees of freedom (DOF) optimal (OPT) load case and for all individual 1 DOF load cases (FX, FY, FZ, MX, MY, MZ). 
All seven load cases were then extended in the nonlinear regime using the scaled displacements of the linear load cases as 
loading boundary conditions (MAX). We then compared the load cases and models for their objective function (OF) values, 
the stored energies and their ultimate strength using a specific torsor norm. Both shape and shape + density linear-optimized 
OPT models were dominated by a positive force in the z-direction (FZ). Transversal force DOFs were close to zero and mean 
moment DOFs were different depending on the model type. The inclusion of density distribution increased the influence 
and changed direction of MX and MY, while MZ was small in both models. The OPT load case had 12–15% lower objec-
tive function (OF) values than the FZ load case, depending on the model. Stored energies at the optimum were consistently 
142–178% higher for the OPT load case than for the FZ load case. Differences in the nonlinear response maximum torsor 
norm ‖t‖ were heterogeneous, but consistently higher for OPT_MAX than FZ_MAX. We presented the proof of concept of 
an optimization procedure to estimate patient-specific loading conditions for hFE methods. In contrast to similar models, 
we included canonical load cases in all six DOFs and used a strain metric that favors hydrostatic compression. Based on a 
biomechanical analysis of the distal joint surfaces at the radius, the estimated load directions are plausible. For our dataset, 
the resulting OPT load case is close to the standard axial compression boundary conditions, usually used in HR-pQCT-based 
FE analysis today. But even using the present simplified hFE model, the optimized linear six DOF load case achieves a more 
homogeneous tissue loading and can absorb more than twice the energy than the standard uniaxial load case. The ultimate 
strength calculated with a torsor norm was consistently higher for the 6-DOF nonlinear model (OPT_MAX) than for the 
1-DOF nonlinear uniaxial model (FZ_MAX). Defining patient-specific boundary conditions may decrease angulation errors 
during CT measurements and improve repeatability as well as reproducibility of bone stiffness and strength estimated by 
HR-pQCT-based hFE analysis. These results encourage the extension of the present method to anisotropic hFE models and 
their application to repeatability data sets to test the hypothesis of reduced angulation errors during measurement.
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1 Introduction

Advanced high-resolution in  vivo imaging techniques 
such as high-resolution peripheral quantitative computed 
tomography (HR-pQCT) allow to capture and characterize 
in detail trabecular and cortical bone morphology at the dis-
tal radius and tibia. The application of micro-finite element 
(μFE) analysis on such images is a powerful research tool 
to perform mechanical analysis of 9–10 mm bone sections, 
and computed fracture load proved to be the best predictor 
of incident fracture risk in older women (Samelson et al. 
2019). It is evident and well established that a specific bone 
fracture risk correlates best with the strength of the spe-
cific anatomical site under the specific loading mechanism 
of the injury. The critical zone of fractures such as Colle's 
fracture in the distal segments of the radius extends beyond 
9–10 mm HR-pQCT sections, and multiple bone sections 
appear to be necessary for proper assessment of distal bone 
strength (Varga et al. 2010; Baumbach et al. 2011; Mueller 
et al. 2011). Against this trend toward evaluating multiple 
sections, a short processing time is essential for the potential 
clinical application of such computational methods. Despite 
the continuous improvement of computational power, the 
necessary resources for μFE of a 9–10 mm bone section 
remain high. Therefore, so-called homogenized finite ele-
ment (hFE) methods seem to be an attractive alternative to 
μFE models. They are based on element orders of magni-
tude larger than the resolution of the underlying HR-pQCT 
reconstructions and take a fraction of the time and compu-
tational resources to solve. These hFE models offer simi-
lar quality of linear relationship to experimental measures 
(R2 > 0.9) (Hosseini et al. 2017a; Arias-Moreno et al. 2019) 
and similar or improved repeatability in multiple-section 
HR-pQCT measurements at the distal sections of radius and 
tibia (Schenk et al. 2020). Furthermore, we recently estab-
lished a reference database for bone stiffness and strength 
of multiple-section reconstructions of the young and healthy 
Swiss population (Stuck et al. 2020).

Beyond the sections of interest to compute fracture loads, 
the detailed personalized morphology included in the HR-
pQCT reconstructions of distal bone sections at the radius 
and tibia contrasts with the standard axial compression usu-
ally applied by both μFE and hFE models. Although several 
studies suggest that axial compression is the primary load-
ing mode (Varga et al. 2010, 2011; Christen et al. 2013a), 
the distal joint surfaces transfer heterogeneous stress ampli-
tudes in multiple directions under physiological loading or in 
case of an accident, such as falling on the outstretched hand. 
The influence of these boundary conditions is currently not 
accounted for in clinical studies exploiting HR-pQCT for 
assessing bone strength at the radius and tibia.

Human bone is a heterogeneous composite continuously 
remodeled and adapts to changing environments by highly 
regulated processes, initiated among other endocrine influ-
ences by mechanical stimuli. Evidence suggests that the 
sensitivity of bone tissue to mechanical stimuli and conse-
quently the bone tissue’s ability to adapt to external mechan-
ical environments is based on specialized cells called osteo-
cytes. Together with lining cells and a network of canaliculi, 
they can transmit stimuli to surfaces with high strains and 
induce bone formation until strains are normalized (Burger 
and Klein-Nulend 1999). The computational implementa-
tion of this functional adaption theory was pioneered by 
Carter and Beaupré (2001), Beaupré et al. (1990), Cowin 
and Hegedus (1976), Hegedus and Cowin (1976), and later 
investigated by many others and transitioned to the micro-
structural level by Huiskes et al. (2000).

If the physiological loading environment influences the 
trabecular bone microstructure, the respective shape, density 
distribution, and orientation in space must inversely con-
tain information about the loading conditions that formed 
the respective microstructure. Or in other words, the load-
ing conditions that the respective microstructure was opti-
mized to sustain. Accordingly, an inverse relationship exists 
between bone morphology and the physiological loading 
history, the respective bone morphology was optimized for. 
Fischer and colleagues used an optimization procedure to 
determine a set of plausible loads for a given density distri-
bution using artificial 2D models of bone ends (Fischer et al. 
1995) and, later, the proximal femur (Fischer et al. 1996).

Christen and colleagues brought the above-described 
inverse optimization problem of back-computing a mechani-
cal loading history based on bone architecture to a micro-
structural level. They first applied μFE analysis on murine 
bone remodeling models to minimize the variance of strain 
energy density (Christen et al. 2012). Later, their load esti-
mation algorithm was validated on synthetic bone micro-
architectures (Christen et al. 2013b) and applied to high-
resolution peripheral quantitative computed tomography 
(HR-pQCT) reconstructions of the distal 9–10 mm segment 
of radii (Christen et al. 2016).

Estimating personalized loading boundary conditions by 
optimization procedures requires multiple model evaluations 
and increases processing time. A transition back to contin-
uum models using established hFE analysis methods would 
be beneficial. Accordingly, this study is a proof of concept 
and aims to identify a personalized and multi-axial load 
case using simplified, isotropic hFE models from clinical 
HR-pQCT reconstructions of distal double-sections of the 
human radius. The estimation of the personalized loading 
boundary conditions or loading history is based on an opti-
mization procedure using a strain metric that is not symmet-
ric in compression and tension. Further, we were interested 
in the distinct influence of shape and density distribution 
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on the estimated personalized loading history. Accordingly, 
we designed and applied optimization procedures on hFE 
models mapping the heterogeneous density distribution and 
on models containing an artificial, unified, homogeneous 
mean density.

2  Material and methods

A summary of the applied methods is given in Fig. 1A, 
B. First, we created hFE models based on HR-pQCT 
reconstructions of the distal part of 21 human radii, with 
a mean homogeneous density distribution (shape model) 
and with the measured heterogeneous density distribution 
(shape + density model). (C) For both models, we evaluated 
6 linear canonical load cases in all 6 DOF using unit loading 
boundary conditions (1 N, 1Nm). (D, E) Then, we applied an 
optimization procedure to estimate an optimized load case 
by minimizing strain deviations with reference to a hydro-
static compressive reference strain, once in 6 DOF (OPT) 
and each for the individual 1 DOF load cases (FX–FZ). (F) 
The seven resulting load cases were then extended in the 
nonlinear regime using scaled displacements of the linear 
load cases as loading boundary conditions (MAX).

2.1  Sample preparation, measurement, image 
processing and compression test

Hosseini and colleagues (Baumbach et al. 2011) established 
experimental compression data, and HR-pQCT measure-
ments were established in a previous study. In brief, the data-
set consists of 21 fresh frozen distal segments of human radii 
from 6 females (79.8 y [70y, 92y]) and 8 males (72.3y [59y, 
87y]). All forearm samples were measured on a second-
generation HR-pQCT scanner (XtremeCT2, Scanco Medical 
AG, Brütisellen, Switzerland) at an isotropic voxel size of 
60.7 μm and using the standard clinical procedure. The 20.4-
mm segments are located 5 mm from the lowest part of the 
distal subchondral plate and include the adjacent proximal 
two HR-pQCT acquisition sections (double section, 2 stacks 
of 168 slices, 20.4 mm).

2.2  Homogenized finite element analysis method

The hFE method used in the current project was adapted 
and simplified from earlier studies (Arias-Moreno et al. 
2019; Hosseini et al. 2017b) and validated using the above-
described set of distal segments of radii and experimental 
results. An overview of the analysis method and its experi-
mental validation is provided in the attachment. All subse-
quent evaluations were performed on two types of models: 
(1) with the original heterogeneous BV/TV distribution of 
the HR-pQCT reconstructions (shape + density) and (2) with 

(A) (B)
(C)

(D) (F)(E)

Fig. 1  Graphical abstract summarizing the material and methods sec-
tion. A, B + Attachment: homogenized finite element method: A 
Measurement acquisition using a second-generation HR-pQCT scan-
ner (XtremeCT2) at an isotropic voxel size of 60.7 μm and schematic 
representation of the double section scan regions, B Overview of 
simplified hFE analysis method based on a single bone phase mod-
eled as elastic–plastic constitutive material including damage, acc. 
to Schwiedrzik and Zysset (2013, Attachment) Fitting of material 
properties and experimental validation of hFE analysis method using 

experimental results from Hosseini et al. (2017a). C–F Personalizing 
loading boundary conditions: C Simulation of six linear canonical 
load cases with unit load boundary conditions along the 6-DOF (FX, 
FY, FZ, MX, MY, MZ), D 6-DOF (OPT) and 1-DOF (FX, FY, FZ, 
MX, MY, MZ) optimization procedure, E simulation of linear 6-DOF 
OPT load case and linear single 1-DOF optimized load cases, F Sim-
ulation end evaluation of nonlinear MAX load cases using distribu-
tor of respective linear load cases as displacement-controlled loading 
boundary conditions
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a homogeneous mean BV/TV distribution equal to the mean 
BV/TV of the masked HR-pQCT reconstruction (shape).

2.3  Personalized optimization of loading direction

Without a decomposition in time, an average physiological 
loading history of a bone segment without attached tendons 
and ligaments, located at some distance from the joint, can 
be represented by a linear combination of elementary torsors 
applied to a rigid plane or point:

With � and � being resultant 3D forces and moments 
describing the loading history and �i the linear weights of 
the combination of elementary torsors, that are real and 
not necessarily positive to distinguish both tension and 
compression.

Since we evaluate linear elastic models (i.e., linear bound-
ary value problem) in the optimization process, the solution 
for displacement and rotation is linear. Therefore, a stiffness 

tensor � exists that relates a descriptor 
[
u

�

]
 to the torsor 

[
f

m

]

:

With u and � being the displacements [mm] and the 
angles of rotation [rad], f  and m the force and moment 
vector and �−1 the relating second-order tensor that can be 
subdivided into 2 × 2 sub-matrices of dimension 3 × 3 that 
have unique physical units and properties. Linearity holds 
for the displacement gradient u ; thus, it holds as well for 
infinitesimal strain � and stress � . Accordingly, strains of an 
arbitrary torsor can be described as:

In contrast to classical strain or equivalent strain norms, 
the strain tensor distinguishes tensile from compressive 
strains. In the case of an isotropic material description, the 
compliance tensor is generally assumed isotropic, and under 
the constraint of not exceeding a quadric isotropic damage 
criterion, a hydrostatic compressive strain ( −�0I ) leads to 
the maximum strain energy density (or the minimal com-
plementary energy density) (Fig. 2).

Accordingly, we formulated an optimization problem 
consisting of finding a linear combination of �i of the canon-
ical torsors that minimize the variance of the strain tensor 
�(x) to an isotropic and volume-fraction-dependent constant 
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reference compressive strain tensor −�0I, over a relevant 
bone domain Ω.

With OF being the objective function, �(x) the strain ten-
sor of the general load at position x in the domain Ω , −�0I 
a constant hydrostatic compressive reference tensor, � the 
bone volume fraction BV/TV, and r the exponent of the vol-
ume fraction dependency. Since �i are not bound, �0 will 
determine their scaling factor and was defined as �0 = 0.1%.

Using (4) and by replacing the integral over the volume 
by a sum over all FE elements (voxels are of equal volume), 
the objective function becomes

The derivative to � defining the stationary point is

which generates a linear problem

With
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Fig. 2  Graphical rational for a compressive hydrostatic reference 
strain tensor, showing an isotropic material orientation (black line), 
a quadric isotropic damage surface (red ellipsoid) and a correspond-
ing constant strain energy density contour (blue ellipsoid). Maximiz-
ing the strain energy density under the constraint of not exceeding a 
quadric isotropic damage criterion results in a single optimum (red 
dot) of a hydrostatic compressive reference strain
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2.3.1  Volume fraction dependency parameter r

We performed a preliminary sensitivity analysis for the vol-
ume fraction dependency parameter r . First, an optimized set 
of �i was computed for each distal double section of the radii 
dataset using r = 0 . Then, r was iterated with a step size of 
+0.001 , and OF value was computed for each iteration. The 
resulting minimum values r(Min(OF)) were averaged over 
all radius samples and used for subsequent optimizations.

2.3.2  Linear optimized load case OPT

For each radius sample, we evaluated six linear unit load 
cases (canonical load cases) (FX, FY, FZ, MX, MY, MZ) 
using the above-described hFE analysis procedure. The dis-
placements of all nodes of the most proximal surface of all 

six models were fixed in 6 DOFs ( 
[
u

�

]
=

[
0

0

]
) . The nodes 

at the most distal surface were kinematically coupled to a 
virtual reference node positioned at the distal surface along 
the central vertical axis of the bone segment volume. For 
each load case, the virtual reference node was loaded with a 
unit load (force load cases: 1 N, moment load cases: 1 Nm) 
in one of the 6 DOFs. The remaining 5 DOFs were fixed to 
zero displacements and rotations. During simulation, the fol-
lowing parameters were recorded: the six-dimensional dis-
placement and rotation vector � of the virtual reference 
node, the resulting strain tensors�(x) , and density � of all FE 
elements. Using formulas (7) and (8) and the previously 
established volume fraction dependency parameter r the 
weights �i of the linear combination of canonical load cases 
at the minimum of the optimization function were computed. 
The resulting combination of all six �i defines the boundary 
conditions of the optimized linear load case (OPT).

The present dataset of distal double-sections of radii 
includes both left and right forearm samples. The respec-
tive �i have a different orientation to the radius anatomy. 
Accordingly, we normalized orientation in the FE models 
according to anatomical landmarks ( �FX , �MY and �MZ were 
changed sign).

2.3.3  Single linear load case optimization (FX, FY, FZ, MX, 
MY, MZ)

The above-described optimization procedure was reduced to 
a single DOF to compare the optimized load case OPT to the 
individual load cases FX, FY, FZ, MX, MY, and MZ in the 
linear material regime. All �i were forced to zero, except the 

(8)
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) one corresponding to the respective load case. The system 
of initially six linear equations in formula (8) is reduced to 
a single linear equation:

2.3.4  Linear energy at optimum

For the resulting seven linear load cases (OPT, FX, FY, FZ, 
MX, MY, MZ), we computed an optimized set of �i based on 
formulas (8) and (9) and the respective value of the objective 
function according to formula (5). To compare the different 
linear load cases, we evaluated the stored elastic energy at 
the optimum as the mechanical work performed on the vir-
tual reference node or the dot product between torsor t and 
descriptor d:

2.3.5  Nonlinear analyses

The linear hFE models were loaded using force and moment 
boundary conditions. For nonlinear analyses evaluating a 
maximum force or moment (ultimate load evaluation), load-
ing boundary conditions must be displacement controlled. 
Therefore, we used the descriptor d of the respective previ-
ous linear analyses as loading boundary conditions for the 
following nonlinear analyses. To reach a maximum in the 
nonlinear regime, the descriptors were linearly scaled.

Comparing the nonlinear (MAX) load cases is not 
straightforward. The reference value for comparing linear 
load cases was the minimum value of the optimization func-
tion Min(OF) . However, in nonlinear analyses, such an opti-
mum is not defined anymore. Furthermore, a measure of 
maximum fracture load, such as for uni-axial load cases, is 
missing. To compare the nonlinear load cases to each other, 
we therefore introduce the concept of a torsor and descriptor 
norm. We build a stiffness tensor � from the six linear load 
cases, representing the linear material response in all 6 DOF 
according to formula 2 and compute a descriptor and torsor 
norm as follows:

The norms both have the physical unit of 
√
Nmm . An 

exemplary torsor–descriptor norm curve is shown in Fig. 7. 
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The respective maximum of the torsor norm can be used as 
a measure to compare the nonlinear response of multi-axial 
load cases.

2.4  Statistics

Differences in linear energy and OF value between linear 
OPT and FZ load, and between shape and shape + density 
model, were tested with a paired one-sided nonparametric 
Mann–Whitney–Wilcoxon test after confirming non-nor-
mality of the variables with Shapiro–Wilk tests. The same 
procedure was applied to test the difference in torsor norm 
between the nonlinear OPT_MAX and FZ_MAX load case 
and between the shape and the shape + density model of the 
nonlinear OPT_MAX and FZ_MAX load case.

All statistical analyses were performed in R (The R foun-
dation for statistical computing, Austria, version 3.6.3), and 
the level of statistical significance was set to p < 0.05.

3  Results

The objective function value was minimized for a mean vol-
ume fraction dependency parameter r of 0.008 (sd: 0.006, 
range: [0.0005, 0.023]). All subsequent optimization evalu-
ations were generated using this value for r . The latter pre-
sented results are all summarized in Table 1 as means, stand-
ard deviations and ranges for the OPT, OPT_MAX, FZ and 
FZ_MAX load case.

3.1  Linear load analyses

The resulting linear weights �i of the optimization procedure 
are shown in Fig. 3A, B for the load case OPT and the six 
single optimized load cases (FX–MZ), respectively. In both 
models (shape and shape + density), the mean force DOFs 
are dominated by a positive force in the z-direction (FZ). 
The transversal force DOFs (FX and FY) are close to zero. 
The mean moment DOFs are different for both models. In 
the shape model, the largest mean moment DOF is a posi-
tive moment around the y-axis (MY) and a medium positive 
or negative moment around the x-axis (MX). However, in 
the shape + density model, mean moment DOFs are domi-
nated by a positive moment around the x-axis (MX) and a 
medium negative moment around the y-axis (MY). Mean 
moments around the z-axis (MZ) are small for both models 
but higher in the shape + density model. Optimizing the six 
single linear load cases resulted in the largest �i for the FZ 
load case for both models. In the shape model, the �i of all 
other load cases were comparably small. However, in the 
shape + density model a medium negative �i for MY load 
case and medium positive or negative �i for MZ load case 
are present.

The corresponding objective function values are shown 
in Fig. 4A. The linear OPT load case resulted in signifi-
cantly lower OF values on average than the FZ load case in 
both models (shape: p > 0.001, shape + density: p < 0.001). 
Relative differences in OF values between OPT and FZ load 
case were −1.0% ± 0.9% and −1.4% ± 0.8% for shape and 
shape + density model, respectively. Associated ranges were 
[−0.2%, −3.84%] and [−0.3%, −2.9%]. All other load cases 
resulted in OF values close to the maximum of 3.0, with OF 

Table 1  Summary of comparison between linear OPT and FZ and 
nonlinear OPT_MAX and FZ_MAX load cases, differentiated by 
model type (shape and shape + density). SD = standard deviation, 
OF value = objective function value according to formula (5), linear 
energy at optimum according to formula (10), Maximum ‖t‖ = maxi-
mum torsor norm according to formula (12). A (*) indicates a signifi-

cant paired on-sided nonparametric Mann–Whitney–Wilcoxon test on 
the differences between OPT and FZ or OPT_MAX and FZ_MAX. 
A (#) indicates a significant paired one-sided nonparametric Mann–
Whitney–Wilcoxon test on the differences between shape + density 
and density model of OPT load case and a ( +) indicates the same test 
on FZ or FZ_MAX

Shape Shape + density

Mean ± SD
[min, max]

Mean ± SD
[min, max]

Linear analyses OPT FZ OPT FZ
OF value [ 10−6] 2.699 ± 0.021

[2.672, 2.744]
2.727 ± 0.044
[2.681, 2.832]

2.653 ± 0.037
[2.615, 2.762]

2.700 ± 0.049
[2.624, 2.815]

Comparison *# + *# +
Linear energy at optimum [ Nmm] 3.992 ± 2.473

[1.227, 9.173]
1.823 ± 1.231
[0.483, 4.440]

4.395 ± 2.900
[1.268, 10.868]

1.863 ± 1.454
[0.464, 5.294]

Comparison *# *#
Nonlinear analyses OPT_MAX FZ_MAX OPT_MAX FZ_MAX

Maximum ‖t‖ [ 
√
Nmm] 25.145 ± 8.340

[14.743, 38.788]
24.083 ± 8.616
[13.022, 37.295]

28.193 ± 9.928
[14.154, 46.404]

26.953 ± 9.924
[13.586, 46.292]

Comparison *# + *# +
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values of the shape + density of the linear load cases MX and 
MY being slightly lower. Differences between OF values of 

the shape and the shape + density were significant for both 
load cases (OPT: p < 0.001, FZ: p < 0.001).

Finally, linear energies at optimum for the OPT and FZ 
load case are presented in Fig. 5. All other single linear load 
cases (FX, FY, MX, MY, MZ) resulted in linear energies 
close to zero. Linear energy of the OPT load case was con-
sistently and significantly higher than of the FZ load case in 
both models (shape: p < 0.001, shape + density: p < 0.001). 
Mean relative differences in linear energies between OPT 
and FZ load case were 132.1% ± 41.7% and 159.6% ± 44.2% 
for the shape and shape + density model, respectively. Asso-
ciated ranges were [104.7%, 256.5%] and [105.3%, 283.9%]. 
Differences between the shape and the shape + density model 
were only significant for the OPT load case (p < 0.001), but 
not for the FZ load case (p = 0.489).

All above-presented results of the linear analyses are 
summarized in Table 1.

3.2  Nonlinear analyses

The maximum torsor norm ‖t‖ of the OPT_MAX and FZ_
MAX load case is shown in Fig. 6(A: shape, B: shape + den-
sity). Lines connect corresponding samples of the OPT_
MAX and the FZ_MAX evaluations. The nonlinear 
OPT_MAX load case consistently and significantly resulted 
in higher ‖t‖ than the nonlinear FZ_MAX load case in both 
models (shape: p < 0.001, shape + density: p < 0.001). The 
mean relative difference in ‖t‖ between the OPT_MAX and 
the FZ_MAX load cases was 5.8% ± 8.4% for the shape 
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model and 5.2% ± 3.6% for the shape + density model. 
Associated ranges are [0.2%, 26.5%] and [0.6%, 12.2%], 
respectively. Differences in ‖t‖ between the shape and the 
shape + density model were significant for both nonlinear 
load cases (OPT_MAX: p < 0.001, FZ_MAX: p < 0.001).

An exemplary torsor–distributor norm curve is shown in 
Fig. 7, and the results of the nonlinear analyses of OPT_
MAX and FZ_MAX load case are summarized in Table 1.
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4  Discussion

The present study aimed to provide a proof of concept for 
defining personalized loading conditions in hFE analyses of 
bone strength from in vivo HR-pQCT multi-section recon-
structions. The developed optimization approach includes 
several novelties compared to previous models. First, opti-
mization was based on homogenized finite element models, 
including six canonical load cases and an optimization strain 
metric that distinguishes between compression and tension. 
Furthermore, an approach was developed to compare non-
linear responses of single- and multi-axial load cases by 
computing a torsor and distributor norm. The bone loading 
optimization algorithm predicted linear combinations of six 

linear load cases (OPT) that significantly decreased the OF 
value, increased the linear energy at the respective optimum, 
and increased the torsor norm, a surrogate of strength, com-
pared to a standard uniaxial loading boundary condition in 
the z-direction (FZ) and independent of the model (shape 
or shape + density).

4.1  Force and moment DOF in OPT load case

Of the three force DOFs of the linear OPT load case (FX, 
FY, FZ), a uniaxial force in the z-direction (FZ) was domi-
nant in both models (shape and shape + density). The two 
other force DOFs (FX, FY) are very small, as these transver-
sal load cases will start building comparatively large shear 
strains that are immediately penalized by the optimization 
function. Accordingly, in single load case optimization, �i 
of these two load cases is close to zero and OF values close 
to 3.0 (maximum, reached for �i = 0 ). The amplitude of the 
three moment DOF (MX, MY, MZ) of the linear OPT load 
case is different in both models. Although energy contribu-
tions of the moment DOFs in the linear OPT load case are 
minimal, the inclusion of moments seems to dissipate inho-
mogeneities at the periphery seen in the purely axial linear 
FZ load case and leads to a more homogeneous strain field 
(Fig. 8). A single DOF model cannot compensate for such 
inhomogeneities.

4.2  Shape versus shape + density

Including density distribution in the model leads to increased 
amplitude and sometimes even a sign change in the weights 
of most linear load cases in the OPT simulation. Even 
though the inclusion of density distribution increases the 
inhomogeneity of the element’s bone material properties, the 
mean OF values decreased for most analyzed models. When 
the density distribution was added to the shape model, the 
linear OPT and FZ load case resulted in significantly lower 
OF values. Nevertheless, only the OPT load case could 
absorb significantly more energy in the shape + density 
model than the shape model. This makes sense, as the load-
ing direction in the OPT load case adapts to a new optimum 
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in response to the additional information added by such a 
density distribution. However, the loading direction of the 
FZ load case remains unchanged, regardless of the selected 
model or information. Nonlinear OPT_MAX and FZ_MAX 
resulted in significantly higher ‖t‖ when density distribution 
was included. Accordingly, the more heterogeneous bone 
properties ultimately result in a more homogeneous strain 
distribution, indicated by the lower mean OF values. This 
suggests that the density distribution in the respective bone 
segments is not arbitrary but contributes significantly to a 
more homogeneous strain distribution and the structure’s 
ability to absorb more energy.

4.3  Qualitative comparison with loading 
estimations based on the shape of the distal 
section of radius

To set the optimal loading directions into perspective, we 
studied a nominal shape of the distal part of the human 
radius. A schematical representation is shown in Fig. 9. We 
assumed a simplified loading condition of each a force at the 
scaphoid and lunate joint surface and a force applied from 
the ulna. Any additional forces from ligaments and muscles 
were neglected. From the direction of the applied forces and 
orientation of the joint surfaces, it seems evident that a force 
in the positive z-direction is dominating the resulting forces 
in the distal subsection. The respective forces in the x- and 
y-direction are much smaller. The angulation of the scaphoid 
and lunate joint surfaces, resulting mainly from the styloid 
process, will lead to comparatively large moments around 
the x-axis, medium negative moments around the y-axis, and 
smaller torsional moments around the z-axis. These obser-
vations agree with what we found for our optimal loading 
directions with the model, including shape and density dis-
tribution (shape + density).

4.4  Nonlinear analyses

The computed torsor norms ‖t‖ were consistently higher for 
the nonlinear OPT_MAX load case than for the nonlinear 
FZ_MAX load case. The respective ranges of relative dif-
ferences between the two load cases indicate that the impact 
of the optimization on nonlinear outcomes depends on the 
individual sample measurement. The positioning of the fore-
arm in the HR-pQCT scanner is prone to angulation errors. 
We hypothesize that the more the scanner axis (and therefore 
the subsequent uniaxial loading direction FZ) differs from 
the axis of the optimal force boundary condition, the more 
different will nonlinear outcomes such as torsor norms ‖t‖ 
become. If personalized loading directions are insensitive 
to angulation errors during CT measurements, they might 
offer a possibility to compensate them and reduce repeatabil-
ity and reproducibility errors. However, such investigations 
were not in the scope of the present proof of concept and 
will maybe even require more advanced models, including 
microstructural or fabric orientation.

4.5  Limitations

The present study has several limitations that need to be 
discussed. First, the hFE model we used simplifies several 
aspects compared to previous ones. The model only differ-
entiates a single bone phase. However, it is known that the 
material behavior of cortical and trabecular bone is quite 
different on a macroscopic level. Using a single set of iso-
tropic material properties overestimates the material proper-
ties of trabecular bone and underestimates the ones of corti-
cal bone. Furthermore, the current hFE model only maps 
shape and density distribution but uses an isotropic material 
behavior and no patient-specific material orientation using a 
fabric tensor. Even if the bone segment’s high-level response 

Fig. 9  Theoretical analysis of 
loading directions on a distal 
segment of a right arm radius 
resulting from loads transferred 
from the ulna and the scaphoid-
lunate joint surfaces. The distal 
part of the radius is shown as A 
dorsal view and B lateral view. 
A potential distal subsection of 
the radius is shown in grey. This 
does not directly correspond 
to the double-section samples 
measured and analyzed in the 
present study
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was in good agreement with experimental results, both sim-
plifications mentioned above are expected to degrade local 
evaluations compared to similar models distinguishing two 
bone phases with distinct orthotropic material properties. As 
the optimization procedures rely on local evaluations, a two-
phase model including material orientation would be favora-
ble. However, in the case of an orthotropic material descrip-
tion, the optimal isotropic compressive reference strain may 
not be appropriate anymore and requires the determination 
of a potentially anisotropic optimal strain tensor maximizing 
strain energy density.

Second, the present approach includes only six load cases 
associated with a rigid body motion between the proximal 
and distal surfaces of the bone section. Under this assump-
tion, these two surfaces deform into planes and do not 
account for the heterogeneous displacements expected from 
the density variations under the radio-carpal joint. However, 
more refined load cases require substantially higher com-
putational resources and may not be suitable for clinical 
applications.

Furthermore, our optimization function assumes that the 
adaptation of bone tissue seeks to maximize strain energy 
density with a constant hydrostatic reference strain state in 
the case of an isotropic material description. Several studies 
use different optimization goals, like maximizing strength or 
stiffness, minimizing density, or eliminating notch stresses 
and strains. However, bone adaptation and its drivers are still 
not fully understood, so a strong foundation of evidence is 
missing. Nevertheless, models such as the presented one give 
alternative insights into the bone as a mechanical structure 
and might ultimately help personalize FE models’ loading 
conditions in a clinical application of bone strength analysis 
and improve individual predictions and diagnosis. We did 
not systematically compare the outcomes of our strain-based 
objective function with previous metrics, as implementing 
different resolution strategies of the optimization problem 
would have become necessary, which was beyond the scope 
of the current proof of concept.

5  Conclusion

In conclusion, we presented the proof of concept of an 
optimization procedure to estimate patient-specific loading 
boundary conditions for hFE analysis methods. Based on a 
theoretical analysis of the joint surfaces of the distal radius, 
the estimated loading directions are plausible. A force in 
positive z-direction dominated the linear OPT load case. 
This indicates that the standard axial compression bound-
ary conditions used in FE analysis are reasonably close to 
in vivo loadings. Nevertheless, even with this simplified hFE 
model, the OPT load case could absorb more than twice the 
energy of a purely axial load case. Furthermore, we found 

a large variance of relative differences in the nonlinear 
strength measure of OPT_MAX and FZ_MAX load cases. 
This indicates that defining patient-specific load bound-
ary conditions might decrease angulation errors during CT 
measurements and improve repeatability and reproducibility 
in FE outcomes such as stiffness and strength. The results 
encourage extending the present simplified analysis method 
to include multiple bone phases with fabric anisotropy and 
applying it to existing datasets to test the hypothesis of 
improved repeatability due to the compensation of angula-
tion errors during scanning.

Appendix: Additional material

Description and experimental validation 
of an adapted hFE analysis method

Material and methods

HR‑pQCT measurement, image processing and experimen‑
tal compression test Hosseini et al. (2017a) established all 
data in a previous study. In brief, all radius samples were 
measured using a second-generation HR-pQCT scanner 
(XCT2, Scanco Medical AG, Brütisellen, Switzerland) 
with standard clinical settings at an isotropic voxel size of 
60.7 μm. Then, the scanned radius double-sections were dis-
sected and parallelly cut (Exakt bandsaw model 30, Ger-
many). All CT reconstructions were processed according to 
the clinical standard procedures, including the definition of 
the periosteal contour and segmentation according to Laib 
and Rüegsegger (1999). Mechanical compression tests were 
performed on an experimental setup adopted from Varga 
et al. (2010). The experimental setup consisted of two steel 
plates with sandblasted surfaces. The bottom plate (proxi-
mal surface of radius segments) was rigidly coupled to a 
load cell, and the top plate (distal surface of radius seg-
ments) was connected to a ball joint with its center of rota-
tion located on the distal surface of the radius segments. 
The samples were loaded with a quasi-static displacement 
rate of 5 mm/min (Chevalier et al. 2008) up to a maximum 
compressive deformation of about 4.6  mm. Displacement 
of the top plate was measured with an optical capture sys-
tem (Optotrac, NDI, Canada). From the resulting force–dis-
placement data, experimental stiffness was computed as the 
maximum slope of a moving linear regression and failure or 
ultimate load as the maximum recorded reaction force.

Mesh generation and  material homogenization The peri-
osteal masks were downscaled by a factor of 12, chosen 
based on a mesh conversion analysis, and because double-
section HR-pQCT measurements contain 336 slices (168 
per section), a multiple of 12. The resulting image consists 
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of voxels with an isotropic size of 0.98 mm. Then for each 
of these downscaled image voxels, we computed the volume 
fraction �B that was occupied by the periosteal mask. All 
downscaled voxels with 𝜙B > 0 were converted to 8-node 
hexahedral elements (Abaqus: C3D8) to form the mesh.

All converted FE elements were assigned homogenized 
material properties. First, the original grey-level reconstruc-
tion values were converted to bone mineral density (BMD) 
values using the BMD calibration equation implemented on 
the scanner and controlled by daily quality control measure-
ments. The BMD values were then converted to BMD-true 
bone volume fraction (BV/TV) values (BV/TVd) by dividing 
BMD by a factor of 1200, as 1200 mgHA/cm3 is considered 
the mineral density of cortical bone (compact bone with a 
density of 2 g/ccm and a mineral volume fraction of 60%). 
BMD-true BV/TV values have been shown to depend on 
image resolution (Varga et al. 2009). Therefore, we decided 
to linearly calibrate BV/TVd to BV/TV based on the seg-
mentation of 16.5 μm μCT reconstructions, established by 
Hosseini and colleagues (slope = 0.963, intercept = 3.814%) 
(Hosseini et al. 2017b).

At the centroid of each FE element, a spherical region 
with a diameter of 2.482 mm was defined. Then, each ele-
ment’s bone density �B was computed as the average of the 
calibrated grey-level BV/TVd image within the spherical 
region and the periosteal mask. Each elements’ density �B 
was then weighted by the partial volume fraction �B . If an 
element is only partially occupied by the periosteal mask, 
then 𝜙B < 1.

Material homogenization The mechanical behavior of bone 
tissue was modeled in a simplified manner using an iso-
tropic elastic–plastic constitutive model including damage, 
adapted from Schwiedrzik and Zysset (2013). The initial 
material properties before material calibration are based on 
the trabecular bone properties proposed by Cowin (2001), 
Daszkiewicz et al. (2017), Panyasantisuk et al. (2015). The 
initial response is modeled as linear elastic. Then follows 
yielding and the accumulation of damage and irreversible 
strains, reducing the stiffness tensor components.

Fitting of  material properties and  validation Because of 
significant differences in the hFE methodology compared 
to previous analysis methods, we had to refit the material 
properties and validate the present method using the experi-
mental results described above, acquired from Hosseini 
et al. (2017a).

In the hFE models, the displacements of all nodes at 
the most proximal surface were fixed in all 6 DOFs. The 
nodes at the most distal surface were kinematically coupled 
to a virtual reference node positioned at the distal surface 
along the central, longitudinal axis of the bone volume. The 
reference node was then loaded along the 3rd DOF with a 

uniform axial displacement of up to roughly 2% of strain. 
Reaction force and displacement of the virtual node along 
the 3rd DOF were recorded. Stiffness was computed as 
the initial slope of the resulting force–displacement curve, 
and strength or ultimate load was defined as the maximum 
recorded reaction force.

We then compared experimentally measured stiffness and 
ultimate load to the respective hFE outcomes using linear 
regression models. The material properties were grouped 
in elastic and strength/yield properties. Both groups were 
calibrated with a separate scaling variable (SCA1: elastic 
properties, SCA2: strength/yield properties, acc. to Table 2) 
to minimize the root mean squared error (RMSE) between 
experimental and hFE outcomes.

Results

The results of the material properties calibration for the 
adapted and simplified hFE analysis method are summarized 
in Table 2, and results of the linear regression analyses for 
experimental validation are summarized in Table 3.

Table 2  Fitted material properties used for hFE analysis method 
(bold parameters were scaled)

Bone material model Scaling

Young’s modulus E0[GPa] 18.947 SCA1
Shear modulus �0[GPa] 7.602 SCA1
Poisson’s ratio v0[–] 0.2461
Power for modulus-density relationship k[−] 1.63
Power for modulus-fabric relationship l[−] 1.1
Tensile strength �

+
0
[MPa] 127.16 SCA2

Compressive strength �
−
0
[MPa] 184.73 SCA2

Shear strength �0[MPa] 97.74 SCA2
Power for strength-density relationship P[–] 1.69
Power for strength-fabric relationship q[–] 0.98
Multiaxial interaction coefficient �[–] 0.1876

Table 3  Summary of experimental validation outcomes for stiffness 
and strength

Parameter Stiffness Strength

Slope 0.997 1.001
Intercept 1608 N/mm 1180 N
R2 0.889 0.952
RMSE 7281 N/mm 743 N
Lin’s concordance correlation 

coefficient
0.942 0.922
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