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Abstract

Intervertebral disc (IVD) degeneration (IDD) is the main contributor to chronic low

back pain. To date, the present therapies mainly focus on treating the symptoms

caused by IDD rather than addressing the problem itself. For this reason, researchers

have searched for a suitable biomaterial to repair and/or regenerate the IVD. A prom-

ising candidate to fill this gap is silk, which has already been used as a biomaterial for

many years. Therefore, this review aims first to elaborate on the different origins

from which silk is harvested, the individual composition, and the characteristics of

each silk type. Another goal is to enlighten why silk is so suitable as a biomaterial, dis-

cuss its functionalization, and how it could be used for tissue engineering purposes.

The second part of this review aims to provide an overview of preclinical studies

using silk-based biomaterials to repair the inner region of the IVD, the nucleus pulpo-

sus (NP), and the IVD's outer area, the annulus fibrosus (AF). Since the NP and the AF

differ fundamentally in their structure, different therapeutic approaches are required.

Consequently, silk-containing hydrogels have been used mainly to repair the NP, and

silk-based scaffolds have been used for the AF. Although most preclinical studies
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have shown promising results in IVD-related repair and regeneration, their clinical

transition is yet to come.

K E YWORD S

Bombyx mori, degeneration, functionalization, intervertebral disc, low back pain, regeneration,
repair, silk, stem cells

1 | INTRODUCTION

1.1 | The burden of low back pain and
intervertebral disc degeneration

Every year, 266 million people worldwide report suffering from low

back pain (LBP), with the highest incidence in Europe (5.7%).1 The rea-

sons for LBP are versatile. However, the main contributor to chronic

LBP is intervertebral disc (IVD) degeneration (IDD).2 Compared to

other organs of the musculoskeletal apparatus, the onset of IDD often

starts in early adolescence and then progressively aggravates with

age.3–5 The beginning of IDD is thought to be multifactorial, and many

risk factors such as excessive mechanical stress,6 genetics,7 trauma,8

and nutritional disorders within the IVD9 can set the ball rolling

responsible for the progression of IDD. And once the vicious circle of

IDD is entered, it is of great challenge to escape it and reverse the

process.10 IDD usually starts in the IVD's inner region, known as the

nucleus pulposus (NP).11 The NP acts as the IVD's central pressure

and weight absorber, which it is capable of due to its highly hydrated

nature and abundance of collagen type II (COL2), elastin fibers and

proteoglycans like aggrecan (ACAN).12,13 During IDD, biochemical and

cellular changes occur that promote catabolic turnover.14 Hence, the

NP's osmotic balance gets disturbed and consequently dehydrates.11

Decreased hydration of the NP causes a shift of the compressive load

from the NP to its surrounding tissue, the annulus fibrosus (AF), which

is comprised of multiple concentric ring-like layers (lamellae) that are

rich in collagen type I (COL1).15,16 However, as the structure of the

AF is preferentially made to resist tensile forces and less compres-

sional forces, it becomes stiffer and weaker and aggravates the IVD's

degeneration process overall.15 As a result, the IVD can bulge and

cause disc herniation with associated discogenic pain.17

To date, the clinical management of IDD has proven to be subopti-

mal in many cases since the current therapy methods primarily target

the symptoms of IDD, mainly pain, and not the pathophysiology itself.18

This issue can be largely traced back to a lack of available treatment

options that would encourage the repair or regeneration of the IVD.19

However, as an IVD is characterized by a low cell density, low turnover,

avascularity, and poor nutritional supply, it poses a considerable chal-

lenge to researchers attempting to repair it.20 Nevertheless, novel

biomaterial-based therapies for the treatment of IDD have attracted

considerable attention in recent years.21 Biomaterial-based therapies

have the great advantage of preserving the IVD's structure while either

already containing cells that drive the regeneration and repair or stimu-

lating the regenerative potential of the remaining cells in the tissue.21

One biomaterial that has historically been used time and time

again for biomedical applications is silk.22 Moreover, in orthopedics

and especially in IVD-related research, silk was often used to support

the IVD's repair or regeneration.23 Therefore, this review aims to elab-

orate on the sources, types and properties of silk, how it has been

used as a biomaterial and mainly, how the introduction of silk into

IVD-related research has been implemented to repair the damage

caused by IDD and to counteract further degeneration of the IVD.

1.2 | Silk—properties and the various species from
which it can be harvested

Many insects and arachnids produce silk biopolymers as a protective

shield during their life, such as the silkworms (Insecta: Lepidoptera:

Bombycidae),24 spiders (Chelicerata: Arachnida),25 mites (Chelicerata:

Arachnida: Acari: Tetranychidae),26 and wasps (Insecta: Hymenoptera).27

The most popular type of silk, mulberry silk, accounts for most silks pro-

duced globally (about 95%) (Figure 1).28 Other commercially essential

types of silk are classified as non-mulberry silk since they do not feed on

mulberry plant leaves. The prominent representatives of this group are

Eri silk, Tasar (Tussar) silk and Muga silk (all Insecta: Lepidoptera: Saturnii-

dae) (Figure 1).29 On the other hand, there is spider silk with its outstand-

ing mechanical properties30; however, its commercialization is limited by

the high-cost production and the difficulty in obtaining more significant

amounts with the exception of some novel gene technology

approaches.22,31 Silks from silkworms and spiders have been widely stud-

ied for their use in tissue engineering and regenerative medicine.32–34

Depending on the source, the biological and physicochemical properties

change due to the different structural compositions.35–37

1.2.1 | Mulberry silk

Commercially available mulberry silk is produced from a single species,

i.e., Bombyx mori Linnaeus, 1758 (Figure 1). Mulberry silkworms are

entirely domesticated, and they do not occur naturally.38 The silk protein

is secreted from the silk glands of the mature fifth instar larva.39 Their

cocoon is formed by a structural protein core, that is, silk fibroin (SF),

surrounded by a water-soluble coating named silk sericin (SS).40 SF con-

stitutes the significant portion of the cocoon and is the core silk protein.

It is the same protein reeled from the cocoons into threads to be woven

into cloth that forms a significant source of income for the sericulture

industry.41
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SF from B. mori is composed of a heavy chain (H-chain, 360–

390 kDa) and a light chain (L-chain, 27 kDa), which are held together

by a disulfide bond and a glycoprotein called P25, which is linked to

both chains by noncovalent interactions in the molar ratio of 6:6:1,

respectively (Figure 2).42–44 The primary structure of the H-chain is a

polypeptide that is mainly composed of glycine (43%–46%, G), alanine

(30%, A), serine (12%, S), tyrosine (5.3%, Y) and other amino

acids.45–47 A SF H-chain is designed as a natural block-copolymer with

a repetitive core formed by 12 domains forming the crystalline region

of SF interspersed with 11 less organized domains composed of a

nonrepetitive primary sequence.35,43 This block-copolymer arrange-

ment of the H-chain guarantees the characteristic mechanical proper-

ties of SF.48

The other protein constituting the silk cocoon is SS, a globular

protein. It is an amorphous glycoprotein that acts as a cement to keep

the SF filaments together during the spinning process and comprises

about 20%–30% of the cocoon's mass. Its primary structure is mainly

composed of serine (28%–34%), glycine (10%–19%), aspartic acid

(14%–19%), and in minor parts, other amino acids such as histidine,

tyrosine, glutamic acid, threonine, and others.49,50 The high serine

content and the polar side domains of other amino acids (hydroxyl,

carboxyl, or amino groups) make it highly water-soluble. Moreover,

they enable crosslinking, copolymerization, and blending.

SS obtained from B. mori exists mainly as random coil conforma-

tion with a molecular weight ranging between 20 and 400 kDa.49

A small percentage of beta-sheets, along with beta-turns, contributes

to small crystalline domains.51 However, due to the principal presence

of random coils, it behaves like an amorphous material, brittle in the

dry state. Its properties can be improved by triggering beta-sheet for-

mation upon drying, mechanical stretching, moisture absorption, or

chemical modifications.

The process of removing sericin from the silk fiber is named

degumming. To extract and use sericin from the cocoon, different

methods can be chosen: high temperature (with or without high pres-

sure) by autoclaving, acidic solution (citric, tartaric, succinic acid), soap,

and alkali solutions (sodium carbonate), highly concentrated urea or

by enzymatic processes.52–54 With different extraction protocols, the

chemical structure of sericin and its amino acid composition changes,

which could impact the potential biomedical application.54–56 The

degumming process is also fundamental for the extraction and regen-

eration of silk fibroin into an aqueous solution and for the structural

integrity of the three subunits of the silk fibroin protein complex.57

F IGURE 1 A schematic of silk origins and how it is applied for biomedical applications. (A) Sources of arthropod-derived silk. (B) Various
forms of silk scaffolds for various biomedical applications: silk foams (redrawn, based on Hardy et al.135), silk hydrogels (redrawn, based on Singh
et al.131), sponge-like silk (redrawn, based on Yu et al.132) and woven silk (redrawn, based on Hofmann et al.250)
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Thus, it is often a crucial first step for developing silk-based

biomaterials.

In addition to SF and SS, the major silk proteins, several compo-

nents of low molecular weight peptides have been identified. These

silk protein components are called seroin.58 Seroin is distinguished

from other silk proteins by high proline content, lack of cysteines, and

the presence of two kinds of short amino acid repeats.58 It is assumed

that seroin is involved in cocoon protection against predators and

microbes.59

1.2.2 | Non-mulberry silk

Representatives of non-mulberry or “wild” silks are called tasar, eri,

muga, fragaria, cricula (collectively called “Vanya silks,” coming from

Sanskrit language and standing for untamed, wild, or forest-based,

Lepidoptera: Saturniidae), and shashe (Lepidoptera: Lasiocamidae)

(Figure 1).60 The process of non-mulberry silk production in the silk-

worm gland is the same as the mulberry silk. However, the spun silk

displays significant characteristic differences.61 A prominent feature is

that non-mulberry silk has a higher cross-section since it has reduced

packing capacity due to the higher content of bulky side-groups in the

H-chain (dibasic acids and arginine). Its stability results from higher H-

bonds in the H-chain, which limits the dissolution. Moreover, non-

mulberry silks are more stable at high temperatures than mulberry

silks and present attractive compressive strength, toughness, and elas-

ticity.29,62,63 The amorphous domains are formed by bulky and polar

side chains, responsible for maintaining the silk properties under dif-

ferent external treatments. Finally, non-mulberry silk does not possess

an L-chain and the P25 glycoprotein.64,65 The big challenge with non-

mulberry silk is the isolation and purification of SF from the cocoon.

This difficulty arises from the high hydrophobic structural stability of

non-mulberry cocoons and the high amount of H-bonds. They cannot

be dissolved in lithium bromide and the other solutions used for mul-

berry silks. Therefore, other ionic liquids such as calcium nitrate,

sodium thiocyanate, lithium thiocyanate and harsh organic solvents,

such as trifluoroacetic acid, have been considered.66,67 Due to this

issue, non-mulberry SF is generally isolated from the silk gland of the

fifth instar larvae by squeezing it in a distilled water solution with

anionic surfactants.68

F IGURE 2 Chain configuration of silk fibroin: (A) Schematic representation of the primary structure of the silk fibroin heavy chain. Each of
the 12 crystalline domains varies slightly in length and sequence, while the 11 amorphous domains are nearly identical. The amino acid sequence
for one of the crystalline domains is given to highlight the repetitive nature of the protein. (B) Hierarchical structural organization in Bombyx mori
silk fibroin. (i) Orientation of aligned beta-sheet crystallites and amorphous regions within a native fiber. (ii) Inter-sheet stacking within a beta
crystallite, held together by van der Waals interactions between the glycine or alanine populated faces. (iii) Hydrogen bonding in the peptide
chain organizes the crystalline blocks of the protein into anti-parallel beta-sheets
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A selection of non-mulberry silks and their properties is presented

in Table 1.

1.2.3 | Spider silk

Spiders produce spin silks to perform many functions, such as

mating,69 flying,70 and building their webs for hunting (Figure 1).71

Among these, spider cobwebs are the most well-known ones. They

are composed of at least five types of silk (i.e., minor and major ampul-

late silks, piriform silk, flagelliform silk and aggregate silk), produced

by different glands with various functional properties.72–75 The most

extensively characterized spider silks are from Nephila clavipes and

Araneus diadematus.22

Spider silk provides a greater diversity of physical and mechanical

properties than silkworm-derived fibers due to multiple complex silk

glands.72 Silk derived from the spiders' major ampullate glands is a

natural hierarchically ordered material that displays a unique combina-

tion of the tensile strength (1.3 GPa), extensibility (30% elongation to

fracture) and toughness (158–180 J/cm3). In contrast to B. mori silk,

spider silk does not comprise any sericin.76–80 Moreover, it is biocom-

patible and has a very high strength-to-density ratio, exceeding the

one of high-performance steels and many commercial fibers.81 For

these reasons spider major ampullate silk has always inspired

TABLE 1 Properties of various non-mulberry fibroin and sericin

Silk

type Silkworm species Background

Silk

proteins Molecular weight (kDa)

Breaking

strain (%) Reference

Tasar

silk

Antheraea mylitta

Antheraea perny

Antheraea yamamai

Antheraea roylei

Can be divided into two types:

tropical tasar and temperate

tasar. These silkworms can be

bivoltine or trivoltine

depending upon variety and

habitat. Among non-mulberry

silkworms, A. mylitta has the

highest silk production capacity

and its cocoon is the largest.

Fibroin Two fractions of 395 and

197

26–39 68,223,224

Sericin Five fractions ranging

from 30 to more than

200

Muga

silk

Antheraea assama Muga is golden yellow colored silk

and is mostly distributed in the

north-eastern region of India.

The silkworms are semi-

domesticated and multivoltine.

Fibroin Two fractions of 20 and

220

26–41 223,225,226

Sericin Single fraction of 66

Eri silk Philosamia ricini (Samia

ricini/Cynthia ricini)

Eri silk can regain greater amounts

of moisture than mulberry silk.

Its fibroin contains a many

hydrophilic and positively

charges amino acids. The

silkworms can be domesticated,

and they eat the leaves of

several trees, not just mulberry

leaves.

Fibroin Two fractions of

45 and 97

24–27 223,225,227,228

Sericin Single fraction of 66

Fagaria

silk

Attacus atlas Attacus atlas can be found in

southeast Asia. Its silk has a

bivoltine nature and the tensile

strength of the silk yarn is

greater than that of tasar and

muga.

Fibroin N/A N/A 60,229,230

Sericin N/A

Shashe

silk

Gonometa postica Gonometa postica is a

polyphagous African insect. Its

high-quality silk has mainly

been used for textiles and has

only recently been

implemented as a biomaterial.

Fibroin N/A 23–32 231–233

Sericin N/A

Cricula

silk

Cricula trifenestrata Cricula trifenestrata is a silkworm

from South Asian countries.

The cocoons of this species are

small and perforated. The silk

has good biocompatible

properties.

Fibroin Single fraction of 400 12 60,234–236

Sericin Single fraction of 350

Source: Modified from Kundu et al.60
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researchers in the design of biomedical devices and tools with out-

standing mechanical and biological properties.32,82,83

Unlike silkworms, which rely on two essential proteins—sericin

and fibroin—spiders manufacture proteins (spidroins) whose composi-

tion and properties vary significantly between species.84 However,

they consist of two nonrepetitive hydrophilic terminal domains

(amino- and carboxy-terminal) with a large internal repetitive hydro-

phobic region.85 Major ampullate silk is mainly composed of major

ampullate spidroin (MaSp) 1 and 2 that comprise poly-alanine and

poly-glycine-rich domains in the repetitive region.86 It contains crys-

talline beta-sheets formed by poly-alanine interconnected in an amor-

phous matrix composed of glycine.87

Despite the remarkable properties, native spider silk has limited

uses as it is very challenging to achieve more extensive mass produc-

tion. One reason for these limitations might be the cannibalistic

nature of spiders, which makes it hard to harvest silk on a large

scale.88 A possible solution to overcome this hurdle is the production

of artificial spider silk through their expression in heterologous hosts,

such as bacteria.89 Recently, it has been proposed to use plants such

as potatoes and tobacco to amplify spider silk proteins for the indus-

try.31 Aside from increased scalability, protein engineering techniques

allow scientists to design artificial silks with specific features that

could outperform native spider silk for their use in the biomedical

field, in textiles and others.90

2 | SILK AS A BIOMATERIAL

Biomaterial design is a fundamental ingredient of tissue engineering.

An ideal biomaterial should: (i) be biocompatible and elicit little to no

host immune response, (ii) integrate physical, chemical, and biological

cues to guide cells into functional tissues via cell attachment, migra-

tion, proper cell–cell interactions, cell proliferation, and differentiation,

(iii) degrade at a rate favorable with new tissue formation, (iv) offer

mechanical support appropriate to the level of functional tissue devel-

opment, and (v) possess versatile processing options and should be

easily chemically modified to suit a wide range of targeted biomedical

applications.91

Silks represent a unique family of proteins that fulfill all these cri-

teria of a functional biomaterial.80 The most studied silk type for bio-

material design is mulberry (B. mori) silk because it can be

domesticated and regenerated in an aqueous solution. Non-mulberry

silk is not widely used in the field of biomaterials, despite the presence

of the tripeptide sequence arginine-glycine-aspartic acid (RGD) in the

primary structure, which would enhance the interaction of integrin

present on the cells' surface, giving non-mulberry silk an advantage

over mulberry silk to enhanced cell adhesion and proliferation.92–94

As previously mentioned, the use of non-mulberry silk, is hindered by

cocoon dissolution issues, so harvesting is almost limited to direct

extraction from the silk glands. Nevertheless, there are studies for its

use as a potential biomaterial for different target tissues (bone,95

cartilage,96 skin,97 tendon,98 cornea99), for drug delivery100 and as tis-

sue models.101,102 Finally, since the spread of spider silk as a

biomaterial is limited because of the difficulties in obtaining large

quantities of material, there is considerable interest in the production

of recombinant spider silk proteins using heterologous hosts.88,103 To

date, silk has been processed in the form of fibers,104 non-woven

meshes,105 films and coatings,106 porous forms,107 hydrogels,108 and

bioinks109,110 for tissue engineering purposes (Figure 1B).

2.1 | Silk fibroin

SF from B. mori is an attractive biomaterial that has been used as

suture material since ancient times. Meanwhile, some SF-based prod-

ucts have been approved by the FDA for their use in clinics.

Degummed SF yarns are used for surgical sutures and for manufactur-

ing the knitted surgical mesh (SERI surgical scaffold™).32 Furthermore,

a powder from freeze-dried regenerated silk fibroin solution is used as

an injectable filler (Silk Voice™) for vocal fold medialization and vocal

fold insufficiency.37,111 One reason for the excellent biocompatibility

of SF may depend on the crystallinity content and the method of

material processing.112 As an example, the thrombogenic response of

regenerated SF films can be tuned by varying their beta-sheet content

and decreasing their hydrophobicity so that they adsorb more serum

proteins compared to the native fibers.113

The regeneration of SF is fundamental for obtaining an aqueous

solution that can be processed in diverse ways by controlling and trig-

gering the self-assembly of beta-sheets “on-demand” for the crystalli-

zation structure. The key features that make SF an exciting choice for

tissue engineering applications are its tuneable biocompatibility,114

low immunogenicity,115 tuneable biodegradation,116 versatile

processability,117 controllable and tailorable mechanical properties,118

and its sustainability (easy accessibility, cost-effective and green

processing).119

A soluble helical structure dominates the regenerated aqueous

solution (Silk I-like).45 When this structure is exposed to mechanical/

physical and chemical treatments, the transition to Silk II occurs.120

Silk II is a beta-sheet crystal-dominated structure and is the main con-

tributor to the SF's strength, biodegradation kinetics, biological

response and insolubility in water and other solvents, such as mild

acids and alkaline environments. Depending on the beta-sheet con-

tent and the self-assembling method, the physicochemical and biologi-

cal properties of the scaffold vary.121

When dealing with scaffolds, it is essential that their degradation

kinetics are consistent with the rate of novel tissue formation. The rel-

evant advantage of SF is that its degradation can be controlled by tun-

ing the crystallinity, concentration, molecular weight, the scaffold

morphology, such as scaffold pore size, porosity and processing

technique.122–124 Being a protein, SF is subjected to proteolytic diges-

tion in vitro and in vivo by chymotrypsin, proteases, collagenases and

matrix metalloproteinases.116 Each enzyme has a specific cleavage

site, and protease XIV has been considered the most efficient for

degrading silk in any material construct.123 Due to their long-term

functional stability, porous silk scaffolds have been used in sustainable

cultures for up to 6 months.125
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SF-based scaffolds also display high thermal stability, depending

mainly on the primary and secondary structure.35 Silk I and Silk II crys-

tals melt at different temperatures, that is, 260–292�C and 286–

350�C as a mean value, respectively.126,127 Also, the processing tech-

nique and post-treatments influence the thermal stability of SF scaf-

folds.128 Due to their thermal strength, SF-based scaffolds can

withstand different sterilization techniques, such as autoclaving, ethyl-

ene oxide, ethanol, and UV- and gamma irradiation, without damaging

the structure.129 This feature is a crucial difference from many other

natural polymers.

The regenerated SF solution can be processed differently to pro-

duce different scaffold morphologies such as hydrogels,130–132

foams133 and sponges,134,135 3D printed constructs,136 micro- and

nano-particles,137 electrospun membranes,138 and 2D films

(Figures 1B and 3).139 This processing versatility allows it to adapt to

the needs and requirements of different target tissues with diverse

physicochemical and biological responses.36,113 For example, hydro-

gels are highly hydrated polymer networks that can be crosslinked by

other methods and permit cell seeding and encapsulation due to their

capacity to retain large amounts of water. Hydrogels have been

widely explored in tissue engineering because of their unique biocom-

patibility and biodegradability.140 Usually, traditional SF-hydrogels are

based on physical and chemical crosslinking (summarized in Table 2).

The properties of SF hydrogels depend on the number of beta-sheets

in the material.141 Physical stabilization can then be achieved using

shear stresses,142 an electric field143 and ultrasound144 or varying the

temperature145 or pH146 to allow the conformational change from Silk

I to Silk II. Besides physical crosslinking, however, chemical crosslink-

ing can also be involved to improve the stability and the mechanical

properties thanks to the abundance of functional groups on SF chains

(i.e., tyrosine, lysine).130

Sponges and foams are interconnected porous structures whose

properties can be controlled by the processing method. SF sponges

can be produced by salt leaching,147 freeze drying,134 or gas foam-

ing.133 They have been widely used for orthopedic applications and

soft tissue engineering due to their macroporous structure, which can

be adjusted for tissue regeneration and vascularization.148 Sponges

and foams can also be used in combination with 3D printed synthetic

polymer structures to promote the bioactivity of the construct. For

example, in the past, SF was combined with a 3D printed polycapro-

lactone structure to fabricate an “entrapped in cage” scaffold for

meniscus tissue engineering.149 The presence of silk enhanced the

mechanical properties in the wet state thanks to its swelling proper-

ties and favored cell adhesion, proliferation, and metabolic activity

in vitro and neovascularization in vivo.

Due to its different chemical structure, the biocompatibility of SF

can be enhanced by chemical modifications of the amino acid side

chains to graft bioactive molecules (peptides, growth factors [GFs]).

This process includes coupling reactions (i.e., carbodiimide

chemistry,150,151 diazonium coupling152 or cyanuric chloride

F IGURE 3 Illustration of
recent advances of silk
engineering for regeneration of
spine applications.
(A) Functionalization of silk, for
example, with GMO modified
Bombyx mori larvae
overexpressing TGF-β or GDF-6
in silk glands based on ref or

addition of RNA molecules such
as miRNA, siRNA based on
Frauchiger et al.215 (B) Process of
electrospinning of silk.
(C) Microfluidics of B. mori/
spider-on-chip strategies
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activated153), which can facilitate the addition of another polymer

chain,154 oligosaccharides155 or specific peptide chains.156 A former

study showed that biocompatibility was increased by the covalent

addition of RGD and parathyroid hormone (PTH).157 The scaffold bio-

compatibility can also be improved by blending SF with other mate-

rials, i.e. with calcium phosphates or specific inorganic components to

enhance osteogenic properties.158 Furthermore, silk fibroin scaffolds

have also been shown to promote differentiation of mesenchymal

stromal cells (MSC) with extracellular matrix (ECM) secretion and min-

eralization, making them an optimal candidate for orthopaedical tissue

regeneration.159 Moreover, the incorporation of specific GFs

(i.e., bone morphogenetic protein 2 [BMP-2],160 BMP-7,161 vascular

endothelial growth factor [VEGF])162 further increased the osteogenic

and angiogenic potential of SF scaffolds.

2.2 | Silk sericin

SS is a natural polymer protein material produced by the silkworm

B. mori that covers and holds the silk fibroin filaments together. How-

ever, SS is usually considered a side-product of the cocoon during the

degumming process, becoming an unutilized waste product.

Researchers started to extract it as biomaterial due to its natural ori-

gin, availability, and interesting biological properties. SS has been

TABLE 2 Types of crosslinking used for silk fibroin hydrogels

Crosslinking type Methods Main interactions

Physical crosslinking • Self-assembly

• Ultrasonication

• Shear stresses

• Electric field application

• Temperature changes

• pH variations

• Organic solvents (methanol, ethanol)

• Surfactants (sodium lautoyl sarcosinate,

sodium lauryl sulfate, poloxamer)

Noncovalent bonds (hydrogen bonding, hydrophobic interaction,

electrostatic interaction, ionic interaction).128,237–242

Chemical crosslinking • Photopolymerization (UV or visible light)

• Irradiation (gamma-rays)

• Chemical crosslinking agent (carbodiimide,

genipin, glutaraldehyde)

• Enzyme crosslinking (horseradish peroxidase,

glutamine transferase, carbonic anhydrase,

alcohol oxidase, tyrosinase, laccase)

Formation of covalent bonds via enzymes,

chemical agents or others.150,152,243–247

Note: Sketches created in the Mind the Graph platform (www.mindthegraph.com).
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recognized as the immunogenic element of the silk filament for years,

which has fuelled research into the purification of SF and its regenera-

tion. However, researchers demonstrated that the immunogenicity of

the silk fiber is mainly due to the combination of SS with SF, although

the mechanism responsible for initiating the immune response is not

yet fully understood.163

SS has been used in cosmetics for years due to its properties such

as antioxidant,164 moisturizing,165 UV-protective potential,166 and

oxygen permeability.167 For tissue engineering approaches, SS-

biomaterials have been synthesized in various forms, such as

hydrogels,168 sponges,169 films,170 and inks.171 Furthermore, with the

development of SS-based 3D scaffolds and films, its biological effects

could be investigated. SS showed an increase in the migration, prolif-

eration and production of COL1 in skin cells.172 Additionally, it favors

the growth of keratinocytes and fibroblasts, which makes it a potential

candidate for epithelial tissue repair and wound dressings.173 More-

over, SS can favor the nucleation of bone-like hydroxyapatite, raising

interest in its use in bone tissue engineering and the coating of tita-

nium surfaces.174,175 Finally, due to its chemical reactivity, pH sensi-

tivity and amphiphilic structure, SS has been employed for the design

of drug delivery systems and for targeting purposes.174

Despite the interesting biological properties, the widespread use

of SS-based scaffolding materials is limited because it is characterized

by fast degradation rates and weak mechanical properties. However,

thanks to the presence of hydroxyl, carboxyl and amino groups pre-

sent in the polar side chains, it can be crosslinked,176 co-polymer-

ized177 and blended178 with other polymers to improve biomechanical

features or to conjugate bioactive molecules. For example, in a previ-

ous study, SS was combined with gelatin methacrylate, and it was

then used as ink for 3D printing purposes favoring the proliferation

and stratification of keratinocytes.171

2.3 | Functionalized silk

As mentioned above, silk as a biomaterial already has a lot of advan-

tages in tissue engineering applications. However, when silk is fabri-

cated into a scaffold with designed functions and in contact with the

tissues, the microenvironment with which the scaffold is in contact is

complicated, so the requirements of the material are more crucial. For

this reason, the silk or silk-based scaffold should be functionalized to

have a controllable performance according to the final purpose. The

general principle of functionalization is the use of physical or chemical

methods to make silk as a delivery and sustainable controlled-release

system of some targeted molecules, in order to improve the tissue-

specific biological properties of the scaffold.

2.3.1 | Growth factor and cytokine
functionalization on silk

GFs and cytokines are two major biological signal molecules, which

regulate cellular function, and have an essential contribution to ECM

synthesis.179 Since silk is a well-studied material in this field, functio-

nalized silk with GFs and cytokines has presented excellent perfor-

mances in both delivering and releasing. In the past, the biological

properties of the dual GFs BMP-2 and transforming growth factor β1

(TGF-β1) functionalized silk-based (non-mulberry silk fibroin, from

Antheraea mylitta) scaffold have been studied for bone regeneration

using different functional methods. Bhattacharjee et al.180 loaded the

two GFs using the carbodiimide-coupling reaction, while Naskar

et al.181 loaded the same GFs by simple physical blending. Even

though the architectures of these two studies were completely differ-

ent, both results showed that the functionalized silk scaffolds had a

sustained GF release profile, good cell adhesion, proliferation, and

migration, as well as an earlier stage differentiation. In the study by

Wang et al., osteochondral GFs were either encapsulated in

poly(lactic acid-co-glycolic acid) (PLGA)-based or mulberry SF-based

microspheres and then further incorporated in alginate or silk scaf-

folds to create concentration gradients.182 The results showed that

both microsphere types were able to form concentration gradients

and induced human MSCs to differentiate along the concentration

gradient into an osteochondral phenotype.

2.3.2 | Functionalizing silk with miRNA

MicroRNAs (miRNAs) are short, noncoding RNA molecules that regu-

late gene expression. Importantly, due to the “small size” of these

RNAs, the therapeutic miRNAs will not integrate into DNA, thus elimi-

nating the scruples about genetic alterations (Figure 3A).183 Although

the regulation of miRNA on skeletal tissues is widely studied, the

application of miRNA to functionalize silk or silk-based scaffolds for

tissue engineering is still an emerging field. One such sparse study

where miRNA-functionalized-silk was used for orthopedic research

was conducted by James et al.184 Here, they developed an all-aque-

ous, silk-based device to enhance the osteoinduction of MSCs. Just

by simply doping the silk fibroin solution blended with anti-sense

miR-214 (ASmiR-214) on the surface of the silk-based screw, the con-

tinuous release of miRNA that inhibits the expression of osteoinduc-

tive antagonists could be detected up to 7 days. The in vitro

evaluations demonstrated that the osteoblastic commitment and

osseous integration were enhanced.

2.3.3 | Microfluidics using silk

Recently, lab-on-chip approaches were followed for the production of

nano-particles of silk and nano-films (Figure 3C).185,186 Also, bioinks

for the usage in 3D printing engineering have been developed.187,188

Jeon et al. for instance, investigated on silk-elastin-like protein (SELP)

polymers that can be used for predicted drug release depots.189 Peng

et al. mimicked the complex interplay of different silk glands of spiders

as a “spider-on-chip” approach.190 Silk in general seems to be very

advantageous for the usage of lab-on-chip devices compared to other

materials such as ceramics and polymers.191,192 This is specifically true
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if advantage is taken of hydrophilic or hydrophobic yarns with high

elasticity.191,193,194

3 | SILK USED FOR INTERVERTEBRAL
DISC REPAIR

Regarding the silk's biomechanical properties and its versatile biomed-

ical applications, this biomaterial has also been considered and used

for IVD research with the aim to repair damaged and/or degenerated

IVDs.23 Anatomically spoken, there are two approaches how to repair

the IVD using silk; either by targeting the NP or the AF.

3.1 | Nucleus pulposus repair

In the past, the NP has been a popular target to repair a degenerated

IVD. This is likely related to the fact that IDD has its origins in the NP,

where a reduced ECM turnover accompanied by a loss of internal pro-

teoglycans leads to the disc's dehydration.11 Most NP replacement

biomaterials, made at least partially of silk, are hydrogels. This seems

like the most obvious choice since hydrogels and the NP both share a

lot of common ground. Hydrogels can absorb significant amounts of

liquid, and they can be designed to have similar mechanobiological

properties as the highly hydrated NP.195–197

One of the first approaches to use a hydrogel with incorporated

silk to regenerate NP tissue was carried out by Park et al.198 Their

approach was to encapsulate chondrocytes with a hydrogel that con-

sisted of fibrin/hyaluronic acid (HA) only, 2% silk or a combination of

both biomaterials either with 1%, 1.5%, or 2% silk. They supplemen-

ted silk to the fibrin/HA hydrogel to achieve superior mechanical

strength compared to plain fibrin/HA gels. After 1 week of culture, all

five groups showed a defined chondrogenic area stained with alcian

blue. Furthermore, all silk groups expressed a significantly higher GAG

content than the fibrin/HA only group after 1 week. However, based

on the gene expression of COL2, SOX9, and ACAN, the 2% silk gel and

the 2% hybrid were inferior to the other groups. Interesting results

were also found regarding the mechanical properties of the different

gels. As hypothesized, all samples treated with silk presented a signifi-

cantly higher compressive modulus and yield strength than those

without silk, making them a better substitute for NP tissue.

Recently, a similar approach has been carried out that also

explored the influence of silk/HA-composite hydrogel concentrations

on the samples' biomechanical behavior.199 This study confirmed the

correlation between higher silk to hyaluronic acid ratio and a higher

viscoelastic modulus. Furthermore, in combination with TGF-β3

enriched chondrogenic inductive medium, the hydrogels promoted

considerable NP-like differentiation of bone marrow-derived MSCs

after only 7 days. This differentiation was most clearly noticeable

through a significantly enhanced expression of GAG and COL2 in the

ECM and a significantly higher gene expression of ACAN and COL2.

Another study on silk-based hydrogels was conducted by Hu

et al.200 Here, they were working on an injectable hydrogel with the

ultimate goal of replacing a degenerated NP. They proposed a cross-

linked hydrogel composed of silk fibroin and polyurethane, which

could be prepared in a liquid or semi-liquid state at room temperature.

The hydrogel showed great cytocompatible properties during a one-

week culture period using bone marrow-derived MSCs, good radio-

graphical visibility and a Young's modulus comparable to that of a nat-

ural NP. In a follow-up study, the group further focused on the

mechanical features of the same hydrogel as well as its in vivo bio-

compatibility.201 Confined compression and fatigue tests revealed

adequate physical-mechanical characteristics and the ability to with-

stand a million cycles at an axial strain of 15% and a frequency of

5 Hz. The hydrogel's biocompatibility was shown with an in vivo rab-

bit model, where they transplanted the dried implants into the para-

vertebral muscle. After 3 months, no inflammatory response was

observed in the surrounding tissue, nor did the hydrogel display any

apparent signs of deformation or degradation. In conclusion, the

investigators state that due to the good biomechanical properties,

which resemble those of a healthy NP, further animal trials and, ulti-

mately, its clinical transition seems realistic.

The wide range of possible applications of silk fibroin for the

regeneration of the NP was nicely shown by Murab et al.202 Not only

was the silk used as a hydrogel for improved mechanical support, but

within the hydrogel, silk fibroin was shaped into hollow microspheres

and used as carriers for N-acetyl-D-glucosamine (GlcNAc). As GlcNAc

has been known to regulate the expression of TGF-β1203 and for the

formation of large proteoglycan aggregates,204 it was hypothesized

that its spatiotemporal release would enhance the differentiation of

human adipose-derived stem cells towards a NP-like phenotype.

Indeed, cells cultured in hydrogels containing GlcNAc-loaded micro-

spheres expressed significantly more COL2 and ACAN than controls

lacking GlcNAc. Furthermore, the hydrogel's rheological characteriza-

tion demonstrated its injectability, and cyclic compressive testing

using degenerated IVDs with subsequent hydrogel injection revealed

a compressive strength similar to that of a healthy IVD.

Almost all trials that aimed to regenerate/repair the NP with silk

used such from the silkworm B. mori. In this context, only a single

study has assessed how non-mulberry silk could be used for NP

regeneration.196 Here, composite hydrogels were formed using differ-

ent ratios of silk fibroin proteins derived from Antheraea assamensis

and B. mori. The aim was then to find a suitable mixture of these two

silk fibroins for in situ replacement of the NP. After testing different

ratios of silk fibroin blends, the investigators observed that the higher

the concentration of Antheraea assamensis derived silk, the faster the

hydrogel's gelation, but also degradation time, the higher the prolifera-

tion rate of NP cells and the greater its ability to swell as well as to

withstand cyclic compression. In conclusion, they state that the

hydrogel's properties can be adjusted by varying the silk fibroin pro-

portions, making it a potential candidate for clinical translation.

Nevertheless, despite the promising results obtained with hydro-

gels for NP repair, they also have their limitations. Due to their vis-

cous nature, cell migration and the exchange of nutrients and waste

products into and out of the hydrogel can be hindered, and the syn-

thesis of newly formed ECM can be impaired.205,206 To tackle these
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issues, Zeng et al. created a highly porous silk fibroin scaffold with

interconnected macropores, leaving enough space for NP cells to infil-

trate, increase, and to deposit newly synthesized ECM.206 As

hypothesized, NP cells infiltrated the scaffolds and proliferated well

therein, as a significant increase in DNA content was found over a cul-

ture period of 3 weeks. Moreover, quantitative analysis showed that

TABLE 3 Overview of published studies where silk was used to repair/regenerate the nucleus pulposus

Silk origin Silk structure Study Conclusions References

Bombyx mori Hydrogel Assess whether a composite

hydrogel made of silk-fibrin and

hyaluronic acid causes greater

mechanical strength and more

chondrogenesis than silk-fibrin/

hyaluronic acid alone.

Silk-fibrin/hyaluronic acid hydrogels

had improved mechanical strength

and a decreased degradation rate

while maintaining the

chondrogenic phenotype of NP

cells.

198

Bombyx mori Hydrogel Comparing the mechanical

properties and chondrogenic

inductive potential of hydrogels

made of hyaluronic acid and

different silk fibroin strains with

varying weight ratios.

The higher the weight ratio of silk

fibroin to hyaluronic acid, the

greater the viscoelastic modulus.

Moreover, the hydrogels

promoted NP-like differentiation

of MSCs.

199

N/A Hydrogel Testing the biomechanical properties

of a NP replacement hydrogel

consisting of silk fibroin and

polyurethane.

The hydrogel possessed adequate

physical-mechanical properties to

replace the NP as a prosthetic

biomaterial.

200

N/A Hydrogel Determine the compressive

mechanic characteristics, stability

and biocompatibility of a

composite hydrogel made of silk

fibroin and polyurethane in vivo.

The hydrogel showed great

biocompatibility in vivo and no

obvious signs of degradation were

found after 3 months of

implantation.

201

Bombyx mori Cryogel Assess the effect of a silk fibroin

enriched poly (vinyl) alcohol

cryogel on its hydrophilicity and

how it influences the cellular

attachment and proliferation of

adipose-derived MSCs.

The enrichment of silk improved the

cryogels' rehydration ratio, water

content, hoop stress, and

compressive modulus. Moreover,

cell-hosting abilities were

improved.

248

Bombyx mori Hydrogel Creating a hydrogel that resembles

the NP's ECM. The hydrogel was

chitosan and COL2 based and to

increase the hydrophilicity and

stability, gelatin and silk fibroin

were added.

The hydrogel was injectable at 4�C
and started gelation after 30 min

at 37�C. The addition of silk

increased the hydrogel's stability

and durability.

249

Bombyx mori Silk microspheres

embedded in a silk

hydrogel

Study the effect of GlcNAc loaded

hollow spheres on the NP-like

differentiation of adipose-derived

MSCs, which are embedded in silk

fibroin together with the spheres.

Spatiotemporally controlled release

of GlcNAc enhanced the

expression of COL2, ACAN and

GAG. Furthermore, the hydrogel

brought adequate structural

support during cyclic compression.

202

Bombyx mori and

Antheraea

assamensis

Hydrogel Blending two different silk variations

to design a suitable hydrogel for in

situ NP replacement applications.

The gelation time and mechanical

properties of the hydrogel could

be tuned depending on the ratio of

the silk variants. NP cells

proliferated on all variants tested.

196

Bombyx mori Scaffold Determine the feasibility of porous

silk fibroin scaffolds seeded with

NP cells for NP regeneration.

NP cells proliferated in the scaffold

and produced significant amounts

of COL2 and proteoglycans. A

higher cell number resulted in a

greater compressive elastic

modulus of the scaffold.

206

Abbreviations: ACAN, aggrecan; COL2, collagen type II; ECM, extracellular matrix; GAG, glycosaminoglycan; GlcNAc, N-acetyl-glucasamine;

MSC, mesenchymal stromal cell; NP, nucleus pulposus; N/A, non-available.
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TABLE 4 Overview of published studies where silk was used to repair/regenerate the annulus fibrosus

Silk origin

Silk

structure Study Conclusions References

Bombyx mori Scaffold Assess whether either lamellar or porous spongy

silk scaffolds are better suited for AF tissue

formation and function. Both scaffolds were

seeded with porcine AF cells.

Both scaffolds showed similar mechanical

properties after 2 weeks of culture. However,

lamellar scaffolds enabled a significantly higher

GAG and collagen production than porous

scaffolds.

207

Bombyx mori Scaffold Creating a biphasic structure that mimics the IVD.

The AF-like structure was made of silk and was

cultured with porcine AF cells and the NP

scaffold consisted of fibrin and hyaluronic acid

and was cultured with porcine chondrocytes.

The amount of GAG significantly increased with

the lamellar AF scaffolds during a culture

period of 4 weeks. Lamellar NP scaffolds

showed significantly more collagen after

2 weeks and more GAG after 4 weeks.

208

Bombyx mori Scaffold Assess whether porous silk scaffolds with or

without RGD allow AF cells to attach and

promote ECM production.

AF cells attached and proliferated on the scaffold

regardless of whether the silk was

functionalized with RGD or not. However, RGD

silk improved ACAN and COL2 expression.

214

N/A Scaffold Integrating MSC-sheets onto silk scaffolds that

were wrapped around a disc made of silicon.

The artificial IVD was cultured for 4 weeks in

static conditions.

MSCs-sheets adhered well to the silk scaffolds.

During a culture period of 4 weeks, MSCs

remained metabolically active and the COL2 to

COL1 ratio increased over time.

209

N/A Scaffold Using alternating layers of silk scaffolds that were

wrapped around a silicon disc to simulate and

IVD-like assembly. MSC-sheets were put onto

the scaffolds and the construct was

mechanically stimulated.

Cells remained viable over a culture period of

4 weeks, however, the viability gradually

decreased. Mechanical stimulation guided the

MSCs to differentiate towards a phenotype

that resembles the inner AF.

210

Bombyx mori Scaffold A multilayered, angle-ply scaffold was created to

mimic the anatomical structure of the AF.

Porcine AF cells or human MSCs were seeded

onto the scaffold.

AF cells and MSCs proliferated during 14 days of

culture and produced significant amounts of

ECM. The scaffolds also displayed good

mechanical properties.

211

N/A Scaffold Creating a biomimetic multilamellar angle-ply AF-

like scaffold made of polycaprolactone and silk

fibroin fibers with ±30� alternating orientation.

Leporine AF cells were seeded onto the

scaffold.

The AF-like scaffolds possessed mechanical

properties similar to those of a natural AF. AF

cells managed to adhere, proliferate, infiltrate

into the scaffold and deposited ECM.

212

Antheraea

mylitta

Scaffold Creating a silk fibroin scaffold using crisscross-

oriented fibers to mimic the structure of a

native AF tissue. Fibers were made with or

without crosslinked CS.

Nasal chondrocytes aligned along the silk fibers

and produced GAG and COL2 after 4 weeks of

culture, regardless of the presence of CS.

216

Antheraea

mylitta

Scaffold Study the cellular response of CS functionalized

silk scaffolds using articular chondrocytes.

Chondrocytes showed enhanced chondrogenic

redifferentiation potential and a higher

metabolic activity in the presence of CS

functionalized silk.

217

Antheraea

mylitta

Scaffold Mimicking the inner and outer AF using

crisscross-orientated silk fibers and articular

chondrocytes. The fibers of the inner AF were

functionalized with CS. The scaffolds were

loaded statically and dynamically.

A tissue gradient was formed that mimicked the

characteristics of the inner and outer AF. Cells

in the inner AF produced more GAG and

expressed more COL2 and ACAN, whereas

more COL1 was found in the outer AF.

218

Bombyx mori Scaffold 3D printing of an anatomically-shaped AF using a

composite bioink made of silk fibroin and

elastin. Adipose derived stem cells were used

to test the scaffold's cytocompatibility.

The bioprinted scaffolds morphologically

resembled an anatomically-shaped AF and

displayed mechanical characteristics similar to a

native AF. Moreover, cells were metabolically

active for 21 days.

221

Bombyx mori Scaffold Assess how well genetically engineered silk

containing TGF-β3 or GDF-6 promotes IVD-

like differentiation of MSCs and how well it

maintains the phenotype of AF cells.

MSCs expressed about 10 times more ACAN than

COL2, indicating a trend towards NP-like

differentiation. AF cells were not negatively

affected by the silk.

215
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significantly more COL2 and proteoglycans were deposited on the

scaffold after 3 weeks of culture, which then further improved the

compressive elastic modulus of the scaffold itself.

A summary of published articles concerning the application of

silk-based biomaterials for the repair and regeneration of the NP can

be found in Table 3.

3.2 | Annulus fibrosus repair

Just as hydrogels have been used almost exclusively for the repair/

regeneration of the NP, only firm scaffolds can be found for the appli-

cation of the AF. Early investigations on how to implement silk specifi-

cally for the repair or regeneration of the AF were done by Park

et al.207,208 In two related studies, silk scaffolds with a lamellar mor-

phology were compared to ones with a porous, spongy structure. The

aim was to find out whether an AF-like lamellar structure would posi-

tively influence the tissue formation of porcine AF cells. Both studies

concluded that the lamellar orientation of the scaffolds improved the

construction of AF-like tissue during a culture period of 2 weeks. Fur-

thermore, compared to the porous scaffolds, the amount of GAG

gradually and significantly increased in the lamellar samples, and sig-

nificantly more collagen was detected towards the end of each experi-

ment. Surprisingly, however, the porous scaffold displayed a superior

elastic modulus and tensile strength after 1 day of culture but then

showed comparable values after 2 weeks.

Around the same time, See et al. worked on silk scaffolds for AF

regeneration. In a first attempt, cell sheets consisting of bone-mar-

row-derived MSCs were transferred onto a porous silk scaffold and

wrapped around an artificial NP made of silicone.209 The IVD-like

assembly was then cultured for 4 weeks under static conditions. Dur-

ing this culture period, the cell activity remained unchanged, and the

cell sheets' initial COL1-rich ECM shifted towards a COL2-dominant

environment, resembling the ECM found in the inner AF. The same

construct was then used in a follow-up study, but this time they cul-

tured it in a bioreactor that enabled dynamic compressional load-

ing.210 Results revealed that, on the one hand, the MSCs' metabolic

activity decreased significantly after 4 weeks of culture compared to

the static load. On the other hand, dynamic loading improved the

gene expression profile of the MSCs that were seeded onto the scaf-

fold, as essential IVD-related genes such as SOX9, COL1, COL2, ACAN,

and biglycan were significantly higher expressed than in the static con-

dition. Since then, multiple studies have attempted to mimic the AF's

anatomical structure using a silk scaffold, and they all share the same

conclusion: The more precisely the scaffold can replicate the human

AF, the better the phenotype of the cultured cells and the closer the

mechanical properties of the scaffold compared to native AF

tissue.211,212

Although the morphology of the scaffold has a crucial impact on

the synthesis of AF-like tissue, the composition and the properties of

the biomaterial itself are also known to be just as ground-breaking for

successful tissue formation. The surface of silk fibroin can be functio-

nalized by covalent conjugation of biomolecules, thereby making its

features tuneable and consequently allowing a more efficient and

better-defined differentiation or retention of an AF-like phenotype.213

For example, RGD functionalization of silk fibroin scaffolds has shown

to enhance the expression of ACAN and COL2 in AF cells compared to

the nonmodified silk.214 Another example would be the application of

genetically engineered silk that was functionalized either with TGF-β3

or growth and differentiation factor 6 (GDF-6) and was able to pre-

serve the phenotype of human AF cells (Figure 3).215 Ideally, however,

surface functionalization is combined with a suitable scaffold that tries

to imitate the structure of the AF as closely as possible. The functio-

nalization was nicely illustrated in a series of studies by Bhattacharjee

et al.216–218 Here, silk fibroin fibers were functionalized with chon-

droitin sulfate (CS) and were aligned in a crisscross orientated manner

to resemble the AF. Although first attempts could not reveal any nota-

ble differences between the functionalized and the plain scaffold,216 a

refined setup using articular chondrocytes instead of nasal chondro-

cytes led to an upregulation of SOX9, ACAN, and biglycan, an

improved production of GAG and collagens, an eminent increase of

the metabolic activity and a significantly higher compressive strength

with the CS-treated scaffolds compared to controls.217 However, the

full potential of their functionalized scaffold was achieved when the

scaffolds were cultured in a hydrodynamic environment and a distinc-

tion was made between inner and outer AF.218 Previous studies had

shown that the presence of CS can cause MSCs to adopt a phenotype

comparable to that of inner AF cells.219,220 Consequently, only the

inner part of the scaffold was functionalized with CS. With this study

design, they demonstrated that the dynamic culture conditions

enhanced the metabolic activity and the production of ECM. Further-

more, due to the CS in the inner AF, a chondrogenic tissue gradient

TABLE 4 (Continued)

Silk origin

Silk

structure Study Conclusions References

Bombyx mori Scaffold An AF injury was induced in bovine IVDs. To

repair the IVD, the created cavity was filled

with a genipin-enhanced fibrin hydrogel and

sealed with a silk scaffold. Then, the IVDs were

mechanically tested.

The repair was considered as a success because

no herniation occurred regardless of the

loading condition. However, the IVDs' height

could not be recovered.

222

Abbreviations: ACAN, aggrecan; AF, annulus fibrosus; CS, chondroitin sulfate; COL1, collagen type I; COL2, collagen type II; ECM, extracellular matrix;

GAG, glycosaminoglycan; GDF-6, growth and differentiation factor 6; IVD, intervertebral disc; MSC, mesenchymal stromal cell; NP, nucleus pulposus;

RGD, arginine-glycine-aspartic acid; TGF-β3, transforming growth factor β3; N/A, non-available.
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was formed, with the inner part expressing significantly more COL2,

ACAN, biglycan and significantly less COL1 and elastin than the outer

part of the scaffold, thereby mimicking the properties of native AF

tissue.

A relatively recent and very ambitious study on the use of

anatomically-shaped silk scaffolds for the regeneration of the AF was

conducted by Costa et al.221 Therefore, a reverse engineering

approach was followed in which a human patient was subjected to an

MRI scan and then, based on the segmented morphologic scan of the

L1-L2 IVD, a 3D model of the AF's ultrastructure was printed with a

bioink made of SF and elastin. Remarkably, the mechanical character-

istics, including the compressive modulus and stress–strain-curve,

turned out to be very similar to those of fibrocartilage cartilage tissue

found in the AF.221 Moreover, human adipose-derived stem cells

adhered well onto the scaffold and remained metabolically active for

21 days.

Finally, it is important to point out that silk scaffolds or scaffolds

in general do not always have to be the basis for novel tissue forma-

tion and as a result aim to replace the defective or degenerative tissue

itself. Still, they can be also used specifically to support the reparative

process of a defective site. A corresponding example of this is pro-

vided by Frauchiger et al. using a bovine IVD damage model.222 Here,

an AF defect was induced with a biopsy punch and the created cavity

was subsequently filled with a genipin-enhanced fibrin hydrogel,

sealed with a silk fibroin scaffold and then the entire IVD was tested

under different culture/loading regimes. Even though the IVDs' height

could not be recovered, the silk scaffold reliably sealed the repaired

site, as no herniation of the hydrogel could be detected during exten-

sive dynamic loading.

A summary of published articles concerning the application of

silk-based biomaterials for the regeneration and repair of the AF can

be found in Table 4.

4 | CONCLUSION

Humans have bred silkworms for centuries, and their silk has found

many uses thanks to its excellent biomechanical properties. There

are many different species from which silk can be harvested, and

each has its characteristics, advantages, and disadvantages. How-

ever, the clear dominator on the market is SF, derived from the silk-

worm B. mori.

In the clinic nowadays, silk is mainly used for surgical sutures.

However, many preclinical studies show its great potential and versa-

tility as a tissue repair and regenerative biomaterial. Especially in the

past decade, the application of silk has also found its way into the field

of IVD-related research, where mainly silk-based hydrogels have been

used for the regeneration of the NP and only firm silk-based scaffolds

have been investigated for the repair of the AF. Some of these scaf-

folds and hydrogels show auspicious outcomes. They thus indicate a

transition into clinics in the foreseeable future, where they will hope-

fully present themselves as another missing puzzle piece to treat and

ultimately cure patients suffering from IDD.
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