Naturalistic visualization of reaching movements using head-mounted displays improves movement quality compared to conventional computer screens and proves high usability.

Wenk, Nicolas; Buetler, Karin A; Penalver-Andres, Joaquin; Müri, René M; Marchal-Crespo, Laura (2022). Naturalistic visualization of reaching movements using head-mounted displays improves movement quality compared to conventional computer screens and proves high usability. Journal of NeuroEngineering and Rehabilitation, 19(1), p. 137. BioMed Central 10.1186/s12984-022-01101-8

[img]
Preview
Text
s12984-022-01101-8.pdf - Published Version
Available under License Creative Commons: Attribution (CC-BY).

Download (1MB) | Preview

BACKGROUND

The relearning of movements after brain injury can be optimized by providing intensive, meaningful, and motivating training using virtual reality (VR). However, most current solutions use two-dimensional (2D) screens, where patients interact via symbolic representations of their limbs (e.g., a cursor). These 2D screens lack depth cues, potentially deteriorating movement quality and increasing cognitive load. Head-mounted displays (HMDs) have great potential to provide naturalistic movement visualization by incorporating improved depth cues, reduce visuospatial transformations by rendering movements in the space where they are performed, and preserve eye-hand coordination by showing an avatar-with immersive VR (IVR)-or the user's real body-with augmented reality (AR). However, elderly populations might not find these novel technologies usable, hampering potential motor and cognitive benefits.

METHODS

We compared movement quality, cognitive load, motivation, and system usability in twenty elderly participants (>59 years old) while performing a dual motor-cognitive task with different visualization technologies: IVR HMD, AR HMD, and a 2D screen. We evaluated participants' self-reported cognitive load, motivation, and usability using questionnaires. We also conducted a pilot study with five brain-injured patients comparing the visualization technologies while using an assistive device.

RESULTS

Elderly participants performed straighter, shorter duration, and smoother movements when the task was visualized with the HMDs than screen. The IVR HMD led to shorter duration movements than AR. Movement onsets were shorter with IVR than AR, and shorter for both HMDs than the screen, potentially indicating facilitated reaction times due to reduced cognitive load. No differences were found in the questionnaires regarding cognitive load, motivation, or usability between technologies in elderly participants. Both HMDs proved high usability in our small sample of patients.

CONCLUSIONS

HMDs are a promising technology to be incorporated into neurorehabilitation, as their more naturalistic movement visualization improves movement quality compared to conventional screens. HMDs demonstrate high usability, without decreasing participants' motivation, and might potentially lower cognitive load. Our preliminary clinical results suggest that brain-injured patients may especially benefit from more immersive technologies. However, larger patient samples are needed to draw stronger conclusions.*.

Item Type:

Journal Article (Original Article)

Division/Institute:

04 Faculty of Medicine > Pre-clinic Human Medicine > BioMedical Research (DBMR) > DCR Unit Sahli Building > Forschungsgruppe Neurologie
04 Faculty of Medicine > Department of Head Organs and Neurology (DKNS) > Clinic of Neurology
10 Strategic Research Centers > ARTORG Center for Biomedical Engineering Research > ARTORG Center - Gerontechnology and Rehabilitation

UniBE Contributor:

Wenk, Nicolas, Bütler, Karin, Peñalver de Andrés, Joaquin Alvaro, Müri, René Martin, Marchal Crespo, Laura

Subjects:

600 Technology > 610 Medicine & health

ISSN:

1743-0003

Publisher:

BioMed Central

Language:

English

Submitter:

Pubmed Import

Date Deposited:

12 Dec 2022 12:57

Last Modified:

18 Dec 2022 02:06

Publisher DOI:

10.1186/s12984-022-01101-8

PubMed ID:

36494668

Uncontrolled Keywords:

Augmented reality Cognitive load Head-mounted display Motivation Movement quality Neurorehabilitation Stroke Usability Virtual reality

BORIS DOI:

10.48350/175718

URI:

https://boris.unibe.ch/id/eprint/175718

Actions (login required)

Edit item Edit item
Provide Feedback