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Abstract

Probability predictions from binary regressions or machine learning methods ought to be
calibrated: If an event is predicted to occur with probability x, it should materialize with
approximately that frequency, which means that the so-called calibration curve p(·) should
equal the identity, p(x) = x for all x in the unit interval. We propose honest calibration
assessment based on novel confidence bands for the calibration curve, which are valid only
subject to the natural assumption of isotonicity. Besides testing the classical goodness-of-
fit null hypothesis of perfect calibration, our bands facilitate inverted goodness-of-fit tests
whose rejection allows for the sought-after conclusion of a sufficiently well specified model.
We show that our bands have a finite sample coverage guarantee, are narrower than existing
approaches, and adapt to the local smoothness of the calibration curve p and the local
variance of the binary observations. In an application to model predictions of an infant
having a low birth weight, the bounds give informative insights on model calibration.

Keywords: Binary regression, calibration validation, isotonic regression, confidence band,
goodness-of-fit, universally valid inference

1 Introduction

Consider first a univariate regression setting with fixed real covariates x1 ≤ · · · ≤ xn and
independent binary observations Y1, . . . , Yn ∈ {0, 1}, where pr(Yi = 1) = p(xi) for some unknown
regression function p : R → [0, 1]. Standard parametric models for this setting, e.g. logistic or
probit regression, involve monotone regression functions p. Thus, an interesting nonparametric
alternative would be to draw inference on p under the sole assumption that it is isotonic on R,

p(x) ≤ p(x′), x ≤ x′. (1)

In the specific applications we have in mind, the xi are themselves probability predictions
for the binary outcomes, i.e. xi ∈ [0, 1] is a prediction for the probability of the event {Yi = 1}.
In practice, the predictions can be obtained from a test sample of binary regressions, machine
learning methods, or any other statistical model for binary data. A reliable interpretation of
these predictions relies on the property of calibration, meaning that if the value xi is predicted,
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the corresponding event should indeed occur with probability xi. In this setting, the regression
function p is called calibration curve, and it maps the predicted probabilities xi to the actual, or
recalibrated, event probabilities p(xi) = pr(Yi = 1). For calibrated predictions, the calibration
curve equals the diagonal, p(x) = x for all x ∈ [0, 1]. Drawing inference about p thus allows to
assess the calibration of the predictions.

Testing the null hypothesis of calibration, H0 : p(x) = x for all x ∈ [0, 1], is closely related
to goodness-of-fit testing, which is crucial in applications, see e.g., Tutz (2011, Section 4.2)
and Hosmer et al. (2013, Chapter 5). It is still regularly carried out by the classical test of
Hosmer and Lemeshow (1980), which groups the predictions xi into bins and applies a χ2-
test. It is however subject to multiple criticisms: First, its ad hoc choice of bins can result in
untenable instabilities (Bertolini et al., 2000; Allison, 2014). Second, placing the hypothesis of
calibration in the null only allows for rejecting calibration rather than showing that a model is
sufficiently well calibrated, where the latter would be highly desirable for applied researchers.
Third, the test rejects essentially all, even acceptably well-specified models in large samples
(Nattino et al., 2020a; Paul et al., 2013), resulting in calls for a goodness-of-fit tests with inverted
hypotheses (Nattino et al., 2020b), that is, tests where the hypothesis p(x) = x is contained in
the alternative.

We propose a statistically sound solution to these criticisms by constructing honest, simulta-
neous confidence bands (Lα, Uα) for the function p. That is, for a given small number α ∈ (0, 1)
and Y := (Yi)

n
i=1, we compute data-dependent functions Lα = Lα(·,Y) and Uα = Uα(·,Y) on

R such that
pr{Lα ≤ p ≤ Uα on R} ≥ 1− α. (2)

In the context of calibration assessment, the functions p, Lα, Uα are defined on [0, 1], and we call
(Lα, Uα) a calibration band, which is hence a confidence band for the calibration curve. It allows
for the desirable conclusion that with confidence 1−α, the true calibration curve p lies inside the
band, simultaneously for all values of the predicted probabilities. This nests a classical goodness-
of-fit test with H0 : p(x) = x by checking whether the band contains the diagonal d(x) = x for
all relevant values x ∈ [0, 1], but also any other hypothesis on the calibration curve such as e.g.,
an inverted goodness-of-fit test with H0 : |p(x)− x| > ε for some small ε > 0. Hence, this band
resolves the above mentioned criticisms of classical goodness-of-fit tests.

Figure 1 shows the bands in a large data example for probit model predictions for the bi-
nary outcome of a fetus having a low birth weight. See Section 6 for additional details. The
test of Hosmer and Lemeshow clearly rejects calibration even though our bands indicate a well-
calibrated model by including the diagonal line for all values in the unit interval. The magnified
right panel of the figure shows that with confidence 1 − α, the model is remarkably well cal-
ibrated for the most important region of small probability predictions in this application. It
is important to notice that even though we build our bands on the model predictions, the
methodology applies equally to both, causal and predictive regressions. An open-source imple-
mentation in the statistical software R (R Core Team, 2022) is available under https://cran.r-
project.org/package=calibrationband.

Our confidence bands are valid in finite samples subject only to the mild monotonicity as-
sumption at (1), implying that higher predictions entail a higher probability for {Y = 1}, which
is natural in the context of assessing calibration as already argued in Dimitriadis et al. (2021);
Roelofs et al. (2020). For classical goodness-of-fit tests, the null hypothesis p(x) = x already
nests the monotonicity assumption and if a researcher aims to demonstrate calibration, i.e.,
p(x) = x holds at least approximately, it is unlikely that there are strong deviations from iso-
tonicity. Moreover, our confidence bands allow to detect and quantify violations of monotonicity
as described in Appendix A. A non-monotonic p may lead to a crossing of the lower and upper
bound, i.e., Uα(x) < Lα(x) for some x, which allows to reject monotonicity at level α. This
is supported by the graphical display that reacts to non-isotonicity by generating elongated
horizontal segments in both, the isotonic regression estimate and the confidence bands. Finally,
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Figure 1: Left: Confidence band for the calibration curve (denoted calibration band in the application
section) for the first model specification of the low birth weight application in Section 6. The blue band
shows the confidence band based on the non-crossing method in (6) together with the rounding in (7)
with K = 103, and the grey step function shows the isotonic regression estimate. Right: Magnified
version focusing on predicted probabilities below 10%.

deriving confidence bands without any assumption on p seems unrealistic and the assumption of
monotonicity is relatively weak, e.g., in comparison to the parametric one used in Nattino et al.
(2014).

As expected for a non-parametric, pathwise and almost universally valid confidence band,
we require large data sets of at least 5 000 observations to obtain sensibly narrow bands. These
are exactly the sample sizes where the classical goodness-of-fit tests become uninformative by
rejecting all models in applications, see the simulation study of Kramer and Zimmerman (2007).

A theoretical analysis shows that the proposed confidence band adapts locally to the smooth-
ness of the function p and to the variance of the observations. Adaptivity to the smoothness
means that the width of the bands decreases faster with the sample size n in regions where p
is constant, and at a slower rate where p is steeper. This property is known for more general
confidence bands for a monotone mean function developed by Yang and Barber (2019). Adap-
tivity to the variance means that the band is substantially narrower at x if p(x) is close to
zero or one, compared to p(x) near 0.5. In many practical applications, including the low birth
weight predictions analyzed in this article, predicted probabilities close to zero or one are of
most relevance and a sharp assessment of calibration in these regions is particularly important.

Existing methods for the construction of confidence bands in this setting are rare with the
following two exceptions: First, Nattino et al. (2014) propose the use of confidence bands based
on a parametric assumption on the function p, which we show to have incorrect coverage in
almost all of our simulation settings. Second, the nonparametric bands of Yang and Barber
(2019) are valid, in a modified sense even in settings where the isotonicity assumption (1) is
violated. But they are shown to be wider than our bands in theory and simulations.

We explain the absence of competing methods by their theoretical difficulties. Using asymp-
totic theory of the isotonic regression estimator is complicated as it requires the estimation of
nuisance quantities such as the derivative of the unknown function p, the convergence rate de-
pends on the functional form of p, it is subject to more restrictive assumptions and only results
in bands with a pointwise interpretation (Wright, 1981). Resampling schemes are theoretically
found to be inconsistent for the isotonic regression (Sen et al., 2010; Guntuboyina and Sen,
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2018). Other non-parametric approaches in the literature for constructing confidence bands
for functions, many of them presented in the review by Hall and Horowitz (2013), are often
pointwise, not simultaneous, and require the selection of tuning parameters that may lead to
instabilities, similar to the choice of the bins in the Hosmer-Lemeshow test. In contrast, the
confidence bands proposed here are simple to compute and do not involve any implementation
decisions resulting in a stable and reproducible method as called for by Stodden et al. (2016);
Yu and Kumbier (2020).

2 Construction of the confidence bands

Within the regression setting, we construct confidence bands for the isotonic regression function
p by means of the classical confidence bounds of Clopper and Pearson (1934) for a binomial
parameter. Suppose that Z is a binomial random variable with parameters m and q ∈ [0, 1].
For δ ∈ (0, 1) let

uδ(Z,m) = max{ξ ∈ [0, 1] : pbin(Z,m, ξ) ≥ δ}

=

{
qbeta(1− δ, Z + 1,m− Z), Z < m,

1, Z = m,

`δ(Z,m) = min{ξ ∈ [0, 1] : pbin(Z − 1,m, ξ) ≤ 1− δ}

=

{
qbeta(δ, Z,m+ 1− Z), Z > 0,

0, Z = 0.

Here pbin(·,m, ξ) denotes the distribution function of the binomial distribution with parame-
ters m and ξ, while qbeta(·, a, b) stands for the quantile function of the beta distribution with
parameters a, b > 0. Then

pr{q ≤ uδ(Z,m)} ≥ 1− δ and pr{q ≥ `δ(Z,m)} ≥ 1− δ.

For the representation of `δ(Z,m) and uδ(Z,m) in terms of beta quantiles, we refer to Johnson
et al. (2005).

Assumption (1) allows to construct confidence bands for p as follows. With pi := p(xi), for
arbitrary indices 1 ≤ j ≤ k ≤ n, the random sum

Zjk =
k∑
i=j

Yi

is stochastically larger than a binomial random variable with parameters njk = k − j + 1 and
pj , and it is stochastically smaller than a binomial variable with parameters njk and pk. Thus,
as explained in Lemma B1,

pr{pj ≤ uδ(Zjk, njk)} ≥ 1− δ, pr{pk ≥ `δ(Zjk, njk)} ≥ 1− δ. (3)

If we combine these bounds for all pairs (j, k) in a given set J and use the assumption at (1),
then we may claim with confidence 1− 2|J |δ that simultaneously for all (j, k) ∈ J ,

p(x) ≤ uδ(Zjk, njk) ∀ x ≤ xj , p(x) ≥ `δ(Zjk, njk) ∀ x ≥ xk.

Specifically, let J be the set of all index pairs (j, k) such that j ≤ k and xj−1 < xj and xk < xk+1.
If there are tied values in (xi)

n
i=1, J selects the outermost indices of the tied values. Hence, if

{x1, . . . , xn} contains N ≤ n different points, then |J | = (N2 +N)/2. Consequently, for a given
confidence level 1 − α ∈ (0, 1), we may combine the bounds uδ(Zjk, njk) and `δ(Zjk, njk) with
δ = α/(N2 +N) to obtain a first confidence band.
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Theorem 1. For x ∈ R, let

Uα,raw(x) = inf
(j,k)∈J : xj≥x

uα/(N
2+N)(Zjk, njk), (4)

Lα,raw(x) = sup
(j,k)∈J : xk≤x

`α/(N
2+N)(Zjk, njk), (5)

where inf∅ := 1 and sup∅ := 0. If p satisfies the isotonicity assumption at (1), then the resulting
confidence band (Lα,raw, Uα,raw) satisfies requirement (2).

The functions Uα,raw, Lα,raw are isotonic and piecewise constant. Precisely, with x0 := −∞
and xn+1 :=∞, we know that Uα,raw = 1 on (xn,∞), Lα,raw = 0 on (−∞, x1), and

Uα,raw(x) = Uα,raw(xi), x ∈ (xi−1, xi],

Lα,raw(x) = Lα,raw(xi), x ∈ [xi, xi+1),

for i = 1, . . . , n. Consequently, computing the band (Lα,raw, Uα,raw) amounts to determining the
2n numbers Lα,raw(xi) and Uα,raw(xi), i = 1, . . . , n.

The confidence band proposed in Theorem 1 has two potential drawbacks. First, a natural
nonparametric estimator for the function p under the assumption (1) is given by a minimizer p̂
of
∑n

i=1{h(xi)− Yi}2 over all isotonic functions h : [0, 1]→ [0, 1] (Dimitriadis et al., 2021). This
minimizer is unique on the set {x1, . . . , xn}. But there is no guarantee that Lα,raw ≤ p̂ ≤ Uα,raw.
Second, the upper and lower bounds in (4) and (5) may even cross, resulting in an empty, and
hence, nonsensical confidence band. These problems can be dealt with by using the non-crossing
confidence band (Lα,nc, Uα,nc) given by pointwise minima and maxima:

Lα,nc = min(Lα,raw, p̂), Uα,nc = max(Lα,raw, p̂). (6)

Obviously, Lα,nc ≤ p̂ ≤ Uα,nc on R. Our simulation experiments indicate that (Lα,raw, Uα,raw) =
(Lα,nc, Uα,nc) holds in almost all cases whenever p satisfies (1); see Section 5 for details. The
potential crossing of the two bounds in Theorem 1 also has an advantage. It allows for inference
about the non-isotonicity of p, see Appendix A.

A potential obstacle in the practical application of the confidence bands proposed in this
section is that their computation requires O(N2) steps. This can be relieved by using a smaller
family of index pairs (j, k) in the definition of the confidence band. Specifically, if for some fixed
integer K ≥ 1 differences in the covariate smaller than K−1 are regarded as negligible, then one
could define

J̃ = {(j, k) : {xj . . . , xk} = {x1, . . . , xn} ∩ [r/K, s/K] for some r, s ∈ Z}, (7)

such that only blocks of covariate values between r/K and s/K, r, s ∈ Z, are considered. The
resulting band is still honest, can be computed in O(|J̃ |) steps, and one can reduce the correction
factor of the significance level in (4) and (5) from N2 + N to |J̃ |. The drawback is that the
constant regions in Lα and Uα become larger, thereby limiting the adaptivity of the band, so
the number K should not be too small. We henceforth refer to the restricted choice of J̃ in (7)
as the rounding method. Section 1 in the Supplementary Material illustrates in simulations that
the rounding method drastically decreases the computation time and even results in narrower
bands for all but very steep regions of p.

3 Relation to Yang and Barber (2019)

The methods of Yang and Barber (2019) may be adapted to the present regression setting with
covariates x1 ≤ · · · ≤ xn as follows: With the isotonic estimator p̂ introduced before, let

Z iso
jk =

k∑
i=j

p̂(xi).
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Set

Uα,YB(x) = inf
(j,k)∈J : xj≥x

[Z iso
jk

njk
+

√
log{(N2 +N)/α}

2njk

]
, (8)

Lα,YB(x) = sup
(j,k)∈J : xk≤x

[Z iso
jk

njk
−

√
log{(N2 +N)/α}

2njk

]
. (9)

This defines a confidence band (Lα,YB, Uα,YB) with the following property:

pr{Lα,YB ≤ p̃ ≤ Uα,YB on R} ≥ 1− α, (10)

where p̃ : R→ [0, 1] is any fixed isotonic function minimizing
∑n

i=1{p̃(xi)−pi}2. Thus one obtains
a confidence band with guaranteed coverage probability 1− α for an isotonic approximation of
p, even if (1) is violated. The proof of (10) follows from the arguments of Yang and Barber
(2019), noting that the random variables Yi are sub-Gaussian with scale parameter σ = 1/2.
Thus, E exp(t(Yi − pi)) ≤ exp(σ2t2/2) for all t ∈ R, implying that for arbitrary η ≥ 0,

pr{±(Zjk − EZjk) ≥ η} ≤ exp(−2njkη
2),

see Hoeffding (1963). The following result shows that the confidence bands (Lα,raw, Uα,raw) and
(Lα,nc, Uα,nc) are always contained in the band (Lα,YB, Uα,YB).

Theorem 2. For all α ∈ (0, 1) and any data vector Y ∈ {0, 1}n,

Lα,YB ≤ Lα,nc ≤ Lα,raw, Uα,raw ≤ Uα,nc ≤ Uα,YB on R.

Recall that the inequalities Lα,raw ≤ Uα,raw do not hold in general, and a crossing of the
bounds allows to reject isotonicity at level α, see Appendix A. In contrast, the bands by Yang
and Barber (2019) always contain the isotonic estimator p̂, and are guaranteed to cover an
optimal isotonic approximation of p with probability at least 1 − α. For calibration testing,
the possibility of rejecting isotonicity seems more desirable than information about an isotonic
approximation of the calibration curve, whose interpretation may be unclear in practice. It
should be mentioned, however, that the band (Lα,YB, Uα,YB) has a computational advantage.
For the computation of Uα,YB

i in (8), it suffices to take the minimum over endpoints of constancy
regions of p̂, that is, all (j, k) ∈ J such that j = min(s : xs ≥ xi) and p̂(xk) < p̂(xk+1) or
k = n, see Proposition B1. Likewise, for the computation of Lα,YB

i in (9), it suffices to take the
maximum over all (j, k) ∈ J such that p̂(xj−1) < p̂(xj) or j = 1 and k = max(s : xs ≤ xi). While
the computation of (Lα,raw, Uα,raw) or (Lα,nc, Uα,nc) requires O(N2) steps, the following lemma,
whose proof is in the Supplementary Material, implies that the computation of (Lα,YB, Uα,YB)
requires only O(N min{n2/3, N}) steps.

Lemma 1. The cardinality of {p̂(xi) : i = 1, . . . , n} is smaller than 3n2/3.

4 Theoretical properties of the confidence bands

This section illustrates consistency and adaptivity properties of the confidence band (Lα,rawn , Uα,rawn ),
where the subscript n indicates the sample size, and we consider a triangular scheme of obser-
vations (xi, Yi) = (xni, Yni), i = 1, . . . , n. We are interested in situations in which the observed
covariates xni could be the realizations of the order statistics of a random sample. Thus we
extend the framework of Yang and Barber (2019) and consider the following assumption.

Assumption 1. Let Leb(·) denote Lebesgue measure, and let Wn(B) = #{i : xni ∈ B} for
B ⊂ R. There exist a non-degenerate interval [ao, bo] and constants C1, C2 > 0 such that for
sufficiently large n,

Wn(B) ≥ C1nLeb(B)

for arbitrary intervals B ⊂ [ao, bo] such that Leb(B) ≥ C2 log(n)/n.
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This assumption comprises the setting of Yang and Barber (2019). Let G be a differentiable
distribution function on [0, 1] such that G′ is bounded away from 0 on [ao, bo]. If xni = G−1(i/n)
for i = 1, . . . , n, then it is satisfied for any C1 < inf [ao,bo]G

′ and arbitrary C2 > 0. The arguments
in Mösching and Dümbgen (2020, Section 4.3) can be modified to show that if xn1, . . . , xnn
are the order statistics of n independent random variables with distribution function G, then
Assumption 1 is satisfied almost surely, provided that C1, C2 > 0 are chosen appropriately.

Theorem 3. Suppose that Assumption 1 is satisfied. Let ρn = log(n)/n. There exist constants
C > 0 depending only on C1, C2 with the following properties:
(i) Suppose that p is constant on [ao, bo]. With asymptotic probability one,

Uα,rawn (x) ≤ p(x) + C
√
ρn/(bo − x), x ∈ [ao, bo),

Lα,rawn (x) ≥ p(x)− C
√
ρn/(x− ao), x ∈ (ao, bo].

(ii) Suppose that p is Lipschitz-continuous on [ao, bo] with Lipschitz constant L > 0. With
asymptotic probability one,

Uα,rawn (x) ≤ p(x) + C(Lρn)1/3, x ∈ [ao, bo − ρ1/3n L−2/3],

Lα,rawn (x) ≥ p(x)− C(Lρn)1/3, x ∈ [ao + ρ1/3n L−2/3, bo].

(iii) Suppose that p is discontinuous at some point xo ∈ (ao, bo). With asymptotic probability
one,

Uα,rawn (x) ≤ p(xo−) + C
√
ρn/(xo − x), x ∈ [ao, xo),

Lα,rawn (x) ≥ p(xo+)− C
√
ρn/(x− xo), x ∈ (xo, bo].

(iv) Suppose that limx→ao p(x) = 0. For sufficiently large n,

E{Uα,rawn (x)} ≤ C inf
y∈(x,bo]

{p(y) + ρn/(y − x)}, x ∈ [ao, bo).

Analogously, if limx→bo p(x) = 1, then for sufficiently large n,

E{1− Lα,rawn (x)} ≤ C inf
y∈[ao,x)

{1− p(y) + ρn/(x− y)}, x ∈ (ao, bo].

Part (i) implies that if p is constant on [ao, bo], then for arbitrary fixed ao < a < b < bo,

sup
x∈[ao,b]

{Uα,rawn (x)− p(x)}+ + sup
x∈[ao,b]

{p(x)− Lα,rawn (x)}+ = Op(ρ1/2n ).

Thus, parts (i-ii) of this theorem are analogous to results of Yang and Barber (2019, Sections
4.4 and 4.6). Part (iii) implies that with asymptotic probability one,

Uα,rawn (x) <
p(xo−) + p(xo+)

2
< Lα,rawn (y)

for x < xo − Dρn, y > xo + Dρn and D = 4C2{p(xo+) − p(xo−)}−2. Thus, at points of
discontinuity of p, the confidence band crosses a horizontal line on an interval of length Op(ρn).
Part (iv) demonstrates that our bounds are particularly accurate in regions where p(x) is close
to 0 or 1. Specifically, suppose that for some γ > 0, p(x) = O{(x− ao)γ} for x ∈ [ao, bo]. Then

plugging in y(x) = x+ ρ
1/(γ+1)
n reveals that

E{Uα,rawn (x)} ≤ D{(x− ao)γ + ργ/(γ+1)
n }, x ∈ [ao, bo],

where D = D(C1, C2, p). Analogously, if 1− p(x) = O{(bo − x)γ} for x ∈ [ao, bo], then

E{1− Lα,rawn (x)} ≤ D{(bo − x)γ + ργ/(γ+1)
n }, x ∈ [ao, bo].

Presumably, the conclusions in part (iv) are not satisfied for the confidence band (Lα,YB
n , Uα,YB

n ).
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Figure 2: Illustration of the five simulated regression functions ps(·), where the solid red line corresponds
to the shape parameter value s = 0.3 and the dashed blue line to s = 0.7.

5 Simulations

Here, we illustrate that our confidence bands have correct coverage in the sense of (2) and are
narrower than existing techniques. We consider both, the raw method in (4) and (5) and the
non-crossing variant in (6). Both methods are combined with the rounding technique in (7) with
K = 103 in order to facilitate faster computation at a minimal cost in accuracy. For comparison,
we use the bands of Yang and Barber (2019) given in (8) and (9) with a minimal variance factor of
σ2 = 1/4 and the parametric bands of Nattino et al. (2014), implemented in the GivitiR package
in the statistical software R (R Core Team, 2022). Replication material for the simulations and
applications is available under https://github.com/marius-cp/replication DDHPZ22.

We use 1000 replications, a significance level of α = 0.05 and simulate the covariates X ∼
U[0, 1]. The binary outcomes are generated by Y ∼ Bern{ps(X)} based on five distinct functional
forms of the regression function ps(x) for x ∈ [0, 1] depending on a shape parameter s ∈ S :=
{0, 0.1, . . . , 1}. The first four specifications of ps(x) satisfy the isotonicity assumption at (1)
and cover smooth, non-smooth as well as discontinuous setups. The last one contains non-
isotonic functions ps(x) for s > 0.5. The choice s = 0 results in the diagonal line p0(x) = x
whereas the deviation from the diagonal increases with s. In particular, we consider the following
specifications, which are illustrated in Figure 2 for two exemplary shape values s ∈ {0.3, 0.7}.

1. Monomial: First, we use the regression function ps(x) = x1−s, where s ∈ S \ {1}. This
function is already used in the simulations in Dimitriadis et al. (2021, Appendix A).

2. S-shaped: Second, the regression function follows an S-shaped form ps(x) =
(
1 + ((1− x)/x)1+s

)−1
,

where s ∈ S pronounces the curves for larger values of s.

3. Kink: Third, ps(x) linearly interpolates the points (0, 0), (0.2 + 0.8s, 0.2) and (1, 1) for
s ∈ S, resulting in a kink at the point (0.2 + 0.8s, 0.2) for all s > 0.

4. Step: Fourth, we use a step function with s? ∈ {5, 6, . . . , 14} equidistant steps in the unit
interval. It is given by ps(x) =

{
bs?xc+1(x 6= 1)

}
/s?, where s? = 15−10s and s ∈ S\{0}.

It doesn’t nest the diagonal, but the deviation from it increases with s.

5. Wave: Fifth, we use the cubic function ps(x) = 0.5− (2s− 1)(x− 0.5) + 8s(x− 0.5)3 that
violates the isotonicity assumption in (1) for any s > 0.5.

Figure 3 presents the average coverage rates for a range of sample sizes between 512 and
32 768. We use the raw method for our bands in (4) and (5) as the raw bands are contained
in the non-crossing ones. We find that, as predicted by the theory, our confidence bands have
conservative coverage throughout all isotonic simulation setups and sample sizes. We observe
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Figure 3: Empirical coverage rates of our confidence bands, the bands of Yang and Barber (2019), and
the GiVitI bands for 1 − α = 0.95, averaged over all covariate values for the five specifications of the
regression function ps(·), different shape values s and a range of sample sizes n. For our bands, we use
the raw method in (4) and (5), together with rounding in (7) with K = 103. The choices s = 1 in the
Monomial, and s = 0 in Step specification are not defined.

coverage rates above 0.998 with the majority of 162 out of the 192 displayed coverage values
being exactly one. The unreported non-crossing bands differ from the raw ones in less than one
out of a hundred thousand instances. These deviations occur exclusively for large values of s in
the Step specification within constancy regions of the function p. As expected, our method as
well as the bands of Yang and Barber (2019) have incorrect coverage rates for the values s > 0.5
that violate isotonicity in the Wave specification when the sample size increases. The coverage
rates of the Yang and Barber (2019) bands are still larger as these are shown to be wider by
Theorem 2.

The parametric bands of Nattino et al. (2014) rarely achieve correct coverage rates unless in
the cases s = 0 and for the S-shaped regression functions. This can be explained as these bands
are based on the assumption of a certain parametric form of ps(x), which is rarely satisfied. The
results get worse for the non-smooth, the discontinuous and the non-isotonic specifications.

Figure 4 displays the average widths of our and the Yang and Barber (2019) bands. We
present the theoretically wider non-crossing bands instead of the raw versions thereof. Their
average widths is however non-distinguishable in these displays. We fix a medium degree of
miscalibration s = 0.5. The upper plot panel displays the widths averaged over all simulation
runs and values x ∈ [0, 1] depending on the sample size n. We find that the size of both bands
shrinks with n and that we can reconfirm the ordering established in Theorem 2. We further
see that our bands are only narrow enough for practical use in large samples. The relative gain
in width of our bands is the highest for large sample sizes, exactly for which we propose the
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Figure 4: Top: Average widths of the 95% confidence bands by sample size for each of the five specifi-
cations of ps(x) given in the main text for a fixed value s = 0.5. Bottom: Average widths by covariate
value x for two sample sizes. In both panels, the solid red line corresponds to our bands based on the
non-crossing method in (6) together with rounding in (7) with K = 103, and the dashed blue line corre-
sponds to the Yang and Barber (2019) bands.

application of our method for calibration validation. It is worth noting that the bands of Yang
and Barber (2019) are more generally valid than for the special case of binary observations.

The lower plot panel shows the widths averaged over the simulation replications, but depend-
ing on the values x ∈ [0, 1] for two selected sample sizes. It shows that the relative gains in width
upon the bands of Yang and Barber (2019) are particularly pronounced close to the edges of the
unit interval. In applications to calibration assessment, these regions of predicted probabilities
close to zero or one are often of the highest interest as for example in the subsequent section
assessing the goodness-of-fit of low birth weight probability predictions.

6 Application: Predicting low birth weight probabilities

We apply our confidence bands to assess calibration of three binary regression specifications
predicting the probability of a fetus having a low birth weight, defined as weighting less than
2500 grams at birth (World Health Organization, 2015). Recall that in the setting of calibration
assessment, we call the function p the calibration curve and our confidence bands are denoted as
calibration bands. This follows the interpretation that for an event predicted with probability
x, p(x) denotes its true but unknown event probability. Perfectly calibrated predictions entail
a calibration curve matching the diagonal line, d(x) = x. As the calibration band is a simulta-
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Figure 5: Calibration bands for the second model specification on the left and for the third specification
on the right for the low birth weight application. The blue band denotes the calibration band based
on the non-crossing method in (6) together with the rounding in (7) with K = 103, and the grey step
function shows the isotonic regression estimate. The diagonal line is given in red color whenever it is not
contained in the calibration band.

neously valid confidence band for p, deviations of the calibration band from the diagonal line
imply significantly miscalibrated predictions in this region.

We use U.S. Natality Data from the National Center for Health Statistics (2017), which
provides demographic and health data for 3 864 754 births in the year 2017. For the data
set at hand, a low birth weight is observed in 8.1% of the cases. We estimate three binary
regression models by maximum likelihood on the same randomly drawn subset that contains all
but 1 000 000 observations that we leave for external model validation. All three models contain
standard risk factors such as the mother’s age, body mass index and smoking behavior but they
differ as follows. The first model uses a probit link function, and the explanatory variable week of
gestation is categorized into four left-closed and right-open intervals with lower interval limits of
0, 28, 32 and 37 weeks, pertaining to the standard definitions of the World Health Organization
of extremely, very, moderate and non preterm (Quinn et al., 2016). Through this categorization,
the model specification can capture the week of gestation in a non-linear fashion. In contrast,
the second model uses the week of gestation as a continuous explanatory variable and the third
specification employs the cauchit instead of the probit link function, which is known to produce
less confident predictions close to zero and one (Koenker and Yoon, 2009). Additional details of
the model specifications are given in the Supplementary Material.

The classical Hosmer-Lemeshow test rejects perfect calibration of all three models with p-
values of essentially zero for both, internal and external model validation, which leaves an applied
researcher without any useful conclusions on model calibration. We show our calibration bands
based on the non-crossing method with rounding to three digits, i.e., K = 103 in (7), with a
confidence level of 1 − α = 95% for the first model in Figure 1 and for the other two models
in Figure 5. We constantly extrapolate the bands on the unit interval which preserves their
theoretical coverage guarantees as discussed after Theorem 1. Figure S3 in the Supplementary
Material illustrates that the bands of Yang and Barber (2019) are considerably wider in this
application.

Recall that the validity of our bands relies on the isotonicity assumption of p, which we
test for as detailed on in Appendix A. The test only rejects isotonicity at the 5% level for the
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second model specification displayed on the left side of Figure 5 with a crossing of the lower
and upper bounds for probability predictions between 0.1% and 2.7%. Hence, we can directly
reject calibration for this model in the critical area of small predictions and furthermore, the
remaining calibration band has to be interpreted carefully for this model. As the simulations in
Appendix A show that the isotonicity test can even detect slight violations of isotonicity with
high power for much smaller sizes as considered in this application, type II test errors are barely
a problem here and we can be confident about the isotonicity assumption for the other two
model specifications.

For the first model, the calibration band encompasses the diagonal line for all forecast values,
meaning that we cannot reject the null hypothesis of perfect calibration p(x) = x at the 5% level.
More importantly, we are 95% certain that the true calibration curve lies within the the band at
any point x ∈ [0, 1], implying that we are confident that the model is at least as well calibrated
as specified by the band. This is especially notable in the important region of predictions below
10% in the magnified right panel of Figure 1, where the calibration bands are remarkably close
to the diagonal implying a particularly well calibrated model. E.g., we can conclude that for a
prediction of x = 5%, a low birth weight occurs with a probability between 4.6% and 6.7%.

In contrast, we reject calibration for both, the second and third model specifications as
shown in Figure 5. However, these bands are much more informative than a simple test re-
jection as they directly show the exact form of model miscalibration. For the second model
specification, we can conclude that the predicted probabilities are particularly miscalibrated for
the non-isotonic region discussed above and for values larger than 20%. The third specification
entails miscalibrated probabilities for predictions below 10% that are presumably of the highest
importance for medical decision making. Finally notice that the wide bands for the third model
specification between predicted probabilities of 5% and 20% are caused by little predictions in
this interval.
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Supplementary material

The Supplementary Material further illustrates the rounding method in simulations, gives details
on the low birth weight application and contains additional proofs.

A Detecting and quantifying non-isotonicity

The regression function p could violate isotonicity in (1). Then, its non-isotonicity can be
quantified by

γ(p) := sup
x≤y
{p(x)− p(y)} ≥ 0.

The derivation of our confidence band (Lα,raw, Uα,raw) can be adapted as follows: For any index
pair (j, k) ∈ J and δ ∈ (0, 1), we know that

P[min{pj , . . . , pk} ≤ uδ(Zjk, njk)] ≥ 1− δ, P[max{pj , . . . , pk} ≥ `δ(Zjk, njk)] ≥ 1− δ. (A1)

But the definition of γ(p) implies that

p(x) ≤ min{pj , . . . , pk}+ γ(p) ∀ x ≤ xj , p(x) ≥ max{pj , . . . , pk} − γ(p) ∀ x ≥ xk.

Consequently, one can complement Theorem 1 with the following result:
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Table 1: Rejection rates of the isotonicity test

Sample size n

s 512 1024 2048 4096 8192 16384 32768

0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.6 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.7 0.00 0.00 0.00 0.00 0.01 0.16 0.89
0.8 0.00 0.00 0.01 0.08 0.71 1.00 1.00
0.9 0.00 0.01 0.13 0.85 1.00 1.00 1.00
1.0 0.01 0.14 0.81 1.00 1.00 1.00 1.00

Theorem A1. Let (Lα,raw, Uα,raw) be defined as in Theorem 1 . Then for any regression
function p,

P{Lα,raw − γ(p) ≤ p ≤ Uα,raw + γ(p)} ≥ 1− α.

This result has two implications: First, a p-value for the null hypothesis that p is isotonic is
given by the supremum of all α ∈ (0, 1) such that Lα,raw ≤ Uα,raw pointwise. Second, for a fixed
α ∈ (0, 1) let γ̂α ≥ 0 be the infimum of all numbers γ ≥ 0 such that Lα,raw − γ ≤ Uα,raw + γ. In
other words, γ̂α equals supx∈R{Lα,raw(x)−Uα,raw(x)}+/2. Then γ̂α is a lower (1−α)-confidence
bound for γ(p).

Table 1 illustrates the isotonicity test’s performance using the Wave specification of Section
5 for s ≥ 0.5, where s = 0.5 entails an isotonic function p, and the choices s > 0.5 imply
increasing degrees of non-isotonicity, also see Figure 2. We find a conservative test size of zero
for s = 0.5 and increasing power with both, s and n. For the largest sample sizes, we can detect
mild misspecifications with high power, showing that type II errors are barely a concern for the
sample size considered in our application.

B Proofs and Technical Lemmas

Lemma B1. Let Y1, . . . , Ym be independent Bernoulli variables with expectations p1 ≤ · · · ≤ pm,
and let Z = Y1 + · · ·+ Ym. Then for any δ ∈ (0, 1),

pr{p1 ≤ uδ(Z,m)} ≥ 1− δ and pr{pm ≥ `δ(Z,m)} ≥ 1− δ.

Proof of Lemma B1. For the upper bound, note that uδ(z,m) is increasing in z. If b = min{z ∈
{0, . . . ,m} : uδ(z,m) ≥ p1}, then pr{p1 ≤ uδ(Z,m)} = pr(Z ≥ b). By Shaked and Shanthiku-
mar (2007, Example 1.A.25), Z is stochastically larger than Z̃ with binomial distribution with
parameters m and p1, so pr(Z ≥ b) ≥ pr(Z̃ ≥ b) ≥ 1 − δ, where the last inequality follows
from the validity of the Clopper-Pearson confidence bounds. The proof for the lower bound is
similar.

The proof of Theorem 2 uses standard results for isotonic least squares regression and the
following inequalities of Hoeffding (1963, Theorem 1).

Lemma B2. Let Y1, Y2, . . . , Ym be independent random variables with values in [0, 1] and expec-
tations p1, p2, . . . , pm. Suppose that q = m−1

∑m
i=1 pi ∈ (0, 1), and set q̂ = m−1

∑m
i=1 Yi. Then

for arbitrary r ∈ [0, 1],

pr(q̂ ≤ r) ≤ exp{−mK(r, q)} ≤ exp{−2m(r − q)2} if r ≤ q,
pr(q̂ ≥ r) ≤ exp{−mK(r, q)) ≤ exp{−2m(r − q)2} if r ≥ q,

where K(r, q) := r log(r/q) + (1− r) log[(1− r)/(1− q)].
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Corollary B1. For integers m ≥ 1, z ∈ {0, 1, . . . ,m} and any number δ ∈ (0, 1),

uδ(z,m) ≤ max
{
ξ ∈ [q̂, 1] : K(q̂, ξ) ≤ log(1/δ)/m

}
≤ q̂ +

√
log(1/δ)/(2m),

`δ(z,m) ≥ min
{
ξ ∈ [0, q̂] : K(q̂, ξ) ≤ log(1/δ)/m

}
≥ q̂ −

√
log(1/δ)/(2m),

where q̂ = z/m.

In addition, the proof of Theorem 2 makes use of the following proposition which is of
independent interest, since it implies a more efficient method for computing the bounds of Yang
and Barber (2019).

Proposition B1. For an arbitrary observation vector Y ∈ Rn, let p̂ : [0, 1]→ R be an increasing
function minimizing

∑n
i=1{Yi − p̂(xi)}2. For some τ > 0 and any index i = 1, . . . , n, let

Ui = min
(j,k)∈J : xj≥xi

(Z iso
jk

njk
+

τ
√
njk

)
, Li = max

(j,k)∈J : xk≤xi

(Z iso
jk

njk
− τ
√
njk

)
.

Then, the minimum for Ui is attained at some (j, k) ∈ J such that j = min(s : xs ≥ xi) and
p̂(xk) < p̂(xk+1) or k = n. The maximum for Li is attained at some (j, k) ∈ J such that
p̂(xj−1) < p̂(xj) or j = 1 and k = max(s : xs ≤ xi).

Proof of Proposition B1. Consider the statement about Ui. The claim about j follows from
the fact that for fixed k, Z iso

jk /njk is increasing and njk = n − j + k is decreasing in j ≤ k.

As to the upper index k, note that Ui is the minimum of ujk = Z iso
jk n

−1
jk + τn

−1/2
jk over all

k ≥ j = min(s : xs ≥ xi) such that (j, k) ∈ J . Let j ≤ k1 < k2 be indices such that p̂(xk) = q̂
for k = k1 + 1, . . . , k2. Then, for k = k1, . . . , k2,

Z iso
jk = Z iso

jk1 + (k − k1)q̂ = B + njkq̂

with

B = Z iso
jk1 − njk1 q̂

{
≤ 0,

= 0 if p̂(xj) = q̂.

Consequently, for k = k1, . . . , k2,

ujk = q̂ +Bn−1jk + τn
−1/2
jk

is a concave function of n−1jk ∈ [n−1jk2 , n
−1
jk1

], and it is increasing in n−1jk if q̂ = p̂(xj). This implies
that

ujk ≥

{
min(ujk1 , ujk2),

ujk2 if q̂ = p̂(xj).

Consequently, the minimum of ujk over all k ≥ j is attained at some k ≥ j such that p̂(xk) <
p̂(xk+1) or k = n, and this entails that (j, k) ∈ J . The statement about Li follows from the one
about Ui when x1, . . . , xn are replaced by 1−xn, . . . , 1−x1 and Y1, . . . , Yn by −Yn, . . . ,−Y1.

Proof of Theorem 2. Define Lα,YB
i = Lα,YB(xi), U

α,YB
i = Uα,YB(xi). The inequalities Lα,nci ≤

Lα,rawi and Uα,rawi ≤ Uα,nci , as well as Lα,YB
i ≤ p̂(xi) ≤ Uα,YB

i hold by construction. It is

therefore sufficient to show that Lα,YB
i ≤ Lα,rawi and Uα,rawi ≤ Uα,YB

i . As to the inequality

Uα,rawi ≤ Uα,YB
i , we know that Uα,YB

i equals

uYB
jk = Z iso

jk n
−1
jk + τn

−1/2
jk

for some (j, k) ∈ J with j = min{s : xs ≥ xi} and p̂(xk) < p̂(xk+1) or k = n, where τ =√
log{(N2 +N)/α}/2. As explained later, this implies that

Zjk ≤ Z iso
jk if p̂(xk) < p̂(xk+1) or k = n. (B1)
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But then it follows from Corollary B1 that Uα,YB
i = uYB

jk is greater than or equal to

Zjkn
−1
jk + τn

−1/2
jk ≥ uα/(N2+N)(Zjk, njk) ≥ Uα,rawi .

Inequality (B1) follows from a standard result about isotonic regression (see for example
Henzi et al., 2022, Characterization II). The index interval {j, . . . , k} may be partitioned into in-
dex intervals {`, . . . ,m} = {j, . . . , n}∩{s : p̂(xs) = q̂}, where q̂ is any value in {p̂(xj), . . . , p̂(xk)}.
For such an index interval, Z`m ≤ Z iso

`m, with equality if q̂ > p̂(xj).
The inequality for the lower bound follows from the one for the upper bound when x1, . . . , xn

are replaced by −xn, . . . ,−x1 and Y1, . . . , Yn by 1− Yn, . . . , 1− Y1.

References

Allison, P. J. (2014). Measures of fit for logistic regression. Paper 1485-2014, SAS Global Forum 2014,
pages 1–12.

Bertolini, G., D’Amico, R., Nardi, D., Tinazzi, A., and Apolone, G. (2000). One model, several results:
the paradox of the Hosmer-Lemeshow goodness-of-fit test for the logistic regression model. Journal of
epidemiology and biostatistics, 5:251–253.

Clopper, C. J. and Pearson, E. S. (1934). The use of confidence or fiducial limits illustrated in the case
of the binomial. Biometrika, 26:404–413.

Dimitriadis, T., Gneiting, T., and Jordan, A. I. (2021). Stable reliability diagrams for probabilistic
classifiers. Proceedings of the National Academy of Sciences, 118:e2016191118.
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The Supplementary Materials contains four parts. Section S.1 demonstrates the effect of using a
restricted set of index intervals. Section S.2 gives details on the regression model specifications in the low
birth weight application. Section S.3 illustrates the gains of our method upon the wider bands of Yang
and Barber (2019) in this application. Section S.4 gives additional proofs.

S.1 The effect of using a restricted family of index intervals

As discussed before equation (7) in the main manuscript and informally described as the rounding method,
the confidence bands in equations (4) and (5) also achieve correct coverage in the sense of (2) if we only

consider a restricted family of index pairs J̃ ⊂ J . Besides the reduced computation time, which we
discuss below, this has the additional advantage that it reduces the correction factor of the significance
level from |J | = N2 + N to |J̃ |. However, the optimal index interval as selected by the infimum in (4)

and the supremum in (5) over the full set J may not be contained in J̃ , resulting in a possibly wider
confidence band. While a general balancing of these two opposing effects is difficult without knowledge
of the true form of p, Figure S1 illustrates the effect of the rounding method with the explicit choice of
J̃ in (7) based the choices K ∈ {20, 100,∞} on simulated data.

First assume that the curve p is (almost) flat. Then, the infimum in the computation of Uα,raw(x) in
equation (4) is most likely attained for the largest index interval in J , i.e., by computing the Clopper-

Pearson confidence bounds using all indices xj ≥ x. Hence, as long as J̃ in equation (7) approximately
contains this full index interval, there is almost no effect of the rounding in terms of an inefficient selection
of the index intervals. However, as the correction factor of the significance level is reduced from N2 +N
to |J̃ |, this entails thinner intervals as can be seen in the region x ≥ 0.3 in Figure S1.

In contrast, in steeper regions of p, the inefficient index interval selection mechanism stemming from
a restricted J̃ might have a bigger adverse effect than the lower correction factor of the significance level.
This effect can be observed in the particularly steep region around x = 0.25 in the zoomed version of
the plot in the right side of Figure S1, where the choice K = ∞ yields the most narrow bands. Finally,
the region with x ≤ 0.25 having unit slope (pertaining to the most important case of perfectly calibrated
predictions in applications on calibration assessment) shows that rounding with K = 100 improves the
bands whereas further reducing K results in too coarse approximations, also limiting the adaptivity of
the band derived in Theorem 3.

Furthermore, the choice of K in J̃ massively affects the computation times required for the bands.
Figure S2 displays the required computation time to compute the infimum and supremum in equations
(4) and (5) for the full index set J , and two reduced sets J̃ with K = 100 and K = 1000 together with
the computation time of the Yang and Barber (2019) bands.

As expected, we find that the computation time of our standard method grows at rate n2, where
computing the bands takes up to 15 minutes for n = 16 384. The computation time decreases drastically
for both rounding methods, and even for K = 1000, the bands for n = 16 384 are computed within
five seconds. For an increasing sample size, the computation time stabilizes once the size of J̃ stays
constant. Finally, the bands of Yang and Barber (2019) have the lowest computation time throughout
all considered sample sizes as it suffices to take the minimum over endpoints of constancy regions of
the isotonic regression estimate for these bands, which is explained in the end of Section 3 of the main
manuscript. The display of the average width on the right-hand side of Figure S2 confirms that medium
values of e.g., K = 100 or K = 1000 yield relatively narrow bands.

Summarizing the results of this section, the rounding method can drastically decrease the computation
time and even results in narrower bands for all but very steep regions of the regression function.

S.2 Model specifications in the low birth weight application

We give some additional details on the model specifications of the application here. The first two models
are based on the probit link function whereas the third one uses the cauchit link function (Koenker and
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Figure S1: This figure illustrates the effect of the rounding method in (7) with the choices K ∈
{20, 100,∞}, the latter corresponding to no rounding. We simulate n = 10 000 data points with a true
regression function p(·) that linearly connects the points (0, 0), (0.25, 0.25), (0.275, 0.9) and (1, 0.95). The
left plot shows the true regression function in gray together with the confidence bands and the plot on
the right side is a magnified version focusing on the steep area of the regression function.

Yoon, 2009). The second model uses the week of gestation as a continuous variable whereas the first and
third models use the week of gestation as a categorical variable with left-closed and right-open intervals
with lower interval limits of 0, 28, 32 and 37 weeks, which corresponds to the standard categorization of
the World Health Organization (Quinn et al., 2016).

Additionally, all three models contain the following common explanatory variables: the mother’s
age and its squared term, her body mass index prior to pregnancy, her smoking behavior as a cate-
gorical variable with left-closed and right-open intervals with lower limits of 0, 1, 9, and 20 cigarettes
per day averaged over all three trimesters, individual binary variables for mother’s diabetes, any form
of hypertension, mother’s education below or equal to eight years, employed infertility treatments, a
cesarean in a previous pregnancy, a preterm birth in a previous pregnancy, current multiple preg-
nancy, the sex of the unborn child, and an infection of one of the following: gonorrhea, syphilis,
chlamydia, hepatitis b, hepatitis c. Additional details on the data are given in the user guide under
https://data.nber.org/natality/2017/natl2017.pdf.

S.3 The Yang and Barber bands in the low birth weight appli-
cation

Figure S3 illustrates the bands of Yang and Barber (2019) with a minimal variance factor of σ2 = 1/4
in the three binary regression specifications presented in Figures 1 and 5 of the main manuscript. We
see that these bands are substantially wider than ours, especially in the most important region of small
probability predictions, e.g., illustrated in the zoomed version in the upper right panel of the figure. This
improvement is theoretically explained by Theorem 3 (iv) and the corresponding discussion thereafter:
Our confidence bands adapt to the variance of the observation, i.e., their width is smaller for p close to
zero or one as compared to p around 0.5.
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Figure S2: The left plot shows the computation time in simulations of the Kink process with s = 0.8
from Section 5 of the main manuscript depending on the sample size for a range of rounding values K and
the bands of Yang and Barber (2019). We use a logarithmic scale for both axes. The two plots on the
right show the average width of these four versions of the confidence bands depending on the covariate
value x.

S.4 Additional Proofs

Proof of Lemma 1. Let q̂1 < · · · < q̂b be the different elements of {p̂(xi) : 1 ≤ i ≤ n}, where we
assume that b ≥ 2. There exists a partition of {1, . . . , n} into index intervals I1, . . . , Ib such that
q̂` = |I`|−1

∑
i∈I` Yi. For any integer d ≥ 1, let Md be the number of indices ` such that |I`| = d.

Since
∑
i∈I` Yi ∈ {0, 1, . . . , d}, the numbers Md satisfy the following constraints: Md ∈ [0, d + 1], and∑n

d=1Mdd = n. The question is, how large the number b =
∑n
d=1Md can be under these constraints,

where we drop the restriction that the Md are integers. Suppose that Mc < c+1 and Mc′ > 0 for integers
1 ≤ c < c′. Then we may replace (Mc,Mc′) with (Mc + γ/c,Mc′ − γ/c′), where γ is the minimum of
(c + 1 −Mc)c and Mc′c

′. This does not affect the constraints, but the sum
∑n
d=1Md increases strictly,

while Mc = c+ 1 or Mc′ = 0. Eventually, we obtain an integer do ≥ 1 such that Md = d+ 1 if 1 ≤ d ≤ do
and Md = 0 for d ≥ do + 2. In particular,

n ≥
do∑
d=1

(d+ 1)d =
(do + 2)(do + 1)do

3
>
d3o
3
,

whence do < (3n)1/3, while

b ≤
do+1∑
d=1

(d+ 1) =
do(do + 3)

2
≤ Cn2/3,

where C = 32/3(1 + 3/61/3)/2 < 3.

For the proof of Theorem 3, we need an inequality for the auxiliary function K(·, ·) in Lemma B2
which follows from Dümbgen (1998, Proposition 2.1).

Lemma S1. For arbitrary q ∈ [0, 1], ξ ∈ (0, 1) and γ > 0, the inequality K(q, ξ) ≤ γ implies that

|ξ − q| ≤
√

2γq(1− q) + |1− 2q|γ.
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Figure S3: This figures shows the plots given in Figures 1 and 5 augmented with the bands of Yang
and Barber (2019) in purple color.

Proof of Theorem 3. For notational convenience, we often drop the additional subscript n, e.g. we write
xi instead of xni. For symmetry reasons, it suffices to verify the assertions about Uα,raw. We only
consider sample sizes n such that the inequalities for Wn(B) in Assumption 1 are valid.

In what follows, let C be a generic (large) constant depending only on C1, C2. Its value may change
in each instance. It follows from Corollary B1 and Lemma S1 that for sufficiently large n, simultaneously
for all (j, k) ∈ J ,

uα/(N
2+N)(Zjk, njk) ≤ p̂jk + C min

{√
log(n)p̂jk
njk

+
log(n)

njk
,

√
log(n)

njk

}
, (S1)

where p̂jk = Zjk/njk. Note that we got rid of α, because log{(N2 + N)/α} ≤ log{(n2 + n)/α} =
2 log(n)(1 + o(1)) as n → ∞. Moreover, one can deduce from Lemma B2 that simultaneously for all
(j, k) ∈ J ,

p̂jk ≤ pjk + C

√
log(n)

njk
(S2)
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with asymptotic probability one, where pjk = E(p̂jk) = n−1jk
∑k
i=j pi ∈ [pj , pk].

As to part (i), let x ∈ [ao, bo) and B(x) = [x, bo]. If x ≤ bo−C2ρn, then it follows from Assumption 1
that B(x) ∩ {x1, . . . , xn} = {xj(x), . . . , xk(x)} with (j(x), k(x)) ∈ J such that

nj(x)k(x) = Wn{B(x)} ≥ C1n(bo − x).

Consequently, we may deduce from inequalities (S1) and (S2) that with asymptotic probability one,
simultaneously for all x ∈ [ao, bo − C2ρn],

Uα,rawn (x) ≤ uα/(N
2+N)(Zj(x)k(x), nj(x)k(x)) ≤ p̂j(x)k(x) + C

√
ρn/(bo − x),

p̂j(x)k(x) ≤ pj(x),k(x) + C
√
ρn/(bo − x) = p(x) + C

√
ρn/(bo − x).

These two inequalities imply that Uα,rawn (x) ≤ p(x) + C
√
ρn/(bo − x) for x ∈ [ao, bo − C2ρn]. But for

x ∈ [bo − C2ρn, bo), the term
√
ρn/(bo − x) is at least C

−1/2
2 , and Uα,rawn (x) − p(x) ≤ 1. Hence we can

deduce part (i) by replacing C with max{C,C1/2
2 }.

As to part (ii), let B(x) = [x, x + hn] for x ∈ [ao, bo − hn] with some constant hn ≥ C2ρn to be
determined later. By Assumption 1, B(x) ∩ {x1, . . . , xn} = {xj(x), . . . , xk(x)} with (j(x), k(x)) ∈ J
satisfying

nj(x)k(x) = Wn{B(x)} ≥ C1nhn.

Consequently, we may deduce from inequalities (S1), (S2) and Lipschitz-continuity of p on [ao, bo] with
Lipschitz constant L that with asymptotic probability one, simultaneously for all x ∈ [ao, bo − hn],

Uα,rawn (x) ≤ uα/(N
2+N)(Zj(x)k(x), nj(x)k(x)) ≤ p̂j(x)k(x) + C

√
ρn/hn,

p̂j(x)k(x) ≤ pj(x),k(x) + C
√
ρn/hn,

pj(x)k(x) ≤ p(x) + Lhn.

These three inequalities imply that Uα,rawn (x) ≤ p(x) + C
√
ρn/hn + Lhn. If we set hn = ρ

1/3
n L−2/3, the

upper bound becomes C(Lρn)1/3. This requires ρ
1/3
n L−2/3 ≥ C2ρn, though. But in case of ρ

1/3
n L−2/3 ≤

C2ρn, the term (Lρn)1/3 is at least C
−1/2
2 , so we can deduce part (ii) by replacing C with max{C,C1/2

2 }.
Part (iii) can be verified similarly as part (i). let B(x) = [x, xo) for x ∈ [ao, xo). In case of x ≤

xo−C2ρn, B(x)∩{x1, . . . , xn} = {xj(x), . . . , xk(x)} with (j(x), k(x)) ∈ J such that nj(x)k(x) ≥ C1n(xo−x).
Thus it follows from inequalities (S1) and (S2) that with asymptotic probability one, simultaneously for
all x ∈ [ao, xo − C2ρn],

Uα,rawn (x) ≤ uα/(N
2+N)(Zj(x)k(x), nj(x)k(x)) ≤ p̂j(x)k(x) + C

√
ρn/(bo − x),

p̂j(x)k(x) ≤ pj(x),k(x) + C
√
ρn/(bo − x) ≤ p(xo−) + C

√
ρn/(bo − x).

If x ∈ [xo − C2ρn, xo), the term
√
ρn/(bo − x) is at least C

−1/2
2 , so we can deduce part (iii) be replacing

C with max{C,C1/2
2 }.

To verify part (iv), let B(x, y) = [x, y] for ao ≤ x < y ≤ bo. If y − x ≥ C2ρn, then B(x, y) ∩
{x1, . . . , xn} = {xj(x,y), . . . , xk(x,y)} with (j(x, y), k(x, y)) ∈ J such that nj(x,y)k(x,y) ≥ C1n(y − x).
Hence, it follows from (S1) and pj(x,y)k(x,y) ≤ p(y) that

E
{
Uα,rawn (xn)

}
≤ E

{
uα/(N

2+N)(Zj(x,y)k(x,y), nj(x,y)k(x,y))
}

≤ E
{
p̂j(x,y)k(x,y) + C

(√
p̂j(x,y)k(x,y)ρn/(y − x) + ρn/(y − x)

)}
≤ pj(x,y)k(x,y) + C

(√
pj(x,y)k(x,y)ρn/(y − x) + ρn/(y − x)

)
≤ p(y) + C

(√
p(y)ρn/(y − x) + ρn/(y − x)

)
≤ C{p(y) + ρn/(y − x)},

where the third inequality follows from Jensen’s inequality, and the last inequality follows from
√
st ≤

(s+ t)/2 for s, t ≥ 0. This is true if y − x ≥ C2ρn. But in case of y − x ≤ C2ρn, the term ρn/(y − x) is
at least C−12 , so we can deduce part (iv) by replacing C with max{C,C2}.
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