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Signed networks capture both positive and negative relationships in a social network. We
assume that the network nodes are of two different types and, in agreement with social
balance theory, link signs correlate with node types. Given a signed network and informa-
tion on the type of some source nodes, we study the problem of judging the type of a target
node. We first formulate a globally optimal Bayes solution to this problem. As this optimal
solution is too complex to be used by humans, we proceed by introducing a heuristic based
on the shortest paths between the source nodes and the target node. We prove that this
heuristic is weakly better than a previously introduced heuristic based on random walks,
and that it coincides with the optimal rule for star-like networks. With simulations, we
assess the accuracy of the three type-judging rules and find that our heuristic is particu-
larly accurate for networks with short distances and when there are multiple source nodes.
Our work contributes to the active field of inference in complex networks and puts empha-
sis on methods that could be applied by humans facing network data.
� 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The extensive study of social networks across several disciplines has revealed many patterns of how people (or organi-
zations) are related to each other [16]. While in most studies links are assumed to be positive (e.g., friendship), negative links
(e.g., hostility) also exist in many applications. Signed networks capture both positive and negative links and thus allow us to
represent structures that could not be represented with a standard network. Relative to their importance, signed networks
are considered as under-studied [15]. While multiple common complex network problems, such as node ranking and com-
munity detection, are studied also for signed networks, this is rarely the case for the problem of node classification [30].

In this paper, we build upon [22] which assumes that link signs are correlated with hidden node types (while link pres-
ence is independent of the signs) and introduces a model of an observer learning node types from link signs and information
about the types of some source nodes. The source nodes represent the information that the observer has obtained in other
ways, from prior direct experience, for example. Whilst [22] mostly focus on a local heuristic (the random neighbor rule) to
infer the node types, we explicitly derive the globally optimal inference, which we call the Bayesian rule. This rule provides a
natural benchmark for howmuch there is to learn. However, the rule has high computational costs, as it involves considering
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2N states where N is the number of nodes in the network. It is thus unrealistic that a human observer would apply this rule
when making a judgment. We propose a much simpler heuristic that is based on the shortest paths between source nodes
and target nodes. This shortest path rule considers just one shortest path between a source node and a target node and uses
the information of the link signs along this path to judge the target node. For multiple source nodes it aggregates the infor-
mation as if the paths were non-overlapping. We derive the expected accuracy of the shortest path rule and compare it to the
Bayesian rule and the random neighbor rule.

As the main theoretical result, we show that the three rules can be ordered in terms of expected accuracy: the random
neighbor rule is weakly dominated by the shortest path rule, which is weakly dominated by the Bayesian rule (Proposition
1). Only in a small class of networks (that includes trees when there is one source node), the three rules lead to the same
judgment, which means that the shortest path rule and the random neighbor rule are also optimal (Proposition 2). In a larger
class of networks that can be described as a star-like structure with the target node at the center, the shortest path rule is still
optimal, but the random neighbor rule is in general not (Claim 1). These results show how the two simple heuristics work
and when they fail.

We use simulations to quantify the differences in accuracy between the three rules. We show that the crucial network
statistic is the average distance and show how accuracy depends on the shortest path length. For large networks, the heuris-
tics fail to produce accurate results, except for the shortest path rule if the number of source nodes grows with network size
and the correlation between node types and link signs is high enough.

The remainder of the paper is organized as follows. After briefly relating it to the literature in Section 2, we introduce the
model in Section 3. In Section 4 we present the theoretical results; in Section 5 the simulation results. We conclude with
Section 6.

2. Related literature

This work directly builds on [22] where the problem of judging node types in a signed network has been considered for a
special case of the set-up that we consider here. Besides this directly related work, there are several different strands of lit-
erature that our work is influenced by and speaks to.

Research on signed networks has always had an emphasis on structural balance [13,4,6] which asserts that triads (or
longer loops) in signed networks tend to be balanced.1 Investigations of structural balance in signed networks spans from data
on relations among countries [14] to recent analyses of data from online social networks [28,19]. In [20], the author argues that
common tests of balance theory fail to disentangle the observed signed structures from the probability of nodes to connect with
each other, and proposes a new way to assess the level of structural balance. Structural balance is not only a static network
property but it is also closely connected with the dynamics and formation of signed networks [31,8,32,26].

Our work is also related to the literature on node classification in a signed network [33,25,29]. With respect to these
works, we not only provide a new algorithm that classifies nodes in a signed network into two types, but also solve for
the optimal solution within the setting of our model. At the same time, there are also clear differences between our work
and this literature: Instead of using a data-driven and computational approach, we study the theoretically optimal solution
and compare it to simpler heuristics that could mimic cognition of humans. We show why classification of node types works
in certain settings and fails in others. Our work thus also contributes to the literature on human learning, in particular on
various adverse outcomes as a result of bounded rationality (see [1,11,12], for recent contributions), which differentiates
it clearly from recent contributions in computer science [27,23] where computational complexity limitations are low or
absent.

3. Model

We first provide a practical example for learning from link signs. We then define the basic set-up, introduce the inference
rules, and illustrate their application re-using the first example.

3.1. A motivational example

Consider the following situation:

You are a manager in an organization and have to assess whether to promote a certain candidate t that you do not know
first-hand. Besides other data and means of assessment, you do know two employees s1 and s2 who work in the same unit
as t. For instance, you think that s1 is someone who cooperates well, while s2 is rather not cooperative (say s1 makes very
constructive contributions to work teams, while s2’s contributions are rather impeding progress). Moreover, you know the
relationship among employees, as illustrated in Fig. 1. Now, the fact that candidate t holds a positive relation to the coop-
erative employee s1 might yield a positive signal about the cooperativeness of t. Moreover, this belief could be reinforced
1 Basically, if a friend of a friend is my friend, this 3-cycle is balanced, but if a friend of a friend is my enemy, this 3-cycle is not balanced. More generally and
more formally, a signed network is called balanced if for every cycle the number of negative links is even [4].
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by t’s negative relation to employee j, who is positively related to the non-cooperative employee s2. Finally, the positive
view might be somewhat challenged by the fact that candidate t holds a positive relation with employee i, who is, in turn,
negatively related to the cooperative employee s1. Overall, the way candidate t is related to s1 and s2 might be informative
about his own cooperativeness, here yielding rather positive signals.

More generally, for agents (nodes) whose qualities the observer does not know first hand, the observer can still try to infer
them from other nodes and the link signs between them in the network. This is particularly important for finding hidden
qualities of agents like trustworthiness, endurance, cooperativeness, honesty, and compliance to norms, for example. There
are several applications with such a characteristic: Networks among employees (as in the example); inter-firm networks
(e.g., which other small businesses to trust); criminal networks (who collaborates with the mafia and who acts legally);
friendship networks (e.g., is someone a suitable roommate); two political camps (e.g., tell revolutionists from loyalists); alli-
ances between countries (see, e.g., [14]); networks of artists (e.g., whether a certain book/film/song probably fits one’s taste).

To elaborate slightly more on a second application, let us consider a society consisting of ‘‘loyalists” and ‘‘revolutionists.”
Loyalists sympathize with the government’s ideology whilst revolutionists would like to overthrow it. When recruiting for a
position (in the state or in the revolution), the recruiter will be interested in the type of a candidate. Again, knowing about
the positive and negative relations that the candidate maintains can be quite informative. Information about the network can
come from observed friendship and enmity, but also from social media debates (such as in a recent study with Twitter data,
[18]).2

3.2. Set-up

We extend here the model introduced in [22] that can be used to assign trust to nodes in an arbitrary signed network. A
signed network is constructed as follows. Let V ; Eð Þ be a simple graph of N :¼ jV j vertices (or nodes) and with the set of edges
(or links) E. The graph is assumed to be connected. For each node i 2 V , the type hi 2 �1;þ1f g is drawn independently at
random with equal probability such that P hi ¼ þ1½ � ¼ P hi ¼ �1½ � ¼ 1

2. A signed network can be represented by a symmetric
matrix Rwith Rij 2 �1;0;þ1f g, where Rij ¼ 0 if there is no link between i and j. For each link i; jð Þ 2 E, there is either a positive
sign Rij ¼ þ1 or a negative sign Rij ¼ �1. The link signs are drawn independently and conditionally on node types as follows:
between nodes of the same type (different types) the probability of a positive (negative) link sign is r 2 0:5;1ð �, i.e., for any
link i; jð Þ, P Rijhihj ¼ þ1

� � ¼ r. We refer to parameter r as link reliability. This is the fundamental assumption of our model: As
r > 0:5, link signs are related to node types.3

Some nodes S � V are pre-determined as source nodes. For each source node i 2 S, the observer receives an independent
signal ri 2 �1;þ1f g about its type. Each signal correctly indicates the node type with probability q 2 0:5;1ð �,
i.e., P rihi ¼ þ1½ � ¼ q. Parameter q is referred to as source signal quality. We collect all initial signals in a vector
r ¼ r1; . . . ;rNð Þ, where ri 2 �1;þ1f g for i 2 S, and ri ¼ 0 for i R S. We assume r; q > 0:5 because the signed network con-
tains no information when either r or q is 0:5. Table 1 summarizes the notation including some symbols that will be intro-
duced later.

Given a signed network R (e.g., the positive and negative links in Fig. 1) and signals r (e.g., the prior information about two
employees in Fig. 1), an observer wants to judge the quality of some target node t 2 V n Sð Þ. To this end, the observer might
apply one of the following three rules.

3.3. Three inference rules

3.3.1. Optimal benchmark: the Bayesian rule (Bayes)
The Bayesian rule properly takes into account all available information and forms the corresponding posterior belief. Each

state of the world is one combination of node types h ¼ h1; . . . ; hNð Þ 2 H ¼ �1;þ1f gN . As hi 2 �1;þ1f g is binary, there are 2N

states of the world. Since node types are independently drawn with equal probability, the prior probability of each state h is

the same, P h½ � ¼ 1
2

� �N . The conditional probability that, given a true state h, we observe signals r and link signs R is
2 The
with ty

3 The
P r;Rjh½ � ¼ qz1 hð Þ 1� qð Þz2 hð Þrz3 hð Þ 1� rð Þz4 hð Þ
;

where z1 hð Þ :¼ j i 2 Sjrihi ¼ þ1f gj is the number of source nodes for which the signal is correct; z2 hð Þ :¼ j i 2 Sjrihi ¼ �1f gj is
the number of source nodes for which the signal is wrong; z3 hð Þ :¼ j i; jð Þ 2 EjRijhihj ¼ þ1

� �j is the number of links for which
the link sign is according to the node types; and z4 hð Þ :¼ j i; jð Þ 2 EjRijhihj ¼ �1

� �j is the number of links for which the link
sign is not according to the node types. Note that z1 hð Þ þ z2 hð Þ ¼ NS, where NS :¼ jSj is the number of source nodes; and
z3 hð Þ þ z4 hð Þ ¼ jEj.

Bayes’ rule gives us the conditional probability that, given observations r;R, the true state of the world is h:
se ties and debates need not at all be dedicated to questions of government and revolution; only their sign (positive or negative) is assumed to correlate
pe, e.g having an online argument with someone who is known to be a loyalist indicates rather the revolutionist than the loyalist type.
classic theory of structural balance provides a foundation for this assumption [4].
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Table 1
Summary of notation.

Symbol Values Meaning

r 2 0:5;1ð � Link reliability
q 2 0:5;1ð � Signal quality
R N � N-matrix Signed relation network
Rij 2 �1;0;þ1f g Relation of nodes i and j
h ¼ h1; . . . ; hNð Þ Profile of node types
hi 2 �1;þ1f g Type of node i
r ¼ r1; . . . ;rNð Þ Profile of signals
ri 2 �1;þ1f g Signal about node i’s type
N 2 N;N < 1 Number of nodes
NS 2 N;NS < N Number of source nodes
b tð Þ 2 0;1½ � Belief that node t is of positive type
g tð Þ 2 �1;þ1f g Best guess about node t’s type
A tð Þ 2 0;1f g Accuracy
E A½ � 2 0;1½ � Expected accuracy

Fig. 1. An example: A manager who knows employees s1 and s2 attempts to learn about the quality of a target employee t from observing the positive and
negative relations among employees.

F. Meng, Matúš Medo and B. Buechel Information Sciences 606 (2022) 742–762
P hjr;R½ � ¼ P r;Rjh½ � � P h½ �
P r;R½ � ¼ qz1 hð Þ 1� qð Þz2 hð Þrz3 hð Þ 1� rð Þz4 hð Þ � 1

2

� �N
X
h02H

qz1 h0ð Þ 1� qð Þz2 h0ð Þrz3 h0ð Þ 1� rð Þz4 h0ð Þ � 1
2

� �N : ð1Þ
While the numerator uses the likelihood of a given state h, the denominator uses all possible states, h0 2 H, to generate the

probability of the actual observation r;R. Note that the terms 1
2

� �N cancel out.
Finally, the probability that target node t is of the positive type is the probability that we are in a state of the world with

ht ¼ þ1. Let H tð Þ be all 2N�1 states with ht ¼ þ1. Then the posterior belief that target node t is of positive type, given obser-
vations r;R, is
bBayes tð Þ :¼ P ht ¼ þ1jr;R½ � ¼
X
h2H tð Þ

P hjr;R½ �; ð2Þ
where P hjr;R½ � is given by Eq. (1). From the posterior belief, we can also derive the expected node type:
E htjr;R½ � ¼ P ht ¼ þ1jr;R½ � � 1þ 1� P ht ¼ þ1jr;R½ �ð Þ � �1ð Þ.

For an observer (who knows which model has produced r;R and knows the values of q and r), the Bayesian rule is the
optimal way to process the available information. The downside is that its application involves 2N states which makes its
direct use prohibitively computationally demanding and an unlikely candidate for mimicking human cognition. We apply
the Bayesian rule theoretically and restrict simulations with the Bayesian rule to N up to 20.
3.3.2. A new heuristic: the shortest path rule (ShPath)
Instead of going through all complexities that the Bayesian rule necessitates, the observer might simply consider how the

target node is connected to a given source node by a shortest path. We propose a new rule based on this idea. The shortest
path rule is defined as follows:
745
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1. Select one source node s 2 S. Identify all shortest paths from the source node s to the target node t and choose one at
random. Label nodes on the path ‘‘s ! t” by n0;n1; . . . ;nL where n0 :¼ s;nL :¼ t and L is the path length.

2. Compute the path orientation produced by both the signal and link signs along the path
4 The
5 Thi

would
0:8 �ð
and Ap

6 For
stemmi
os!t :¼ rs

YL�1

m¼0

Rnm ;nmþ1 : ð3Þ
3. Compute the probability that the shortest path has an even number of errors (i.e., links whose sign does not match the
node types)4
ps!t :¼ rL þ L

2

� 	
rL�2 1� rð Þ2 þ . . . ¼ 1

2
1þ 2r � 1ð ÞL
h i

: ð4Þ
4. Determine the belief derived from this path as
bs!t :¼
qps!t þ 1� qð Þ 1� ps!tð Þ if os!t ¼ þ1;

1� qps!t � 1� qð Þ 1� ps!tð Þ if os!t ¼ �1:



ð5Þ

We can interpret bs!t as the subjective probability that node t is of positive type, as it can be derived from the path from s
to t. Consider, for instance, the first case, where the path’s orientation is positive, i.e., where os!t ¼ þ1. There the former
term, qps!t , is the probability that the source node signal is correct and the number of erroneous links between s and t is
even which together imply that os!t ¼ ht . The latter term is the probability that the source node signal is incorrect and the
number of erroneous links between s and t is odd, which again implies that os!t ¼ ht . Hence, both terms together yield the
probability that the path orientation, which is positive, coincides with the type of the target node t. Analogously, the sec-
ond case yields the probability that the path orientation, which is negative, does not coincide with the type of the target
node.
5. Repeat steps 1–4 for all source nodes S. Compute the belief (i.e., subjective probability) that target node t is of positive

type as
bShPath tð Þ :¼

Y
s2S

bs!t

Y
s2S

bs!t þ
Y
s2S

1� bs!tð Þ ; ð6Þ

which aggregates beliefs bs!t from each path, as if they were containing independent information. For one source node

(NS ¼ 1), we have bShPath tð Þ :¼ bs!t as given by Eq. (5).

The application of this rule is actually quite simple. Suppose first that there is only one source node, i.e., S ¼ sf g and
NS ¼ 1. Then the path orientation os!t , which is computed in step 2, already indicates the best guess about the target node’s
type: A positive (negative) path orientation leads to the best guess that the target node is rather of the positive (negative)
type. Steps 3 and 4 attach a probability to this guess. Eq. (5) (in step 4) accounts for the probability q that the source node’s

signal is accurate. Finally, in step 5 we obtain belief bShPath tð Þ :¼ bs!t when there is only one source node. For multiple source
nodes the procedure is repeated for each source node. Eq. (6) in step 5 then aggregates information from all source nodes as if
the shortest paths were independent.5

The shortest path rule is motivated by real agents who cannot be assumed to use the Bayesian rule. In particular, the
shortest path rule is much simpler as it ignores information from other shortest paths (if multiple shortest paths exist
between s and t), from other paths that are not shortest, and the fact that the multiple shortest paths might be overlapping.
In spirit, this is similar to imperfections in belief formation and social learning. For instance, there are several well-
documented biases when people learn about probabilities (e.g., [1]); including correlation neglect, i.e., assuming that signals
are independent even if they are correlated [9]. Also non-Bayesian models of social learning (or opinion dynamics) are moti-
vated by naïveté in updating, e.g., assuming that people do not sufficiently account for redundancy of information.6

3.3.3. A known heuristic: the random neighbor rule (RNeighbor)
In a recent paper, [22] introduced a closely-related framework and studied the random neighbor rule. Our model frame-

work translates to theirs when we set link reliability r � 1� b where b is their noise parameter and fix signal quality to be
q � 1. The other rule studied in [22], the Majority rule, is less founded than the random neighbor rule, so we omit it from our
closed-form expression is obtained by rewriting the sum as r þ 1� rð Þ½ �L=2þ r � 1� rð Þ½ �L=2.
s formula weighs the likelihood that all beliefs are correct against the likelihood that all are correct or all are wrong. For example, if one source node
lead to a belief of 0:8 and the other source node to a belief of 0:6, then the belief from both source nodes is

0:6Þ= 0:8 � 0:6þ 1� 0:8ð Þ � 1� 0:6ð Þ½ � 	 0:857. Several simple examples that illustrate the application of all three rules are presented in Sections 3.4
pendix B.
instance, [7] justify the DeGroot model with ‘‘persuasion bias,” a tendency to ignore that several pieces of information may be redundant, e.g.,
ng from the same source.
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analysis. In the random neighbor rule, the observer uses signals on the source node types to form opinions xi 2 �1;þ1f g for
all other nodes. The opinion formation process is step-wise:

1. Judge every source node s 2 S according to its signal: xs ¼ rs.
2. Choose node j to judge at random from all nodes that have not been judged yet. If no neighbor of j has been judged yet,

repeat the choice.
3. From the judged neighbors of node j, choose neighbor i at random. The judgment of node j is then xj ¼ xiRij.
4. If target node t has not been judged yet, continue at step 2. If the target node has been judged, then we define the best

guess about the target node’s type as gRNeighbor tð Þ :¼ xt .

There is a difference between the random neighbor rule and the two other rules in terms of the output. The Bayesian rule
and the shortest path rule produce beliefs b tð Þ that lie in the interval 0;1½ � and express the observer’s (subjective) probability
that the target node is of the positive type ht ¼ þ1. The random neighbor rule makes a judgment xt about the target node that
is either þ1 or �1 without attaching a level of confidence to it, i.e., gRNeighbor tð Þ 2 �1;þ1f g. To allow for a fair comparison
between the three rules, we map each continuous belief b tð Þ 2 0;1½ � into a ‘‘best guess” g tð Þ 2 �1;þ1f g. In particular, let
g tð Þ ¼ þ1 for b tð Þ > 0:5; g tð Þ ¼ �1 for b tð Þ < 0:5. In the knife-edge case b tð Þ ¼ 0:5, the best guess is chosen from �1;þ1f g
at random, with equal probability. Note that all three rules can be applied also for t 2 S (i.e., when the target node is also
a source node).7

We stress again that the cognitive complexity (and the required amount of information) is substantially higher for the
Bayesian rule than for the other two rules. By contrast, the random neighbor rule is the easiest of the three to apply as it
allows the opinion on all nodes to be formed in N � NS elementary steps. The shortest path rule requires shortest paths
to be found; using breadth-first search, the worst-case time complexity for one target node is O N þ jEjð Þwhere jEj is the num-
ber of links (positive or negative) in the relation network. Assuming a sparse network (jEj 
 N), the time complexity of the

shortest path rule is thus O N2
� �

compared to O Nð Þ of the random neighbor rule.

3.4. Illustration of how the rules are applied

Before we systematically compare the three rules, let us first illustrate how they are applied in two simple examples. Both
examples are subgraphs of the signed network among employees illustrated in Fig. 1.

Example 1. [A Triangle] Focus on the top part of Fig. 1, i.e., on the subgraph V 0 ¼ s1; i; tf g with edges E0 ¼ s1t; s1i; itf g. The
source node’s signal is rs1 ¼ þ1 and the link signs are Rs1t ¼ Rit ¼ þ1 and Rs1i ¼ �1.

The Bayesian rule considers all 23 ¼ 8 states of the world. For instance, state h ¼ hs1 ; hi; ht
� � ¼ þ1;þ1;þ1ð Þ, in which all

nodes are of positive type, would generate the observations r;R, with probability P r;Rjh½ � ¼ qr2 1� rð Þ, as the signal for s1
agrees with its type and two out of three links agree with their node types. Using Eq. (2), we obtain the Bayesian posterior
belief that target node t is of positive type, given observations r;R, and simplify it to
7 Wit
bBayes tð Þ ¼ 1þ qð Þr2 þ 1� qð Þ 1� rð Þ2
3r2 þ 1� rð Þ2

:

Next, let us apply the shortest path rule, again to the subgraph V 0; E0� �
. The only shortest path from source to target node

is obviously s1; t of length 1. The path’s orientation is os1!t ¼ rs1Rs1 ;t ¼ þ1ð Þ � þ1ð Þ ¼ 1, which means that the best guess is
that the target node is rather of the positive type. The probability that the shortest path has an even number of errors is
ps1!t ¼ r by Eq. (4). Hence, the belief derived from this path by Eq. (5) is bs1!t ¼ qr þ 1� qð Þ 1� rð Þ, which does not change
by Eq. (6).
bShPath tð Þ ¼ qr þ 1� qð Þ 1� rð Þ:

Finally, let us apply the random neighbor rule. In the first step, the judgment of source node s1 is produced by its signal as

xs1 ¼ rs1 ¼ þ1. Now, a next node is chosen from i; tf g at random. If this node is t, we receive the judgment
xt ¼ xs1Rs1t ¼ þ1ð Þ � þ1ð Þ ¼ þ1 and we have the best guess gRNeighbor tð Þ ¼ þ1. Otherwise, i is judged next with
xi ¼ xs1Rs1 i ¼ þ1ð Þ � �1ð Þ ¼ �1. Then the next node must be t. It is selected at random whether the judgment on t comes
from neighbor s1 or from neighbor i (who are both already judged). In the former case we have xt ¼ xs1 ¼ 1; in the latter case
we have xt ¼ xi ¼ �1. Overall, we have a 3=4 chance to reach gRNeighbor tð Þ ¼ þ1 (when the judgment about t is derived from s1
directly) and a 1=4 chance to reach gRNeighbor tð Þ ¼ xi ¼ �1 (when the judgment about t is derived from s1 via i).
h the Bayesian rule, for example, one can then assess if the signal is false for one source node, given that there are other source nodes.
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Beliefs derived in Example 1 satisfy 0:5 < bBayes tð Þ < bShPath tð Þ. Hence, we can observe that, in this example, the Bayesian
rule and the shortest path rule lead to the same best guess that the target node is of the positive type
(gBayes tð Þ ¼ gShPath tð Þ ¼ þ1). The random neighbor rule agrees in most, but not all cases. Interestingly, the confidence level

of the Bayesian rule is lower than that of the shortest path rule, i.e., bBayes tð Þ < bShPath tð Þ, since it takes into account that besides
the direct shortest path with a positive orientation, there is a second path with a negative orientation. The next example
shows how the rules are applied when there is a single longer path.

Example 2. [A Line] Focus now on the lower part of Fig. 1, i.e., on the subgraph V 00 ¼ s2; j; tf g with edges E00 ¼ s2j; jtf g. The
source node’s signal is rs2 ¼ �1 and link signs are Rs2 j ¼ þ1 and Rjt ¼ �1.

The Bayesian rule considers again 23 states of the world and yields
bBayes tð Þ ¼ qr2 þ q 1� rð Þ2 þ 2 1� qð Þr 1� rð Þ
h i

:

The shortest path from source to target node is s2; j; t and has length 2. The path’s orientation is positive as
os2!t ¼ rs2Rs2 jRjt ¼ �1ð Þ � þ1ð Þ � �1ð Þ ¼ 1. The probability that the shortest path has an even number of errors is

ps2!t ¼ r2 þ 1� rð Þ2 by Eq. (4). Hence, we receive the final belief
bShPath tð Þ ¼ q r2 þ 1� rð Þ2
h i

þ 1� qð Þ 1� r2 þ 1� rð Þ2
� �h i

;

and we find that bBayes tð Þ ¼ bShPath tð Þ.
The random neighbor rule starts with setting xs2 ¼ rs2 ¼ �1. Then it chooses a node from j; tf g at random. If the node is t,

it chooses again as the only neighbor of t; j, has not been judged yet. If the node is j, it makes the judgment
xj ¼ xs2Rs2j ¼ �1ð Þ � þ1ð Þ ¼ �1. Finally, it judges node t as xt ¼ xjRjt ¼ �1ð Þ � �1ð Þ ¼ þ1. Hence, gRNeighbor tð Þ ¼ þ1.

Computing the beliefs in Example 2 yields 0:5 < bBayes tð Þ ¼ bShPath tð Þ, while gNeighbor tð Þ ¼ þ1. We see that: (1) All rules lead
to the same best guess that the target node t is rather of the positive type: gBayes tð Þ ¼ gShPath tð Þ ¼ gRNeighbor tð Þ; (2) the shortest
path rule leads to exactly the same belief as the Bayesian rule and is hence optimal. Both observations are not coincidences,
as we prove in Claims 1 and 2 in the next subsection.

4. Theoretical results

4.1. Comparison of the three rules

The three seemingly very different rules are in fact strongly related to each other.

4.1.1. Comparison of shortest path rule with Bayesian rule
The example of a line graph above (Example 2) already indicates that sometimes the shortest path rule leads to the same

belief as the Bayesian rule. The first proposition provides a sufficient condition for this conclusion. Recall that a path is
defined as a sequence of distinct nodes such that each neighboring pair in the sequence is linked by an edge.

Claim 1 (Equivalence). Suppose that in V ; Eð Þ between each source node s 2 S and the target node t there is a unique path that
is non-overlappingwith the paths of the other source nodes. Then the Bayesian rule and the shortest path rule are equivalent:
for any observation r;R,
bBayes tð Þ ¼ bShPath tð Þ:

The condition of the result (unique path that is non-overlapping) is equivalent to the following: Between every pair of

source nodes, there is one single path and the target node t lies on this path. Hence, these networks have a star-like structure,
where target node t is the center and each source node s is on a unique ray (of arbitrary length), plus potentially subgraphs
that are ‘‘pockets”, as illustrated in Fig. 2.

Conversely, if these conditions (unique path that is non-overlapping) are not met, the shortest path rule may be subopti-
mal. We demonstrate this by three examples which are illustrated in Fig. 3, and solved in Appendix B. For concreteness, we
suppose in all examples that the source node signals are positive. In Example B.1, illustrated in Panel (A) of Fig. 3, there is a
unique shortest path between source node and target node, but there are additional (non-shortest) paths. The shortest path
rule only uses the direct path, which has a positive orientation. However, the Bayesian rule uses all information including the
two paths of length 2, which are both negatively oriented. Hence for r not too small, the best guess of the Bayesian rule is
negative, while the shortest path rule comes to the opposite conclusion.

In Example B.2, illustrated in Panel (B) of Fig. 3, there are multiple shortest paths between source node and target node.

The Bayesian rule always leads to a belief bBayes tð Þ > 0:5 and corresponding best guess of þ1, as two out of three paths are
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Fig. 2. A star-like network with five source nodes (s1; . . . ; s5) and subgraphs attached to nodes s1; s3, and j3. As the path between each source node and target
node t is unique and does not overlap with other paths, the condition of Claim 1 holds. Hence, the shortest path rule and the Bayesian rule yield identical
beliefs about t (for any r and RÞ.

Fig. 3. Illustration of signed networks in Examples B.1,B.2,B.3 (see Appendix B for the solutions). These networks do not satisfy the condition of Claim 1, the
shortest path rule hence leads to suboptimal beliefs.
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positively oriented. The shortest path rule selects one of the three shortest paths at random. Hence, with probability 2/3 it
selects a positively oriented path and induces a best guess of þ1, but with probability 1/3 it induces a best guess of �1.

Finally, in Example B.3, illustrated in Panel (C) of Fig. 3, there are two source nodes whose shortest paths to the target

node overlap. For r; q 2 0:5;1ð Þ, we receive bShPath tð Þ > bBayes tð Þ. The suboptimality of the shortest path heuristic in this exam-
ple enters in step 5 of the procedure when multiple paths are aggregated. The shortest path rule aggregates information of
both paths as if they were independent, ignoring that they are correlated by having link jt in common. This mistake is very
similar in spirit to persuasion bias in the DeGroot model [7] and to correlation neglect [9]. We observe that ignoring this
overlap leads to overconfidence, as the subjective probability is higher than the objective probability:

bShPath tð Þ > bBayes tð Þ > 0:5.
As we can see in these three examples, the reason for potential suboptimality of the shortest path rule is that it aggregates

information from the signed network as if all paths from any source node to the target node were unique and independent.

4.1.2. Comparison of shortest path rule with random neighbor rule
The line graph discussed as Example 2 already indicates that the random neighbor rule can sometimes lead to the same

best guess as the shortest path rule. The next proposition provides a sufficient condition for this conclusion.

Claim 2 (Same Best Guess). Suppose that in V ; Eð Þ there is a unique path between the only source node s and the target node
t. Then for any observation r;R, we have gShPath tð Þ ¼ gRNeighbor tð Þ.

For the interpretation of Claim 2 it is helpful to re-interpret the random neighbor rule in terms of paths. When we apply
the random neighbor rule using source node s, the final judgment of node t is ultimately based on a randomized path
between the source node and the target node. This randomized path’s orientation os!t determines the best guess, similarly
to the shortest path rule, where the orientation of the shortest path determines the best guess. Hence, when there is a unique
path between s and t, then this path is also the shortest path and the two rules lead to the same best guess.8

Conversely, when there are multiple paths between the single source node s and the target node t; or when there is more
than one source node, the random neighbor rule does not always lead to the same best guess as the shortest path rule. For
instance, in Example 1, illustrated in the upper part of Fig. 1, there are multiple paths and the random neighbor rule may lead
to a best guess of �1, while the shortest path rule leads to þ1. In Example B.3, illustrated in Panel (B) of Fig. 3, there are
multiple paths of the same length. It might happen that we have a negative signal for source node s1 and a positive signal
for s2 and that the random neighbor rule bases the judgment on the path from s1, while the shortest path rule randomly
selects the other shortest path.9
8 Moreover, since the conditions of Claim 2 are stronger than those of Claim 1, it actually follows that all three rules lead to the same best guess under the
conditions of Claim 2, i.e., in the special case that there is only one source node and a unique path between source node and target node. This insight will lead to
Proposition 2 below.

9 However, in this network the two rules would lead to the same quality of judgment in expectations – a topic that we address in the next subsection.
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4.2. Comparison of accuracy

We now theoretically assess to which extent the three rules deliver a correct judgment.

Definition 1 (Accuracy). Let g tð Þ be the observer’s best guess of type of node t obtained using a certain rule, while true node
types are h.10 The rule’s accuracy for target node t is defined to be 1 for a correct judgment and 0 for a wrong judgment:
10 Rec
�1;þ1f
11 The
is the o
12 In t
betwee
13 Wh
A tð Þ ¼ 1 if g tð Þht ¼ þ1;
0 if g tð Þht ¼ �1:




This definition allows us to assess the obtained opinion for any given realization of node types, source signals, and link
signs. However, such a realization is not necessarily representative. To measure the performance of an inference rule, we
thus assess its expected accuracy.
Definition 2 (Expected Accuracy). Fix a network V ; Eð Þ with source nodes S and target node t and also fix the model
parameters q and r. A rule’s expected accuracy, E A½ �, is the expected value of accuracy over all different realizations (states h,
signals r and link signs R) and all different judgment outcomes.11

Expected accuracy can be interpreted as the ex ante probability that the final judgment of the target node will be correct.
If our belief b tð Þ correctly reflects the probability that target node t is of the positive type, then E A tð Þ½ � ¼ b tð Þ if b tð Þ P 0:5 and
E A tð Þ½ � ¼ 1� b tð Þ if b tð Þ < 0:5.

While expected accuracy E A½ � can in principle lie anywhere in the range 0;1½ �, already with random guessing of target
node types, we achieve an expected accuracy of E A½ � ¼ 0:5.12 Hence, 0:5 is a lower bound on the performance of a sensible
rule. At the other extreme, expected accuracy of any rule is bounded from above by the initial information given through
the source nodes. For the case of one source node, NS ¼ 1, we have in particular that E A½ � 6 q for any rule; the equality is achiev-
able when r ¼ 1.

The newly defined expected accuracy allows us to understand how is the performance of the shortest path rule affected
by positions of source and target nodes in the network.

Claim 3 (Shortest Path Accuracy). Let NS ¼ 1 and suppose that the shortest path between source node s and target node t has
length L. The expected accuracy of the shortest path rule is then
E AShPath
h i

¼ 1
2
þ q� 1

2

� 	
2r � 1ð ÞL: ð7Þ
As os!t is the best guess of ht for the shortest path rule, the expected accuracy introduced by Definition 2 is thus equal to
P os!t ¼ ht½ �. Claim 3 then follows by combining with Eqs. (4) and (5). The obtained expected accuracy depends on the model

parameters, q and r, and the shortest path length, L. When r ¼ 1 (fully reliable links), E AShPath
h i

¼ q for any L. When

r < 1; E AShPath
h i

decreases as L grows.13 Note that Eq. (7) does not hold exclusively for a shortest path – it can be used to com-

pute the expected accuracy when a path of an arbitrary length L is used by any of the three rules.

We are now in the position to state the main result. It establishes how the three rules are ordered in terms of expected
accuracy.

Proposition 1 (Ordering). For every given network V ; Eð Þ, set of source nodes S and target node t, the accuracy expectations of the
three rules are ordered as
E ABayes
h i

P E AShPath
h i

P E ARNeighbor
h i

:

The first inequality is a simple implication of the fact that the Bayesian rule computes the correct posterior belief for any
realization of source node signals r, and link signs R. When the observer uses this rule, then her belief (i.e., subjective prob-
ability) equals exactly the objective probability that the target node t is of positive type. Hence, the expected value of accu-
racy after realization of observations r;R (we might call this ‘‘ad interim expected accuracy”) is maximal. Since this holds for

every realization of observations, also the ex ante expected value of accuracy, that is expected accuracy E ABayes
h i

, is maximal.
all that for any belief b tð Þ > 0:5 the best guess is þ1, for any belief b tð Þ < 0:5 the best guess is �1, and for b tð Þ ¼ 0:5 the best guess is chosen from
g with equal probability.
probabilistic element in the shortest path rule is which shortest path to use if there are multiple. The probabilistic element in the random neighbor rule
rder of judgment. The Bayesian rule is deterministic.
he work of [22], a closely-related metric, opinion consistency, is used to assess the opinions formed on several nodes. Since a simple linear relation exists
n accuracy A tð Þ and node t’s contribution to opinion consistency, C tð Þ ¼ 2A tð Þ � 1, the results are qualitatively the same for both of them.
en q ¼ 0:5 (the source signals are not informative) or r ¼ 0:5 (the links are not informative), E AShPath

h i
¼ 0:5 for any shortest path length L.
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The comparison between shortest path rule and random neighbor rule is based on the previously mentioned observation
that the random neighbor rule effectively uses a randomized path between some source node s and the target node t. If this
path is a shortest path, then the random neighbor rule matches the accuracy of the shortest path rule (when there are no
other source nodes). If the path used by the random neighbor rule is not a shortest path, then the shortest path rule’s
expected accuracy is weakly higher due to Eq. (7). Moreover, with multiple source nodes, the random neighbor rule only uses
one of them, while the shortest path rule aggregates information obtained from all source nodes. Hence, the shortest path
rule always weakly dominates the random neighbor rule in terms of expected accuracy.

Taken together, the Bayesian rule weakly dominates the shortest path rule, which in turn weakly dominates the random
neighbor rule. To be clear, this does not mean that there are no instances, where a dominated rule is accurate and a undom-

inated rule is not. For instance, we can have, e.g., ARNeighbor ¼ 1 while AShPath ¼ 0 in some realization, but ex ante the ordering

E AShPath
h i

P E ARNeighbor
h i

holds for any network.

Since Proposition 1 only establishes a weak dominance relation between the three rules, the consequent question is when
the three rules do not differ in accuracy. The next result identifies a condition for all three rules to be equally accurate.

Proposition 2 (Unique Path). Let NS ¼ 1. Suppose that in network V ; Eð Þ there is a unique path between source node s and the
target node t. Then all three rules (Bayes, ShPath, RNeighbor) lead to the same expected accuracy:
14 For
opposit
15 Fur
E ABayes
h i

¼ E AShPath
h i

¼ E ARNeighbor
h i

:

This proposition follows from the Claims 1 and 2, which establish when the shortest path rule leads to the same belief as
the Bayesian rule and when it leads to the same best guess as the random neighbor rule. Indeed, the condition of Proposition
2, i.e., there is a unique path between the only source node and the target node, is equal to the condition of Claim 2, which is
stronger than the condition of Claim 1. Hence, all three rules must lead to the same best guess and hence to equal accuracy
under this stronger condition. As the three accuracy values are equal for each realization of states, signals, and link signs,
they are also equal on average.

The intuition for this result is illustrated by Fig. 4. First, the existence of a unique path from s to t implies that the network
must look as shown in this figure, where subgraphs are attached to individual nodes of the path. Second, these subgraphs do
not affect the inference of the three considered rules. Finally, all three rules lead to the same best guess when only the path
from s to t is considered.

Proposition 2 applies in particular to the class of tree networks, as trees are characterized by a unique path between any
two nodes. The opposite direction of the statement – the three rules lead to the same expected accuracy only if there is a
unique path between the source node(s) and the target node – seems intuitive, but does not hold in general.14

In this section we have theoretically established the order of the three rules according to expected accuracy. To quantify
these differences between the three rules, we will now turn to simulation results.

5. Simulation results

We first define the simulation procedure.

5.1. Simulation procedure

For each of the three rules (Bayesian rule, shortest path rule, random neighbor rule), the simulations proceed as follows:

1. Generate a synthetic random network of a given class with N nodes and mean degree z. If it is not connected, generate
a new network.15

2. Choose NS nodes at random to serve as the source nodes.
3. Draw node types, link signs, and source node signals according to the model introduced in Section 3.2.
4. For each node that is not a source node, designate it as target node, apply a given rule (Bayes, ShPath, or RNeighbor)

according to Section 3.3, and measure its accuracy.
5. Repeat the above steps 1;000 times. From the obtained accuracy values, compute mean accuracy, A, and the standard

error of the mean (SEM), rA. (Figures reporting simulation results depict the mean with error bars that are twice the
SEM.)

We apply this procedure for various model parameters (q; r), network topologies, and network sizes N.
instance, in Panel (C) of Fig. 3, the two paths either have the same orientation and the best guess thus coincides for all three rules, or the paths have
e orientations and the probability of an accurate judgment is thus one half for all three rules.
ther network generation details are provided in Appendix C.1.
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Fig. 4. Illustration of Proposition 2. When there is a unique shortest path between source node s and target node t, the three rules induce the same accuracy.
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5.2. Varying signal quality and link reliability

From the theoretical results we know the ordering of the three rules: E ABayes
h i

P E AShPath
h i

P E ARNeighbor
h i

(Proposition 1)

and that they coincide in special cases (Proposition 2). Let us now assess how large the differences between the three rules
are. Fig. 5 illustrates how accuracy depends on the applied rule for different levels of signal quality q and link reliability r. The
illustrated simulations use Erdös-Rényi random networks of N ¼ 20 nodes with mean degree z ¼ 5. The left panels show
results for NS ¼ 1 source node, the right panels for NS ¼ 5 source nodes.

Clearly, accuracy of all rules is weakly increasing in signal quality q and weakly increasing in link reliability r. Fig. 5 illus-
trates that, for intermediate values of link reliability r, the rules significantly differ in accuracy. For instance, in the top left
panel at r ¼ 0:8, accuracy of the Bayesian rule (around 80%) is substantially higher than accuracy of the shortest path rule
(around 70%), which in turn is substantially higher than accuracy of the random neighbor rule (slightly above 60%). Consid-
ering the other depicted settings of signal quality q and number of source nodes NS, there are again levels of link reliability r
with significant differences between the three rules. Hence, we receive the following first result:

Result 1. Differences in accuracy between the three rules can be substantial.

Accuracy of all rules and hence also differences are smaller for low levels of signal quality q and they would vanish when
quality approaches q ¼ 0:5. Similarly, differences also vanish when link reliability approaches r ¼ 0:5.

Let us now explore how the presence of multiple source nodes affects the comparison of the three rules. The simulations
indicate that the shortest path rule may be closer to the random neighbor rule for one source node, but closer to the Bayesian
rule when there are multiple source nodes. Comparing the left and right panel of the figure reveals that multiple source
nodes improve accuracy of the Bayesian and the shortest path rule. For the random neighbor rule, multiple source nodes
do not substantially improve accuracy. Recall that this rule effectively uses only one source node. Thus, multiple source
nodes do not help to aggregate information, but only to reduce the length of the used path, on average. This disadvantage
of the random neighbor rule can also be seen for the case of perfectly reliable links, r ¼ 1, and understood as follows.

In the extreme case of r ¼ 1, the signed network has the two-camp structure such that there are only positive links within
camps and negative links across [4]. In other words, the network is socially balanced [13]. Hence, there are only two possible
states of the world, which differ by which camp is of the positive type. Source nodes provide information about the likelihood
of these two states. In particular, if there is only one source node (NS ¼ 1), the expected accuracy of any of the three rules is q.
For more than one source node, the expected accuracy is higher for the Bayesian and the shortest path rule, but not for the
random neighbor rule. Accuracy of the random neighbor rule stays at q, no matter how the number of source node changes.
This is the intuition for the second result:

Result 2. The difference in accuracy between the shortest path rule and the random neighbor rule is particularly pronounced
for multiple source nodes.

Moreover, we can observe in Fig. 5 that r is not an upper bound for expected accuracy of the Bayesian rule. For instance at
r ¼ 0:9, the Bayesian rule’s expected accuracy is larger than 0:9. The reason is that multiple paths with link reliability of r can
yield information that exceeds r. For the other two rules, the shortest path rule and the random neighbor rule, link reliability
r is in fact an upper bound for expected accuracy when we have only one source node. The reason is that only one path is
actually used such that information of multiple paths from one source node are not aggregated by these two rules (cf. Exam-
ple 1).

5.3. Different network topologies

We now investigate how the network topology affects accuracy. We have so far used Erdös-Rényi (ER) random networks,
nowwe consider three additional network classes: regular graphs (RG), Barabási-Albert (BA) scale-free networks, andWatts-
Strogatz small world (WS) networks (see [24], for more information on these basic network models). These networks differ
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Fig. 5. Mean accuracy of the three rules for different levels of link reliability r. Signal quality is q ¼ 1 (top row), q ¼ 0:9 (middle row), q ¼ 0:7 (bottom row).
Results are for Erdös-Rényi random networks with N ¼ 20; z ¼ 5;NS ¼ 1 (left) and NS ¼ 5 (right).
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in several characteristics: shape of the degree distribution (regular graphs have the most homogeneous degree distribution,
BA networks the most heterogeneous), clustering (WS networks have high clustering coefficient when the rewiring proba-
bility is small), and the distances, as we will discuss.

First, we check whether our simulation results are robust to changing the class of network. Fig. 9 in Appendix C.2 re-
examines the differences between the three rules of Fig. 5 when the Erdös-Rényi random network generation process is
replaced with RG, BA, and WS. Indeed, the differences between the three rules are very similar for all topologies and hence
our two empirical results R1 and R2 (see Section 5.2) are robust.

Second, we address how two crucial features of a network structure – density and distances – affect accuracy.
Concerning density, Fig. 6 shows how expected accuracy in the three rules increases with mean degree z. Intuitively, den-

ser networks provide more information and shorter paths, which should increase expected accuracy of all three rules. We see
that this is the case for the Bayesian rule and, to a lesser extent, for the shortest path rule with decreasing gains in accuracy.
For the random neighbor rule, however, the increase of expected accuracy is insubstantial for NS ¼ 5 and it saturates early (at
z 	 4) for NS ¼ 1. This agrees with the results presented in [22] where an insubstantial dependence on z was observed too.
Hence, we conclude:
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Fig. 6. Mean accuracy of the three rules for increasing mean degree z. Results are for Erdös-Rényi random networks with N ¼ 20; q ¼ 0:9; r ¼ 0:9;NS ¼ 1
(left) and NS ¼ 5 (right).
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Result 3. Accuracy of the Bayesian rule and the shortest path rule weakly improves with the network density.

Let us now address the effect of distances. To vary the distances, without changing the density of a network, we study the
different classes of networks – ER, RG, BA, WS – all for the same density and measure the distances their realizations have.
For WS networks we also vary the rewiring probability b, as this parameter affects distances, but not density. Our simulated
networks satisfy dBA < dER < dWS b¼0:5ð Þ 	 dRG < dWS b¼0:1ð Þ (empirically determined shortest lengths are
3:54� 0:03;4:20� 0:03;4:51� 0:02;4:55� 0:01, and 6:85� 0:05, mean � twice the SEM, respectively) for N ¼ 300 and
z ¼ 4 in Fig. 7.

Fig. 7 shows that the mean accuracy achieved by the shortest path rule is the lowest for the WS networks with low rewir-
ing probability, b ¼ 0:1, where the average shortest path length is considerably longer than in the other networks. By con-
trast, the highest mean accuracy (for fixed link reliability, r) is achieved in BA networks where distances are shortest. These
observations agree with Claim 3 which identifies the shortest path length as the key determinant of the expected accuracy
for the shortest path rule. These findings strongly suggest that the average path length of a network is a key determinant for
accuracy of the shortest path rule.

Result 4. The shorter the average distances in a network, the higher the accuracy of the shortest path rule.

The same ordering of network topologies has been reported for the random neighbor rule in [22]. Appendix C.2 discusses
similar results for the Bayesian rule, suggesting that the shortest path length is important also for this optimal rule.

5.4. Increasing the network size

We finally analyze how results scale when network size N becomes larger. To focus on the effect of growing network size
only, we keep mean degree fixed. We consider two settings. Either the number of source nodes is kept constant or it grows
proportionally to network size N.16 When NS 
 N, the expected accuracy of the random neighbor rule quickly approaches a
limit value greater than 0:5. We now explore accuracy of the shortest path rule in comparison to the random neighbor rule
for growing N with simulations. (We also include results for the Bayesian rule, although this exercise is limited, as the rule’s
computational complexity restricts our simulations to N 6 20.).

Fig. 8 shows the mean accuracy against the network size for several settings of q and r, using Erdös-Rényi random net-
works with mean degree z ¼ 5. Comparing the different panels, mean accuracy in the top row is slightly lower than in the
middle row because it has a lower signal quality of q ¼ 0:9 (versus q ¼ 1), while link reliability is r ¼ 0:9 in both. Accuracy in
the bottom row is lower than in the middle row because it has a lower link reliability r ¼ 0:7 (versus r ¼ 0:9), while signal
quality is perfect, i.e., q ¼ 1, in both.

Besides confirming the previously reported results for the random neighbor rule [22], there are a number of observations
to make from Fig. 8. First, the shortest path rule performs significantly better than the random neighbor rule, in particular
when there are several source nodes (NS ¼ 5, middle column) or when the number of source nodes grows with the number of
nodes (NS ¼ N=10, right column). This confirms Results 1 and 2 from above.

Second, when NS is fixed, the mean accuracy of all three rules decreases with N, albeit at different rates. The rate of the
shortest path rule, like for the random neighbor rule, can be derived analytically for a single source node, as detailed in
16 The dependence of the accuracy on the network size has been a major topic in [22]. They show that the random neighbor rule’s expected accuracy slowly
converges to 0:5 (equivalently, in their terms the rule’s consistency convergences to 0) as N grows when the number of source nodes is constant.
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Fig. 7. Mean accuracy of the shortest path rule for various classes of random networks and different levels of link reliability r. Results are for
N ¼ 300; z ¼ 4; q ¼ 0:9;NS ¼ 1 (left) and NS ¼ 5 (right).

Fig. 8. Mean accuracy of the three rules for growing network size N. Results are for Erdös-Rényi random networks with z ¼ 5; q ¼ 0:9 and r ¼ 0:9 (top row),
q ¼ 1 and r ¼ 0:9 (middle row), q ¼ 1 and r ¼ 0:7 (bottom row), NS ¼ 1 (left column), NS ¼ 5 (middle column), and NS ¼ N=10 (right column).
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Fig. 9. Mean accuracy of the three rules for various classes of random networks. Setting signal quality q ¼ 0:9, network size N ¼ 20, average degree z ¼ 4,
and for different values of link reliability r. Top panels use BA, center panel RG, lower panel WS (rewiring probability is b ¼ 0:1). Left panels have NS ¼ 1
source node; right panels have NS ¼ 5 source nodes.
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Appendix C.3. In particular, the classical result for the average distance between two nodes chosen at random in Erdös-Rényi
random networks, L 	 ln Nð Þ= ln zð Þ (e.g., [3]), can be plugged in Eq. (7) to obtain
E AShPath;ER
h i

¼ 1
2
þ q� 1

2

� 	
2r � 1ð Þln Nð Þ= ln zð Þ ð8Þ
which holds for the shortest path rule and one source node. This E AShPath;ER
h i

approaches 0:5 as N ! 1 for any r < 1. The rea-

son for the decrease in expected accuracy is the effect of longer distances (cf. Result 4), but the speed of convergence to 0:5 is
lower than for the random neighbor rule.

Result 5. When the number of source nodes is fixed, mean accuracy of the shortest path rule converges to 0:5 slower than
mean accuracy of the random neighbor rule.
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Third, when the number of source nodes grows with N, the mean accuracy can even increase with N (see results for the
shortest path rule for r ¼ 0:9 and NS ¼ N=10) – the information gained from a growing number of source nodes is sufficient
to overweight the shortest paths that become longer, on average, as N grows. This occurs for sufficiently high link reliability
r ¼ 0:9. Theoretically, this effect is clear for r ¼ 1, where additional source nodes mean additional information without any
loss due to long distances. This argument also applies to the Bayesian rule, for which expected accuracy is weakly above the
shortest path rule’s.

Result 6. Given that link reliability r is large enough, when the number of source nodes grows proportionally with network
size N, accuracy of the Bayesian rule and the shortest path rule increases, in contrast to the random neighbor rule.

Fourth, although the Bayesian rule produces substantially higher mean accuracy when r ¼ 0:9, the difference between the
Bayesian rule and the shortest path rule becomes much smaller when r ¼ 0:7 (bottom row). This holds for all three consid-
ered numbers of source nodes: NS ¼ 1;NS ¼ 5, and NS ¼ N=10.

Result 7. For low link reliability r accuracy of all three rules remains relatively low regardless of the number of source nodes.

This last result highlights the importance of link reliability: low r cannot be compensated by the source information.

6. Conclusion

We have investigated how an observer can learn from a signed network where node types correlate with link signs. In
such a setting, information about the type (e.g., trustworthiness) of source nodes is informative for the type of a target node.
While we start by formulating the optimal Bayes belief for the target node type, our chief interest is in heuristic rules whose
cognitive complexity is much lower. We prove that in stylized networks, including trees, two relatively simple heuristics can
lead to optimal learning. Studying less-stylized random networks with a sequence of simulations, we find that differences in
accuracy between the two heuristics and the Bayesian rule is often substantial. The heuristic that was studied previously
[22], the random neighbor rule, performs poorly when there are multiple source nodes. The heuristic that we introduce
in this paper, the shortest path rule, avoids this by aggregating the information obtained using all source nodes. Its accuracy,
however, relies on short average distances.

Our model could be extended in several directions. First, we focus on two node types, while we could integrate k node
types as follows. Instead of a single link reliability parameter r, consider a symmetric k� k matrix specifying the probability
that nodes of each type are connected by a positive link. Our current model is then nested by using a two-by-two matrix
where r is on the diagonal and 1� r is off the diagonal. Nevertheless, one justification for two node types comes from the
property of structural balance that is equivalent to the two-camp structure [13].

Second, to keep our model simple, we assumed that positive and negative links are equally informative, as well as that
positive and negative signals are equally informative. A more general model could introduce asymmetry, e.g., to capture that
a positive signal form a source node with a positive link to the target node is more informative than a negative signal from a
source node with a negative link.

Third, our model uses undirected networks. In some applications, the signed networks are directed and hence this is a
considerable extension.

Fourth, one implicit assumption of our model is that the observer knows the whole network and all link signs. This is in
particular necessary to apply the Bayesian rule. For the application of the shortest path rule, the observer needs to at least
identify the shortest paths between the source node(s) and the target node, which is trivial in some examples, but a non-
trivial task when the target node is distant from the source node(s). The research of navigability in complex networks
[2,21] is relevant in this respect, as it seeks to understand which features of complex networks are helpful for finding short-
est paths in them.

Fifth, our model supposes that only link signs depend on node types, while the presence or absence of a link does not. This
makes the analysis and interpretation clean, but it is a limitation, as in reality also the presence of a link can depend on link
types. For instance, homophily in link formation can influence the presence of links (e.g., [5]) and evidence on homophily is
abundant (e.g., [17]). With this perspective, the vast literature on detecting communities in non-signed networks [10] serves
the goal of learning about node types from the presence of links. Complementary to that, we propose a model of learning
about node types from the sign of links. A new research avenue would combine these two approaches in a framework that
accommodates link presence and link signs that depend on link type.

Finally, empirical studies could be used to investigate the opinion and belief formation of human beings on signed net-
work data. Our model can help to measure and understand accuracy of given judgment behavior, and it can potentially also
help to improve accuracy in judgment, for instance in the context of a manager who wants to promote an employee.
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Appendix A. Proofs

A.1. Proof of Claim 1 (Equivalence)

The condition of Claim 1 (a unique path between t and each s 2 S and these paths are non-overlapping) implies a network
structure as exemplified in Fig. 2 where t is connected with source nodes by non-overlapping rays. Besides this tree struc-
ture, the network can contain arbitrary subgraphs appended to individual network nodes as they do not affect the unique-
ness of paths between source nodes and t (see the subgraph attached to node j3 and the path between s5 and t in Fig. 2, for
example).

We first show that if the network consists only of the path between one source node, s, and target node, t, the Bayesian
rule represented with Eq. (1) simplifies to
17 If, b
nodes h
out from
P hjr;R½ � ¼ qz1 hð Þ 1� qð Þz2 hð Þrz3 hð Þ 1� rð Þz4 hð Þ
as the denominator of Eq. (1) (after canceling 1=2N) is then
X :¼
X
h02H

qz1 h0ð Þ 1� qð Þz2 h0ð Þrz3 h0ð Þ 1� rð Þz4 h0ð Þ ¼ 1:
We prove this by induction. For the elementary graph with two nodes, s and t, and one link, the sum over four possible
states yields X ¼ qr þ q 1� rð Þ þ 1� qð Þr þ 1� qð Þ 1� rð Þ ¼ 1. Here the first term, for example, corresponds to correct source
signal and type-conforming link between the two nodes. In one induction step, we append a node of degree one to one end of
the current network for which X ¼ 1 holds (adding a link elsewhere would create a network outside the considered class). In
the new denominator X0 each term of the original denominator X is paired with two possible states of the added node, cor-
responding to forming a node-type conforming link (with probability r) and a nonconforming link (probability 1� r), respec-
tively. We can thus write X0 ¼ Xr þX 1� rð Þ ¼ X ¼ 1 which completes this step of the proof.

As the second step, we show that the belief derived with the Bayesian rule in Eq. (2) coincides with the belief derived with
the shortest path rule in Eq. (5) when the network consists only of the shortest path between s and t. Eq. (2) states that
bBayes tð Þ ¼
X
h2H tð Þ

P hjr;R½ �;
where H tð Þ are all 2N�1 states with ht ¼ þ1. When r and R are given, the mapping between states of the world h and the
values of z1 and z2 together with the conformity information for each link is bijective. The direction from h to z1 and con-
forming/nonconforming links is obvious as it is used by the Bayesian rule. For the opposite direction, rs combined with
z1 determines the type of s (if z1 ¼ 1; hs ¼ rs, otherwise hs ¼ �rs). Progressing from the source node, the next node’s state
is hi ¼ Rijhj if the link is conforming to the node types and hi ¼ �Rijhj if the link is nonconforming. Each term in the sum
in Eq. (2) thus appears also in Eq. (5) (and vice versa). When os!t ¼ þ1, for instance, terms proportional to q (correct source
signal) will be proportional to 1� rð Þn where n is even because an odd number of incorrect links would lead to ht ¼ �1 which
does not contribute to the sum in Eq. (2). This step of the proof is thus concluded.

As the third step, we prove that attaching a subgraph to a single node in a given network does not change the result
obtained with the Bayesian rule. Upon attaching a subgraph with link signs R0 to a node, the space of all states grows from
H toH�WwhereW is the space of states w of the subgraph nodes. We can write P hjr;Rð Þ ¼ P

w2WP h;wjr;R;R0� �
. The numer-

ator of P hjr;Rð Þ can be written as
qz1 hð Þ 1� qð Þz2 hð Þrz3 hð Þ 1� rð Þz4 hð Þ

2NþN0

X
w2W

rz3 wð Þ 1� rð Þz4 wð Þ
;

where N0 is the number of nodes in the subgraph. Crucially, the sum over w 2 W is independent of h as the subgraph is
attached to a single node. If the attachment node is of a positive type and w yields some z3 wð Þ and z4 wð Þ, then �wwould yield

the same z3 and z4 for a negative type of the attachment node.17 The terms 1=2NþN0
and

P
w2Wr

z3 wð Þ 1� rð Þz4 wð Þ cancel out and we
find that the obtained P hjS;Rð Þ is the same as without the attached subgraph. If adding subgraphs does not change the Bayesian
y contrast, we attach node x to two different nodes of an existing graph, the sum over two possible states of node x is r2 þ 1� rð Þ2 when the attachment
ave the same types whereas it is 2r 1� rð Þ when the attachment nodes have different types. The sum over w 2 W thus depends on h and does not factor
P hjr;Rð Þ.
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inference, removing them has no effect as well. If only the shortest path between s and t remains after removing all subgraphs
attached to single nodes, the Bayesian rule thus reduces to the shortest path rule as we wanted to prove.

We have shown that for every network with a unique path from source node to target node both Eq. (2) and Eq. (5) cor-
rectly determine the posterior belief about the target node’s type. Consider now a network with multiple source nodes that
have unique, non-overlapping, paths to the target node as illustrated in Fig. 2. Each subgraph with a source node yields inde-
pendent information about the target node. Since Eq. (6) is the correct aggregation formula for independent signals, we can
conclude that the introduced shortest path rule indeed coincides with the Bayesian rule for the given class of networks,
which finally completes our proof.

A.2. Proof of Claim 2 (Same Best Guess)

We first show that according to the shortest path rule, the best guess coincides with the path orientation, when there is

only one source node. The shortest path rule uses path orientation defined by Eq. (3), os!t :¼ rs
QL�1

m¼0Rnm ;nmþ1 where n0; . . . ;nL

are the nodes along the path, n0 :¼ s, and nL :¼ t. It further computes the probability that the path orientation agrees with the
type of node t as P os!t ¼ htð Þ ¼ qps!t þ 1� qð Þ 1� ps!tð Þ (see Eq. (5) and the discussion thereafter). Here ps!t is the proba-
bility that the path between s and t has an even number of errors. Since r > 0:5, it follows from Eq. (4) that ps!t > 0:5 for any
finite L. We can now rewrite
P os!t ¼ htð Þ ¼ 1� ps!t þ q 2ps!t � 1ð Þ

which is increasing in q. Since P os!t ¼ htð Þ ¼ 0:5 when q ¼ 0:5; P os!t ¼ htð Þ > 0:5 for q > 0:5. The computed probability that
os!t correctly identifies the type of node t is more than 0:5, so the best guess of t’s type produced by the shortest path rule is
thus always the path orientation. Note that we assumed here one source node but not the path uniqueness, so the last state-
ment holds for the shortest path rule on any network where NS ¼ 1.

When the path between s and t is unique, the random neighbor rule is deterministic as the path over which the opinion on
t is formed is given. According to this rule, the judgment of node n1, which is adjacent to n0 :¼ s, is a product of the source
signal and the sign of the link between the two nodes. The judgment of node n2 is further multiplied by Rn1n2 , and so on, until
the judgment of t is determined as a product of the source signal with link signs along the path which is precisely the path
orientation os!t . The two rules thus coincide when NS ¼ 1 and the path between s and t is unique.

A.3. Proof of Claim 3 (Shortest Path Accuracy)

Assume that node states h are fixed. As we showed in Section A.2, os!t is the best guess of ht for the shortest path rule. The
probability that os!t ¼ ht is qps!t þ 1� qð Þ 1� ps!tð Þ where the first term accounts for a correct source signal and an even
number of errors along the path from s to t, and the second term accounts for an incorrect source signal and an odd number
of errors along the path from s to t, respectively. Using Eq. (4), this probability can be simplified to the form
P os!t ¼ htð Þ ¼ 1
2
þ q� 1

2

� 	
2r � 1ð ÞL:
This result already takes into account the limited reliability of source signals and link signs: it averages accuracy over dif-
ferent realizations of r and R. As it does not depend explicitly on node states h, it is straightforward to average it over h and
thus obtain the expected accuracy in line with Definition 2.

A.4. Proof of Proposition 1 (Ordering)

The Bayesian rule uses all available information, source signals r and link signs R, to correctly compute the objective
probability that target node t is of positive type. It is thus the optimal rule by construction and its expected accuracy is

the highest of all possible rules, hence E ABayes
h i

P E AShPath
h i

and E ABayes
h i

P E ARNeighbor
h i

.

When NS ¼ 1, the ordering between the shortest path rule and the random neighbor rule can be established as follows.
Denote the shortest path length between s and t as L; the expected accuracy of the shortest path rule can be obtained using
Eq. (7). As already explained, the judgment formed using the random neighbor rule corresponds to a path between s and t.
Denote this path’s length as L0. For a given path between s and t, the best guess of the shortest path rule is the same as the
best guess formed by the random neighbor rule (both are equal to the path orientation os!t). The expected accuracy of the
random neighbor rule can be thus computed using Claim 3 with the only difference being that the shortest path length L is
replaced by the actual path length L0. Now, every path length L0 must be at least as long as the shortest path length, L0 P L. As

the expected accuracy decreases with L0 [when r 2 0:5;1ð Þ], we immediately obtain that E AShPath
h i

P E ARNeighbor
h i

.

When NS > 1, the judgment of t formed using the random neighbor rule is still formed using a path of length L0 between
one source node and target node t. By contrast, the shortest path rule uses shortest paths from each source node and aggre-
gates beliefs resulting from Eq. (5) using Eq. (6). While these paths have different lengths, Li, the shortest of them cannot be
longer than L0 : min Li 6 L0. This path alone results in expected accuracy of the shortest path rule which is larger or equal than
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expected accuracy of the random neighbor rule. The additional paths used by the shortest path rule, some of which may be
longer than L0, represent useful information that is taken into account by this rule and thus further improve its expected

accuracy. We can thus conclude that E AShPath
h i

P E ARNeighbor
h i

holds also for NS > 1.

A.5. Proof of Proposition 2 (Unique Path)

According to Claim 1, a unique non-overlapping path between every source node s and the target node t implies that the
best guess obtained with the Bayesian rule and the shortest path rule are the same. If, in addition, there is only one source
node, Claim 2 states that the best guess of the shortest path rule and the random neighbor rule are the same. When NS ¼ 1
and the path between s and t is unique, the three rules thus yield the same best guess for any realization of h;r;R; their accu-
racy values are thus the same. As a consequence, the expected accuracy values obtained by averaging over h;r;R are also the
same.

Appendix B. Examples from Fig. 3

Example B.1. [Two Triangles] Let V ; Eð Þ ¼ s; j1; j2; tf g; st; sj1; sj2; j1t; j2tf gð Þ. Let Rst ¼ Rsj1 ¼ Rsj2 ¼ þ1 and Rj1t ¼ Rj2t ¼ �1 and
let rs ¼ þ1, as illustrated in Panel (A) of Fig. 3. The Bayesian rule yields
bBayes tð Þ ¼
4qr3 1� rð Þ þ 2 1� qð Þr2 1� rð Þ2 þ 1� qð Þ r4 þ 1� rð Þ4

h i

4r3 1� rð Þ þ 2r2 1� rð Þ2 þ r4 þ 1� rð Þ4
h i ;
whereas the shortest path rule yields
bShPath tð Þ ¼ qr þ 1� qð Þ 1� rð Þ:
It can be checked that bBayes tð Þ < bShPath tð Þ for any q; r 2 0:5;1ð Þ. This is because the shortest path rule only uses the direct
path, which has a positive orientation, whereas the Bayesian rule uses all information including the two paths of length 2,
which are both negatively oriented.
Example B.2. [Multiple Shortest Paths] Let V ; Eð Þ ¼ s; j1; j2; j3; tf gð ,
sj1; sj2; sj3; j1t; j2t; j3tf gÞ. Let Rij ¼ þ1 for all links in E except for j3t (Rj3t ¼ �1) and rs ¼ þ1, as illustrated in Panel (B) of

Fig. 3.

The Bayesian rule always leads to a belief bBayes tð Þ > 0:5, hence the best guess is gBayes tð Þ ¼ þ1.

The shortest path rule selects one of the three shortest paths at random. Hence, with probability 2/3 it induces belief

bShPath tð Þ ¼ qr þ 1� qð Þ 1� rð Þ > 0:5 and with probability 1/3 it induces belief bShPath tð Þ ¼ q 1� rð Þ þ 1� qð Þr < 0:5.
Example B.3. [Overlapping Paths] Let V ; Eð Þ ¼ s1; s2; j; tf g; s1j; s2j; jtf gð Þ. Let Rij ¼ þ1 for ij 2 E and let rs1 ¼ rs2 ¼ þ1, as illus-
trated in Panel (C) of Fig. 3.

The Bayesian rule yields
bBayes tð Þ ¼
q2 r3 þ 1� rð Þ3
h i

þ 2q 1� qð Þr 1� rð Þ þ 1� qð Þ2r 1� rð Þ
q2 þ 1� qð Þ2
h i

1� rð Þ3 þ r3
h i

þ 4q 1� qð Þr 1� rð Þ þ q2 þ 1� qð Þ2
h i

r 1� rð Þ
;

whereas the shortest path rule yields
bShPath tð Þ ¼ bs1!tbs2!t

bs1!tbs2!t þ 1� bs1!t
� �

1� bs2!t
� � ;
where bs1!t ¼ bs2!t ¼ q r2 þ 1� rð Þ2
h i

þ 2 1� qð Þr 1� rð Þ. One can check that bShPath tð Þ > bBayes tð Þ for any q; r 2 0:5;1ð Þ. The
excess confidence of the shortest path rule is due to the assumption of independence when signals from the two paths
are combined; ignoring that they are correlated by having link jt in common.
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Appendix C. Simulations

C.1. Simulation details

Erdös-Rényi (ER) random networks have two parameters: network size N and probability p which determines the connec-
tion probability for every pair of nodes in the network. We set p ¼ z= N � 1ð Þ to obtain mean node degree z.

Regular graphs (RG) are random graphs where each node has z links. They are constructed by assigning z ‘‘stubs” to each
node and matching node stubs at random until no unmatched stubs remain. Loops and duplicate links are avoided.

Barabási-Albert (BA) random networks with N nodes are grown by gradually adding nodes to an initial empty network
with m nodes. Every new node with m edges is attached to existing nodes using the preferential attachment mechanism

(i.e., the probability of choosing a node is directly proportional to the node’s degree). We set m ¼ N �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 � 2zN

p� �
=2

h i
to obtain mean node degree z (approximately).

Watts-Strogatz (WS) random networks have three parameters: network size N, mean degree z (this is assumed to be an
even integer), and rewiring probability b 2 0;1½ �. The networks are generated as follows:

1. Construct a regular ring lattice where each node is connected to its z nearest neighbors.
2. Go over all nodes i ¼ 1; . . . ;N and with probability b rewire each of the links to their right neighbors (i.e, neighbors

j ¼ iþ kð Þ mod N where k ¼ 1; . . . ; z=2) to a node chosen at random. Loops and duplicate links are avoided.

In our simulations, we use the network generator functions provided by the LightGraphs v1.3.3 package of Julia program-
ming language.18
C.2. Robustness of simulations with respect to network topology

Fig. 9 shows that our main results hold also for different network topologies. Simulations on small networks (N ¼ 20, not
shown) further indicate that the average shortest path length affect the Bayesian rule’s mean accuracy (Fig. 7 shows the same
for the shortest path rule).
C.3. Shortest Path Rule’s Accuracy in Erdös-Rényi Random Networks

As explained in the main text, the average distance between two random nodes in Erdös-Rényi random networks is
LER 	 ln Nð Þ= ln zð Þ (e.g., [3]). By plugging this LER for L in Eq. (7), we obtain the expected accuracy of the shortest path rule
in Erdös-Rényi random networks (Eq. (8) in the main text). As shown in Fig. 10, this analytical result agrees well with numer-
ical simulations.
Fig. 10. Left panel: Mean accuracy of the shortest path rule for Erdös-Rényi random networks with N ¼ 100; z ¼ 5; q ¼ 1. Right panel: Estimated exponents
of the scaling relation E AShPath

� �
� 0:5 
 N�cShPath for numerical simulations on Erdös-Rényi random networks with various mean degree values (symbols)

and analytical results obtained using Eq. (9) (lines). The exponents were estimated from simulation results using least squares fits between
ln E AShPath

� �
� 0:5

h i
and ln N½ � for N between 50 and 500.

18 https://github.com/JuliaGraphs/LightGraphs.jl.
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In [22], a relation similar to Eq. (8) has been derived for the random neighbor rule. This relation states that the ‘‘effective”
accuracy, E Að Þ � 0:5, of the shortest path rule is proportional to N�2 1�rð Þ when NS is fixed. Eq. (8) allows us to derive here a

similar scaling relation for the shortest path rule. We get E AShPath
h i

� 0:5 
 N�cShPath where
cShPath ¼ � ln 2r � 1ð Þ= ln zð Þ: ð9Þ

We see that unlike for the random neighbor rule where the scaling exponent 2 1� rð Þ depends only the link reliability (see
[22], for a derivation), here both link reliability and mean degree contribute. As mean degree increases, the scaling exponent

c decreases which means that E AShPath
h i

� 0:5 vanishes slower with N, i.e., E AShPath
h i

approaches 0:5 slower. At the same time,

cShPath is independent of q: While signal quality q strongly influences the absolute value of expected accuracy E AShPath
h i

, it

does not affect its decay with N.
Right panel of Fig. 10 shows that while Eq. (9) agrees well with numerical simulations for rJ0:65, significant deviations

appear for low r values (in particular, the analytical c diverges as r ! 0:5). The main reason for the deviations is that to derive
Eq. (8), we plugged the average shortest path length in Eq. (7). While this is justified by relatively narrow distributions of the
shortest path length in Erdös-Rényi networks, it does not produce sufficiently precise results when r is close to 0:5: the term

2r � 1 in Eq. (7) is then small and AShPath thus depends strongly on L. If instead of using the average shortest path length, we
numerically determine the distribution of the shortest path lengths in Erdös-Rényi networks and use this empirical distri-
bution to average over various shortest path lengths in Eq. (7), we obtain scaling exponents that do not diverge as r ! 0:5
and agree well with numerical simulations for all r (results can be requested from the authors).
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