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Abstract: Background: Laboratory parameters are critical parts of many diagnostic pathways, mor-
tality scores, patient follow-ups, and overall patient care, and should therefore have underlying
standardized, evidence-based recommendations. Currently, laboratory parameters and their sig-
nificance are treated differently depending on expert opinions, clinical environment, and varying
hospital guidelines. In our study, we aimed to demonstrate the capability of a set of algorithms to
identify predictive analytes for a specific diagnosis. As an illustration of our proposed methodology,
we examined the analytes associated with myocardial ischemia; it was a well-researched diagnosis
and provides a substrate for comparison. We intend to present a toolset that will boost the evolution
of evidence-based laboratory diagnostics and, therefore, improve patient care. Methods: The data we
used consisted of preexisting, anonymized recordings from the emergency ward involving all patient
cases with a measured value for troponin T. We used multiple imputation technique, orthogonal data
augmentation, and Bayesian Model Averaging to create predictive models for myocardial ischemia.
Each model incorporated different analytes as cofactors. In examining these models further, we could
then conclude the predictive importance of each analyte in question. Results: The used algorithms
extracted troponin T as a highly predictive analyte for myocardial ischemia. As this is a known
relationship, we saw the predictive importance of troponin T as a proof of concept, suggesting a
functioning method. Additionally, we could demonstrate the algorithm’s capabilities to extract
known risk factors of myocardial ischemia from the data. Conclusion: In this pilot study, we chose
an assembly of algorithms to analyze the value of analytes in predicting myocardial ischemia. By
providing reliable correlations between the analytes and the diagnosis of myocardial ischemia, we
demonstrated the possibilities to create unbiased computational-based guidelines for laboratory
diagnostics by using computational power in today’s era of digitalization.

Keywords: laboratory pathways; computational evidence; artificial intelligence; predictive
analytes; myocardial ischemia; multiple imputation; orthogonal data augmentation; Bayesian Model
Averaging; big data

1. Introduction

Amongst medical anamnesis, precise clinical examinations, and medical imaging,
laboratory parameters play essential parts in diagnostic pathways. They serve as crucial
indicators in diagnostic cross-functional flow charts and guide the physician in evaluating
different diagnoses. Additionally, they are critical elements in patient follow-up, monitoring
therapeutic success, and overall patient care.

It is evident how these laboratory diagnostic qualities contribute to the standards
of care [1]. Over the years, expert opinions and publications have determined each pa-
rameter’s role; however, opinions vary between clinics, disciplines, and physicians on the
relevance of lab parameters in specific diagnostic settings, sometimes neither following
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guidelines nor evidence-based knowledge [2]. Evaluating diagnostics seems to be done less
thoroughly than treatments due to a lack of formal requirements [1]. In short, we require
unified, unbiased guidelines regarding the effectiveness of laboratory parameters.

1.1. Large but Incomplete Data

In today’s digital world, patient information and laboratory test results are easily
accessible. The volume of data for each patient increases with the advancements and
diagnostic possibilities in medicine [3]. The recorded data contain a huge amount of yet
undiscovered information and relations. A problem that will always occur in large datasets
is incompleteness. Due to a certain degree of randomness in request behavior, one will
always have missing values in the data matrix. Additionally, it is unlikely to encounter
a unified dataset in retrospective studies (as is our case), unlike in prospective studies,
where the experimental parameters are standardized beforehand. Previously this has often
led to disregarding information and focusing on minimal, but complete data to extract
information [4]. The advantage of contemporary computational power is that missing
values can be imputed, allowing us to work with larger and still complete datasets.

1.2. Human Error and Artificial Intelligence

The human brain seems to face difficulties processing vast amounts of information
and tends to reduce the number of inputs when tackling a highly complex situation. This
tendency results in solving a problem using a reduced amount of information [5].

The advanced computational power and artificial intelligence (AI) of today can pro-
cess immense amounts of information and therefore support scientists and physicians in
analyzing larger data [3,6]. Artificial intelligence is also capable of learning from mistakes
through artificial neural networks. When encountering errors, algorithms can be automati-
cally evaluated and improved [7]. The human mind often lacks such a constant reflection
and improvement of approaches, sometimes due to a shortage of time, pride, fixation,
etc. [5]. Although machines cannot replace physicians, they have advantages, for example,
regarding the following common causes of human error in medicine:

• The unwillingness to question habits, preexisting standards, and diagnoses [5,8]
• The tendency to get stuck on one perspective [5,8]
• The inclination to interpret results to fit one’s beliefs [5,8].

Artificial intelligence can complement human intuition through its information pro-
cessing and unbiased workways and, therefore, help to reduce human error [7]. Letting
computer algorithms analyze data can also help to detect unknown or unthought of
correlations between parameters (“hidden variables”), specific diagnoses, and patient
outcomes [9].

For instance, in our study, these pattern recognition algorithms empower us to evaluate
and complete preexisting diagnostic pathways. Through bypassing expert opinion and
prior pathophysiologic knowledge, algorithms can discover new approaches instead of
following preexisting paths [1,4,10]. As mentioned by Mayer-Schönberger, this “approach
gives credibility to data and less of an emphasis on human intuition [. . . ] as human
reasoning tends to follow well-known paths rather than breaking out of them” [4].

1.3. Our Pilot Study

Considering these possibilities, we designed a pilot study that complements our
real-world dataset by recreating missing values through multiple imputations and let-
ting computer algorithms calculate the predictive values for laboratory parameters. The
aim is to generate computational-based evidence for specific lab parameter predictive
values/effectiveness and, consequently, replace the preexisting algorithms based on ex-
pert opinions.

We examined the analytes in diagnostics of ischemic heart diseases because they are
a leading cause of emergency hospitalizations and death in our hospital and developed
countries in general [11]. In the International Statistical Classification of Diseases (ICD-10),
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ischemic heart diseases include angina pectoris, acute myocardial infarction, subsequent
myocardial infarction, complications following acute myocardial infarction, other acute
ischaemic heart diseases, and chronic ischaemic heart disease (coded I20.0 to I25.90) [12].
Underlying these diseases is insufficient coronary perfusion or myocardial oxygen supply
due to e.g., atherosclerosis.

The Inselspital (University Hospital of Bern) emergency department provided the data,
which were anonymized and did not contain personal identifiers, e.g., names and birth
dates. Furthermore, this study was waived by the Cantonal Ethics Committee (dispensation
granted No 2014/Z023).

Choosing the diagnosis of myocardial ischemia also enabled us to include many
patient cases (in total n = 207,874) and ensure a substantial quantity. Furthermore, these
diagnoses have well-evaluated diagnostic guidelines, for example, from the European
Society of Cardiology (ESC) [13], which provides an adequate substrate for comparison
and proof-of-principle for our approach.

2. Materials and Methods
2.1. Patient Lab Dataset

We collected patients’ laboratory records from the University Hospital of Bern, includ-
ing only those with a measured troponin T (TnT) value, which corresponded to about 14%
of patient cases. This preselection allowed us to include all the patients with a differential
diagnosis of myocardial ischemia or damage. As the crucial element for this diagnosis, TnT
would be a part of the lab request of any patient presenting symptoms or risk constellations
for myocardial ischemia, unless, in rare cases, further diagnoses are no longer wished for
(e.g., palliative care). The diagnosis of myocardial ischemia (ICD-10 code range I20.0–I25.90)
was chosen, as mentioned above, due to its frequent presence in the emergency room.

We transformed the patient’s diagnoses from the original representation (primary
diagnosis and secondary diagnoses) into a binary indicator determining whether the patient
was diagnosed with myocardial ischemia or not. In other words, the patient was either
labeled with myocardial ischemia if they had a diagnosis within the respective ICD-10
range or labeled as the control group (any other diagnoses).

Due to this study’s retrospective approach and the individual lab parameters in each
patient case, the collected data had missing values. A unified and complete dataset could
only have been created if every patient with suspected myocardial ischemia or damage had
been tested for the same analytes.

2.2. Modelling

The methods described in this section aim to extract predictive lab analytes for myocar-
dial ischemia from the sparse lab measurement matrix. Not all machine learning algorithms
can work with incomplete data/a matrix and need to be able to evaluate all rows of a given
matrix to come to a conclusion. Bayesian Model Averaging, used in this study, is one such
algorithm that can not model a priori missingness and requires a dense feature matrix.
Therefore, we transformed the sparse matrix into a dense matrix using multiple imputation
techniques and generating suitable estimates of the missing measurements. Then, we as-
sessed the analytes’ predictiveness using Orthogonal Data Augmentation/Bayesian Model
Averaging with regularization (ODA/BMA).

2.2.1. Multiple Imputation

Multiple imputation is a method to estimate the missing values iteratively. It initially
creates a random estimate for a missing value, and then each initially missing value is
predicted by regressions based on some or all of the other analytes. Through the continu-
ation of this procedure, increasingly better estimates of each missing value are obtained.
The quality of the estimate can be measured by using the Gelman–Rubin convergence
statistic [14] across multiple such iterative imputation chains. The Gelman–Rubin con-
vergence statistic measures the variance between and within several chains of the same
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length. Values closer to 1 indicate that the variance across the differently initialized chains
decreased significantly, meaning that the estimate can be considered converged. Notable
implementations of this approach involve the mi package [15] for the R language and the
mice library [16] for R and the python language.

2.2.2. Orthogonal Data Augmentation/Bayesian Model Averaging with Regularization
(ODA/BMA)

To estimate the inclusion probabilities of every analyte into predictive models, we used
a data augmentation strategy applying orthogonalization (ODA) as well as the Bayesian
Model Averaging (BMA) from the framework developed by Gosh and Clyde et al. [15,17,18].
In our study, however, we had to expose this method to sparse data. Therefore, we tested the
ODA/BMA method for robustness by imposing the additional burden of dataset sparsity.

Data orthogonalization helps the sampling strategy used in BMA. The sample-based
predictive distribution converges faster to the exact predictive distribution after orthog-
onalization than if sampling directly from the original model space. BMA additionally
creates regression models in a step-wise manner to determine how well the analytes can
predict the diagnoses. To avoid computing every possible model, which would lead to 2n

models, BMA allows us to focus on the most predictable models for further calculations by
excluding those that do not perform well. In other words, the algorithms discard models
that do not predict myocardial ischemia accurately or involve too many parameters for its
prediction. The latter ensures that not only the model’s but also the parameter’s predictive
value is augmented. The result is a limited set of models with complementary selectiv-
ity, allowing calculations of an analyte’s marginal probability and constituting its overall
inclusion probability.

If the inclusion probability of an analyte into a model was 95% and above, we de-
fined this analyte as highly predictive. In conclusion, the higher the inclusion proba-
bility of the analyte, the more significant we valued its contribution to the diagnosis of
myocardial ischemia.

3. Results

In numbers, our data includes n = 207,874 patient cases from 2012 and 2019. 9555 had
a diagnosis within the ICD range of myocardial ischemia, leaving 198,319 patient cases as
control group.

In total, we could include 1929 different analytes in the study. This large number is
due to the heterogeneity of the patient cases other than having myocardial ischemia as a
differential diagnosis. Because of their common differential diagnosis, 100% of the cases
had a value for Troponin T. To provide a graspable overview, we have sorted the further
laboratory analytes according to the percentage (80%, 60%, 40%, and 20%) of the analytes
appearing in the patient cases (see Table 1 below). Eight analytes (including Troponin T)
were measured in at least 80% of the above-mentioned 207,874 patient cases, 26 in at least
60%, 59 in at least 40%, and 110 in at least 20% of the patient cases.

The resulting data subsets are described in the table below: Table 1.

Table 1. Description of the created data subsets based on the percentage of sparsity and the resulting
number of analytes included.

Dataset ID Number of Analytes

20% sparsity 8
40% sparsity 26
60% sparsity 59
80% sparsity 110

The results of the algorithms are displayed in the analyte’s inclusion probabilities into
models with the most predictive diagnostic value for myocardial ischemia. For each inclu-
sion probability, we calculated a 95% confidence interval based on the different imputation
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chains used to estimate missing values. For some analytes, no confidence interval was
obtained due to the 100% inclusion in all chains.

The following graphs exhibit the calculated inclusion probabilities of each parameter,
demonstrating the parameter’s predictive value. As mentioned above, the data were
subdivided according to the percentage of missing values in the initial patient records and
therefore the results are displayed in Figures 1–4.

Figure 1. Inclusion probability of parameters based on data subset with initially 20% missing values.

The bar plot displays the inclusion probability on its vertical axis and the analytes
on its horizontal axis. The bars represent the inclusion probability of the analytes with
their 95% confidence interval. These inclusion probabilities were calculated with an extract
of the data, where not more than 20% of the values were missing. Therefore, only the
most commonly tested parameters, when suspecting myocardial ischemia, were included
in the calculations. In this case: TnT, potassium, glucose, sodium, creatine kinase, and
creatinine. Amongst these, only TnT and potassium showed a high inclusion probability
and, therefore, a high predictive value.

Figure 2. Inclusion probability of parameters based on a data subset with initially 40% missing values.

More analytes have a high predictive value with a bigger data subset. Those showing
an inclusion probability of 95% and above are the following: TnT, potassium, urea, eGFR
(glomerular infiltration rate), RDW (red distribution width), glucose, INR (international
normalized ratio), and the type of blood collection (arterial or venous).
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Figure 3. Inclusion probability of parameters based on a subset of the data with (initially) 60% of
missing values.

In comparison to Figure 2, the number of analytes with a 95% and above inclusion
probability has doubled in Figure 3, and their confidence intervals have narrowed. In
addition to the analytes mentioned in Figure 2, the following have a 95% or more inclu-
sion probability: thrombin time, CK-MB-Mass, CK, HDL (high-density lipoprotein), total
calcium, LDL (low-density lipoprotein), MCV (mean corpuscular volume), MCH (mean cor-
puscular hemoglobin), and MCHC (mean corpuscular hemoglobin concentration). Unlike
in Figure 2, “glucose” does not show a high inclusion probability.

Figure 4. Inclusion probability of analytes based on a data subset with initially 80% missing values.

The number of analytes with an inclusion probability of 95% and above has not
changed significantly, but the types have, as follows: FiO2 (fraction of inspired oxygen),
bilirubin, and chloride now show a high inclusion probability, the latter however with a
noticeable broad confidence interval. Unlike in Figure 3, MCV, MCH, MCHC, and LDL do
not show a 95% or above inclusion probability anymore in Figure 4.

4. Discussion
4.1. Interpretations of the Results

We found that analytes with a high inclusion probability in the created predictive mod-
els have a known association with diagnostic evaluation or the risk factors of myocardial
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ischemia. TnT, the primary analyte for myocardial ischemia and damage, shows a 100%
inclusion probability in all four data subsets (cf. Table 2). This finding was expected, as
the diagnosis of myocardial ischemia is currently based nearly exclusively on an abnormal
TnT. However, it also indicates that our algorithms effectively extracted the critical analyte
for myocardial ischemia and, therefore, served as proof of principle (see below).

Rather than being involved in the diagnosis of myocardial ischemia, most of the pa-
rameters show an association with the risk factors, severity, and mortality of coronary heart
disease (cf. Table 3). Regarding the different data subsets, we find that the more missing
values we allowed in the data subset, the more analytes showed a significant inclusion
probability. Provided an accurate data imputation, we can conclude that the bigger the
data, the more extracted information. We will discuss further quality improvements of the
imputed values below (see Section 4.2).

Table 2. Summary of highly predictive analytes. This table summarizes the analytes that show a
95% and above inclusion probability. There are only two analytes that meet these criteria in all four
data subsets: TnT and potassium. Most analytes are represented in the data subset with 80% initially
missing values, followed by the data subset with 60% initially missing values. Inclusion probablity
95% and above of an analyte in models based on data subsets with initially 20–80% missing values.

Analyte Inclusion Figure 1 Inclusion Figure 2 Inclusion Figure 3 Inclusion Figure 4 Total Inclusion

Troponin + + + + 4/4

Potassium + + + + 4/4

Type of blood collection + + + 3/4

Red Distribution width + + + 3/4

eGFR + + + 3/4

Urea + + + 3/4

INR + + + 3/4

CK + + 2/4

CK-MB-Masse + + 2/4

Thrombin time + + 2/4

HDL-Cholesterol + + 2/4

Calcium total + + 2/4

FO2 + 1/4

Bilirubin + 1/4

Chloride + 1/4

Glucose + 1/4

LDL-Cholesterol + 1/4

MCV,MCH,MCHC + 1/4

By looking at the data collection, we can gain an understanding of why the number of
analytes increased with the data sparsity. The reason for missing data in this study’s source
mentioned above partly lies in the problem addressed in the current diagnostic pathways:
although there are existing guidelines, there is no consistent approach to laboratory diag-
nostics, at least for retrospective approaches. The other contribution to the variation of the
analytes lies in the patient’s other differential diagnoses. Therefore, although there may be
a joint base, each patient case comes with an individual set of tested analytes. Although
this leads to an increased number of missing values, it is an opportunity to examine other
tested analytes that we may otherwise not associate with myocardial ischemia.
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Table 3. Median and IQR of the analytes with an inclusion probability of 95% and above. Based on
Table 2, the values for each analyte are included with an inclusion probability of 95% and above in at
least one of the figures listed with the median value and IQR. Columns 2–4 are divided into patients
without myocardial ischemia (non-MI), with myocardial ischemia (MI), and the total number (total).
In Table 3, the unit of measurement is noted in the first column with the analyte, and the median
value and the IQR (placed in the square bracket) are displayed in columns 2–4. As “Type of blood
collection” does not come with a value, calculations here were impossible; therefore, its value was
placed at zero. Note that FO2 contains data from both, arterial and venous blood.

Analyte Name NON-MI MI Total

Troponin T [ng/L] 20[43.02] 248.1[1233.44] 25[78.62]
Potassium (mmol/L) 4 [0.5] 4.1 [0.5] 4.1 [0.5]
Type of blood collection 0[0] 0[0] 0[0]
RDW (%) 13.5[1.9] 13.4[1.6] 13.5[1.9]
eGFR (mL/min/1.73 m2) 85[40] 76[36] 84[39]
Urea (mmol/L) 5.9[4.4] 6.3[4.1] 5.9[4.4]
INR 1.1[0.13] 1.03[0.13] 1.01[0.07]
CK (U/L) 96[126] 191[500] 103[154]
CK-MB-Masse (%) 3.9[7.2] 12[44.3] 4.6[11.5]
Thrombin time (s) 16[2.5] 17.6[23.2] 16.1[2.5]
HDL-Cholesterol (mmol/L) 1.24[0.24] 1.14[0.47] 1.23[0.55]
Calcium total (mmol/L) 2.25[0.21] 2.21[0.17] 2.24[0.2]
FO2 (mmHg) 21[41] 59[54] 32[43]
Bilirubin (µmol/L) 8[10] 9[8.5] 8[10]
Chloride (mmol/L) 107[7] 108[5] 107[7]
Glucose (mmol/L) 5.96[2.11] 6.5[2.5] 6[2.1]
LDL-Cholesterol (mmol/L) 2.23[1.36] 2.39[1.49] 2.25[1.38]
MCV (fl) 86[7] 86[6] 86[7]
MCH (pg) 30[3] 30[2] 30[3]
MCHC (g/dL) 342.5[17] 344[17] 343[17]

4.1.1. TnT, CK, CK-MB-Mass

As mentioned above, the fact that TnT is in every predictive model shows that the
algorithm recognized the defining parameter for myocardial ischemia. However, it is less
obvious that CK (creatine kinase) and CK-MB Mass (creatine kinase myocardial band mass)
only show a high inclusion probability in two data subsets. This observation is in contrast
to the fact that they are both supposed to be relevant and frequently included in myocardial
ischemia diagnostics. The algorithm may have limited their inclusion as they do not define
the diagnosis without TnT but rather give us more information regarding the myocardial
ischemia size and the timing of myocardial ischemia [13,19]. The algorithm, therefore,
cannot gain additional information concerning the diagnosis. This means, concerning
myocardial ischemia, CK would only cover the shared variance with troponin. Another
possible explanation for its rare inclusion of CK is that its values are elevated in other
constellations, e.g., trauma, preceding operations, and physical activities [19], and are not
solely specific to myocardial ischemia.

4.1.2. Potassium, eGFR, Urea

Apart from TnT, potassium revealed a high inclusion probability in all models. Rather
than defining myocardial ischemia diagnosis, potassium correlates with its underlying
diseases and secondary effects.

The maintenance and regulation of potassium levels are up to 80% a result of kidney
function. Potassium’s underlying regulatory mechanisms, being such an essential elec-
trolyte in cardiological and neurological functions, are highly robust. Other than different
retention parameters (e.g., urea), potassium rises in a stage of severe malfunction of the
kidney [20]. So, high potassium levels often reflect severe renal insufficiency/renal failure.
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Our algorithms most likely included potassium in numerous models due to the
pathophysiologic interaction of renal and cardiac failure and the encapsulated information
on common risk factors of coronary heart disease and renal failure.

Renal and cardiac failure have an intricate dependence known as the cardiorenal
syndrome, which defines one organ’s resulting failure due to a preceding failure of the
other organ, heart, or kidney. An acute decline in heart function (due to, e.g., coronary
heart disease or cardiogenic shock) can result in acute kidney injury, known as type 1 acute
cardiorenal syndrome [21]. Patients with cardiac failure also show higher mortality when
presented with renal failure at the same time [22].

If we look at what causes renal or cardiac failure, it is evident that many common
mechanisms/shared risk factors link kidney and heart disease pathologies. For example, di-
abetes is the most common cause of chronic renal insufficiency due to diabetic nephropathy
but also causes diabetic cardiopathy increasing the risk of cardiac failure [23,24].

Considering that potassium already serves as a valuable marker for renal failure, it at
first does not seem logical that eGFR (estimated glomerular filtration rate) also shows a
high inclusion probability in three out of four figures.

GFR = 141 × min(Scr/κ, 1)a × max(Scr/κ, 1)−1.209 × 0.993Age

× 1.018(i f f emale)× 1.159(i f black)
(1)

Equation (1): CKD-EPI equation for the glomerular filtration rate. “Scr” is the serum
creatinine in mg/dL; gender dependent factor “k” equals 0.7 (woman) or 0.9 (man); gender
dependent factor “a” equals −0.329 (woman) or −0.411 (man); “min” refers to the minimum
of Scr/k or 1; “max” refers to the maximum of Scr/k or 1; Age in years [25].

Example for the female Caucasian patient, 53 years of age, with a serum creatinine of
0.8 mg/dL:

GFR = 141 × min(0.8/0.7, 1)−0.329 × max(0.8/0.7, 1)−1.209 × 0.99353

× 1.018 = 88 mL/min/1.73 m
(2)

However, looking at the formula of the estimated glomerular filtration ratio (CKD-EPI
equation), there are additional components included: creatinine, age, race (in the obsolete
version), and sex. An increase in creatinine provides an estimate of the renal function and
predicts unfavorable outcomes in acute coronary heart syndrome [11]. Age and sex add
valuable information to the pre-test probability of myocardial infarction. Male sex and age
are known risk factors for coronary heart disease, the latter having an additional strong
correlation with adverse outcomes in ACS [11]. Adding eGFR to the models is like adding
a whole package of information and risk factors at once.

Urea also shows a high inclusion probability in 3 out of the 4 data subsets. Urea (in
some countries expressed as BUN (blood urea nitrogen) [26]) can serve as a supplementary
marker for renal insufficiency, but interestingly also seems to correlate with the prognosis
of an acute coronary syndrome in mortality risk assessments [11].

4.1.3. INR, Thrombin Time, Bilirubin

International Normalized Ratio (INR), a calculated analyte for the extrinsic coagulation
pathway, and the thrombin time were also among those with a high inclusion probability
(INR in Figures 2–4, thrombin time in Figures 3 and 4). An increased INR value or increased
thrombin time points at the use of certain anticoagulants (Marcoumar, Dabigatran, etc.),
often due to atrial fibrillation. Including the INR/thrombin time in the predictive models
takes patient profiles with underlying heart diseases into account. Another reason the INR
could be a predictor for cardiogenic diagnoses may be the influence of congestive heart
diseases on liver function. Acute and chronic heart failure can cause a mild elevation of
the INR and bilirubin through venous congestion and decreased oxygen supply [27,28].
In this relation, we would expect NT-proBNP to be amongst the predictive analytes, so,
surprisingly, the parameter for congestive heart failure itself is not represented in any fig-
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ures. One could argue that having the marker for secondary complications (as a predictive
analyte (here INR) rather than the cause) implies existing complications and a particular
magnitude/stage of congestive heart failure.

4.1.4. Type of Blood Collection, FiO2

The type of blood collection includes venous and arterial blood tests. It is not a lab test
itself, so we did not expect to be incorporated into the predictive models. Patients who get
an arterial blood collection typically either show a reduced general condition—where the
physician relies on the fast analysis of the pH, the FiO2, the electrolytes, and glucose—or
suffer from dyspnea as their cardinal symptom. In conclusion, patients who get an arterial
blood collection are usually in a more critical state. Therefore, the type of blood collection
can mirror the physician’s judgment of the patient. In this context, the algorithms could
have correlated the type of blood collection and its implied critical patient state to a higher
likelihood of myocardial ischemia.

Adding FiO2 to the equation, the models gain the additional knowledge that a blood
gas analysis has been conducted.

4.1.5. Red Blood Cell Distribution Width (RDW) , MCV, MCH, MCHC

The RDW indicates the heterogeneity of the red blood cells. In the study of Zalawadiya et al.,
they found a strong correlation between RDW and future cardiovascular events, independent of
confounding factors like anemia and renal function. The exact pathophysiological mechanism
behind it is uncertain. Chronic subclinical inflammation, high oxidative stress, nutritional
deficiencies, and aging are common underlying causes for a broad RDW and the risk for
cardiovascular events, which might explain the strong correlation [29].

MCV, MCH, and MCHC show a high inclusion probability (cf. Figure 4). Being
markers of anemia could explain the correlation, as severe anemia can cause myocardial
ischemia. Interestingly, hemoglobin itself does not display a high inclusion probability. It
is unclear what added value MCV, MCHC, and MCH have over hemoglobin, indicating
a stronger correlation to myocardial ischemia. Possibly, hemoglobin is more sensitive to
preanalytic errors (hemolysis), leading to higher variability in its values and, therefore,
lacking essential characteristics for a predictive parameter.

4.1.6. HDL Cholesterol and LDL Cholesterol

Both abnormal HDL and LDL cholesterol are known risk factors for atherosclerosis
and, consequently, cardiovascular diseases. In this study, HDL shows a three times higher
inclusion probability in predictive models than LDL. That would imply a stronger associa-
tion of HDL cholesterol with myocardial ischemia than its counterpart. This observation
might mirror a stronger negative correlation between abnormal HDL cholesterol and coro-
nary calcification than a positive correlation with LDL cholesterol [30] or also a robust
predictive value of HDL cholesterol and the development of a metabolic syndrome [31].

The other way of looking at the results is that the model does not gain significant in-
formation by putting both HDL and LDL cholesterol into the same model, considering that
dysregulation usually appears simultaneously in various lipoprotein types [32]. Although
LDL cholesterol is an established risk factor for atherosclerosis, some studies suggest that
Non-HDL cholesterol (as the difference between total cholesterol and HDL cholesterol)
captures the cardiovascular risk more thoroughly by including other low-density lipopro-
teins [33,34]. Therefore, HDL cholesterol unites more information than LDL cholesterol
alone. In the current guidelines of the European Society of Cardiology, it is recommended
to measure non-HDL cholesterol and apolipoprotein B for cardiovascular risk evaluation
instead of LDL cholesterol, as values can be inaccurate, e.g., in patients with diabetes, high
triglyceride [35] and analytical issues to measure LDL can occure.
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4.1.7. Total Calcium

Calcium is represented as a highly predictive analyte in two out of four models. An
abnormal calcium blood level appears yet again to reflect a risk constellation rather than a
diagnostic tool. Studies suggest that high levels of calcium or calcium intake over a more
extended period can increase the risk for cardiovascular diseases [36,37].

4.1.8. Total Glucose

Following the trend of identifying cardiovascular risk factors, glucose shows a high
inclusion probability in one model. We would expect glucose to appear more often in
models as an expression of diabetes and a well-known cardiovascular risk factor. Diabetes
may nevertheless be represented in analytes other than glucose, possibly, through its
long-term effects, such as renal failure due to diabetic nephropathy.

4.1.9. Chloride

Chloride showed a high inclusion probability in 1 out of 4 models. There does not
seem to be a known direct association between an abnormal chloride level and myocardial
ischemia. However, some studies have found a correlation between mortality in critically ill
patients and hyperchloremia. This correlation could be explained, amongst other reasons,
by the administration of chloride-rich solutions during resuscitation [38,39]. Changes
in chloride levels may also represent the intake of diuretics commonly administered in
patients with heart insufficiency, hypertension, etc., therefore, in patients with a higher risk
for myocardial ischemia. Additionally, an elevated chloride level can occur in metabolic
acidosis due to loss of bicarbonate seen in renal failure. We elaborated above on how renal
failure and myocardial ischemia interact.

4.2. Strengths and Limitations of the Study

Our approach’s strength lies in overcoming any preceding assumption and analyzing
a large clinical dataset. The algorithms do not have and do not need to include prior
knowledge concerning predictive analytes for myocardial ischemia, and through earlier
multiple imputations, we did not have to exclude patient cases due to missing values.
This approach allows us to explore a vast amount of possibilities and correlations for
further investigation.

How do we have any evidence that the correlations are not random? As a proof of
principle, the algorithms included TnT in all models, proving the algorithms’ capacity to
extract the most critical analyte. Again, critics might argue that only patients with a value
for TnT were selected for the study introducing a (pre-)selection bias, thereby making it
highly suggestible that TnT would be included in all the models. However, it does not
automatically imply that the algorithms would make that connection as we did not supply
it with any such information.

It would be a misconception to think that these results do not have to be questioned
and verified. For example, the analytes with high inclusion probabilities represent previ-
ously known risk factors. We can argue that the probability of diagnoses rises with the
number of risk factors. However, we cannot dispute that some analytes will not serve
as diagnostic parameters, especially in an emergency setting. Furthermore, by choosing
myocardial ischemia, we limited the possibility of gaining additional predictive analytes
as the diagnosis in the meantime mainly relies on TnT as the only lab parameter. This
restriction makes it even more impressive that the algorithms could extract additional
analytes that are associated with myocardial ischemia even though they are not of direct
diagnostic use.

Although we aimed to select a limited number of highly predictive analytes by im-
plying Bayesian Model Averaging (BMA) with penalization, our results display many
analytes with a high inclusion probability. In the future, we would need to improve the
algorithm to restrict the number of included analytes, for example, by using a stricter
setting of Occam’s window to only include the most predictive analytes. Again, in this



Diagnostics 2022, 12, 3148 12 of 16

study, this restriction would most likely lead to including TnT solely into a predictive
model, as myocardial ischemia is in general diagnosed with a rise in TnT blood levels [13].
Future studies with different diagnoses (based not only on mainly one laboratory analyte)
can explore suitable algorithms capable of filtering the most predictive set of analytes in
cases, where not a single analyte constitutes the diagnosis. A possibility is to add “Ridge
and Lasso regularization” [40] to the linear prediction models. We could expect this reg-
ularization to induce more sparsity on the number of included features, allowing us to
tune the model search toward favoring models with fewer features. It will decrease the
inclusion probabilities of less predictive analytes and produce fewer analytes with high
inclusion probabilities, resulting in only the most predictive ones under the regularization
constraint. The commonly known penalty parameter λ for tuning the regularization can
now favor smaller models with the least but most predictive analytes.

A further limitation is that our results lack information on the value of each analyte
itself. Our algorithms only extracted the analyte type and not whether its increased or
decreased value is associated with the diagnosis. We would need to provide standard
values for each analyte to include in the calculations, even at the risk of compromising
an unbiased system by having a reference value and adding prior knowledge. Especially
in such a setting, it is crucial to have an additional control mechanism for the quality of
imputed data to avoid measurement-induced biases [41].

We need to address another challenge that lies in the multiple imputation process con-
cerning missing standard values. During the imputation of missing values, the algorithms
assume a specific distribution based on existing values for each analyte. In analytes with
a high degree of missingness, the algorithm cannot adequately foretell the distribution;
therefore, the distribution of the values tends to resemble one of a Gaussian distribution.
Ideally, the algorithm would use the specific distribution of each analyte based on our
current knowledge of standard values to impute missing values. Adding standard values
would avoid assuming a wrong distribution in analytes with a lot of missingness and
correct assumed distribution based on a dataset of ill/symptomatic patients.

Another possibility to improve the data quality is to replace the standard multiple
imputation algorithms with an overimputation method, adding additional procedures to
ensure an accurate estimate of missing values: overimputation targets not only missing
values but also measurement errors in the existing data. The latter is essential to address,
as by gaining quality in the observed data, the prior information on the distribution of the
values will improve. Overimputation incorporates posterior distributions while generating
missing values, making it more efficient than the multiple imputation techniques, where
estimates, broadly speaking, are imputed at random and evaluated with an iterative
process [41].

Regarding our comprehensive big data approach, we currently lack external verifi-
cation. This study’s data are sourced from only one hospital and, as mentioned in the
introduction, is limited by hospital-specific laboratory diagnostics guidelines and opinions.
By including other hospitals as sources, possibly internationally, the data variability would
increase significantly. When gathering information from different sources, we would need
to ensure the formal and semantic standardization of the data. The challenge would lie in
maintaining unified definitions and a common vocabulary [9]. Approaches such as FAIR
(findable, accessible, interoperable, reusable) data sharing are being addressed to reduce
the barriers concerning data sharing, such as privacy, security, and lacking interoperability.
Efforts to standardize data collection by creating data units with a common denominator,
so-called common data elements (CDE), are already in place. However, the implementation
needs to be extended further [42].

Although more similar work is being presented with the same goal of creating func-
tioning artificial intelligence models in improving diagnosis [43,44], a direct comparison is
often limited as the algorithms vary in each project. As mentioned in one of these studies
by Eurlings et al. [43], the models are often not compared to each other and are also not
applied to other data for validation. A lively exchange between the projects with the aim
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of optimizing the models is therefore essential. In a review by Wang et al. [45], different
approaches have been looked at concerning artificial intelligence in acute coronary syn-
drome. The mentioned projects using AI in the diagnosis of acute coronary syndrome place
their focus on diagnostic tools other than laboratory analytes, such as imaging, or focus on
pre-test probability and prediction of necessary management.

5. Conclusions

In this study, we demonstrate that our algorithms are capable of extracting predictive
analytes for myocardial ischemia without any prior knowledge. Further, we show that a
sparse matrix in the original dataset does not have to result in using less but complete data
and that algorithms could analyze a large, complemented dataset.

Concretely, we show that using multiple imputation techniques allows us to replace
missing values in the original matrix without the apparent introduction of bias to the data.
This completed dataset enabled us to apply orthogonal data augmentation (ODA) and
Bayesian Model Averaging (BMA) to construct predictive models for our exemplary case
of myocardial ischemia. The used ODA/BMA method proved capable of defining the most
crucial analyte in diagnosing myocardial ischemia: TnT. Even though the diagnosis we
chose limited the number of extractable predictive analytes, the algorithms garnered further
valuable information from the data by selecting analytes associated with surrounding risk
factors or the mortality of myocardial ischemia.

Choosing the myocardial ischemia in this pilot study allowed us to verify the plausibility of
the algorithms as it dwells in a well-defined, researched, and accepted diagnostic framework.

Despite the challenges, the algorithms used in this study provide groundwork we can
further build on. If we can overcome the obstacles and limitations mentioned above—by,
for example, restricting the model size and therefore selecting only the most predictive
analytes, by adding standard values to each analyte to improve the imputation process,
and by extending the source to other hospitals—we can strive for the ultimate goal, i,e., to
create working algorithms for less explored diagnoses and discover correlating analytes,
whether for the diagnosis itself or its risk factors, ultimately improving diagnostics and
patient care and replacing opinion-based diagnostics with evidence-based ones.

Importantly, we aim to contribute to assembling algorithms that can cope with the
vast, but also highly heterogeneous amount of data recorded in hospitals. We cannot afford
to have so much data at our fingertips and not utilize it to improve diagnoses, patient care,
and our medical system in general. In this era of artificial intelligence, subsequent studies
building on our approach will eventually contribute to making data analyses faster, more
in-depth, and as unbiased as possible.
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