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Introduction: The response of enterobacteria to oxidative stress is usually 

considered to be regulated by transcription factors such as OxyR and SoxR. 

Nevertheless, several reports have shown that under oxidative stress the levels, 

modification and aminoacylation of tRNAs may be altered suggesting a role of 

codon bias in regulation of gene expression under this condition.

Methods: In order to characterize the effects of oxidative stress on translation 

elongation we constructed a library of 61 plasmids, each coding for the 

green fluorescent protein (GFP) translationally fused to a different set of four 

identical codons.

Results: Using these reporters, we observed that GFP production levels vary 

widely (~15 fold) when Escherichia coli K-12 is cultured in minimal media as a 

consequence of codon choice variations. When bacteria are cultured under 

oxidative stress caused by paraquat the levels of GFP produced by most clones 

is reduced and, in contrast to control conditions, the range of GFP levels is 

restricted to a ~2 fold range. Restricting elongation of particular sequences 

does not increase the range of GFP production under oxidative stress, but 

altering translation initiation rates leads to an increase in this range.

Discussion: Altogether, our results suggest that under normal conditions 

the speed of translation elongation is in the range of the speed of initiation 

and, consequently, codon choice impacts the speed of protein synthesis. In 

contrast, under oxidative stress translation initiation becomes much slower 

than elongation, limiting the speed of translation such that codon choice has 

at most only subtle effects on the overall output of translation.
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Introduction

The medium and long term adaptation of bacteria to 
environmental changes requires an alteration of gene expression, 
which allows a modification of the abundance of each component 
of the proteome (Starosta et al., 2014; Browning and Busby, 2016; 
Zhu and Dai, 2020). Given its relevance for host-pathogen 
interactions (Slauch, 2011; Nguyen et al., 2017), several groups 
have studied such changes on gene expression under the effect of 
oxidative stress [reviewed at (Chiang and Schellhorn, 2012; Imlay, 
2013, 2019; Zhu and Dai, 2020; Fasnacht and Polacek, 2021)]. It 
has been observed that in Escherichia coli, transcription is 
modulated by several key regulators, most importantly OxyR and 
SoxR (Zheng et al., 2001; Blanchard et al., 2007; Imlay, 2013). 
Furthermore, several alterations of translation have been found. 
Some of these are a result of the specific binding of small RNAs 
such as OxyS to or near to the ribosome binding site (RBS) of 
particular genes (Storz et  al., 2004; Fröhlich and Gottesman, 
2018). Global alterations to translation have also been observed. 
For example, we found that the increase in (p)ppGpp levels under 
oxidative stress suppresses Shine-Dalgarno (SD) led translation, 
while enhancing translation of genes with the initiation codon at 
or very near to the 5′ end of mRNA (leaderless mRNAs or 
lmRNAs; Leiva et al., 2021). In addition to regulation of translation 
initiation, elongation is also known to be altered under oxidative 
stress. For instance, an increased error rate of threonyl-tRNA 
synthetase has been observed to allow the enhanced incorporation 
of serine to the nascent peptide in sites coding for threonine in the 
mRNA (Ling and Söll, 2010). In contrast, the error rate of 
phenylalanyl-tRNA synthetase decreases, reducing the 
incorporation of m-tyrosine to phenylalanine sites (Steiner et al., 
2019). Changes in the speed of codon translation have also been 
reported, although these alterations seem to be strain specific. In 
some strains such as BL21(DE3) and NCM3722 all tRNAs are 
degraded under oxidative stress, strongly decreasing the speed of 
translation elongation (Zhong et al., 2015; Zhu and Dai, 2020). In 
contrast, in strain MG1655 tRNAs are not degraded, but we have 
observed a specific inactivation of tRNAGly for the aminoacylation 
reaction, thereby altering the translation of Gly codons (Leiva 
et al., 2020).

Some of the aforementioned studies induce oxidative stress 
using 250 μM paraquat (Blanchard et al., 2007; Leiva et al., 2020, 
2021), a cycling agent that oxidizes intracellular redox cofactors 
such as NADPH and partially reduces oxygen to superoxide 
radical (Hassan and Fridovich, 1979). Together, these studies have 
shown that when exposed to 250 μM paraquat, E. coli MG1655 
changes its transcriptional program (Blanchard et  al., 2007), 
inhibits SD-led translation while enhancing translation of lmRNA 
(Leiva et al., 2021) and alters translation of Gly codons (Leiva 
et al., 2020). Nevertheless, how the translation of the remaining 
codons is affected is currently unknown. In order to better 
understand how bacteria adapt to oxidative stress, we have studied 
in more detail the effects of oxidative stress on translation 
elongation. To that end, we have studied the expression of several 

fluorescent reporters enriched with diverse codons under 
non-stress, “normal,” conditions and oxidative stress caused by 
250 μM paraquat. Unexpectedly, we have found that while codon 
choice is relevant for controlling translation efficiency under 
control conditions, it shows little relevance under oxidative stress 
in E. coli K-12 MG1655. This change seems to be a consequence 
of the inhibition of translation initiation that is more limiting for 
the translation process under stress than what is observed under 
control conditions.

Materials and methods

Strains and culture media

All experiments of this work were performed using E. coli 
K-12 MG 1655 or its ∆efp::FRT derivative. The Δefp::kan mutation 
was transduced with P1vir from E. coli BW25113 efp::kan 
(Tollerson et al., 2018) to E. coli K-12 MG1655, and transformed 
with thermosensitive plasmid pCP20 to excise the kanamycin 
resistance gene (MG1655 Δefp::FRT; Datsenko and Wanner, 
2000). M9 minimal medium (47.7 mM Na2HPO4, 22.0 mM 
KH2PO4, 8.6 mM NaCl, 18.7 mM NH4Cl, 2 mM MgSO4, 0.1 mM 
CaCl2, and 0.4% Glycerol) was used for all cultures of E. coli. 
Unless otherwise indicated, M9 media was supplemented with 
branched amino acids (M9br; isoleucine, leucine, and valine 
50 μg/ml each). When indicated, 0.4% arabinose, 100 μg/ml 
ampicillin or 250 μM paraquat were added to the culture media.

Construction of GFP/mCherry reporters 
and prediction of secondary structure of 
the 5′ end

Reporter plasmids enriched in codons for Gly, Glu, and Ala 
have been previously constructed (Rojas et al., 2018; Leiva et al., 
2020). Reporter plasmids enriched in codons coding for the 
remaining 17 amino acids as well as two control plasmids with 
four randomly selected non-identical codons were cloned using a 
similar procedure. Briefly, the parental plasmid, pBAD30SFIT 
contains a tandem fluorescent transcriptional fusion cassette 
composed of superfolder green fluorescent protein (sfGFP) 
followed by a modified mCherry, itag-mCherry. The plasmid 
contains a XhoI-SpeI site after the 3rd codon of sfgfp where tetra 
codon sequences were inserted using annealed oligonucleotide 
cloning with the oligonucleotide pairs described in 
Supplementary Table S1 (Leiva et  al., 2020). Some of these 
reporters have been used in previous studies (Rojas et al., 2018; 
Leiva et  al., 2020). Furthermore, annealed oligonucleotides 
enriched for the CTC and CTG codons (oligonucleotides 59 and 
61  in Supplementary Table S1) were inserted into pSD and 
plmRNA plasmids (Leiva et  al., 2021), two variants of 
pBAD30SFIT designed to generate a leader transcript 
(42-nucleotides containing an SD sequence) and a leaderless 
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transcript, respectively. Secondary structure of segments of the 5′ 
end of the produced mRNAs (57, 100, and 140 nucleotides long) 
were predicted using NUPACK with the default parameters 
(Zadeh et al., 2011).

Measurement of GFP and mCherry 
expression

GFP and mCherry fluorescence were determined using 
previously published protocols (Leiva et al., 2020) with minor 
modifications. Briefly, M9br media with ampicillin (100 μg/ml) 
was inoculated with bacteria from saturated overnight cultures in 
M9 media supplemented with 0.1% tryptone and incubated at 
37°C with shaking. At an OD600 of 0.4–0.6 (mid-log phase) a 50 μl 
aliquot was mixed with 150 μl fresh M9 media supplemented with 
arabinose (0.4% final concentration) in a 96-well optical-bottom 
plate. When indicated, media additionally contained paraquat 
(250 μM final concentration). Plates were further shaken at 37°C 
in a microplate reader (INFINITE M200PRO, TECAN) where 
OD600 and fluorescence intensity of GFP (Ex. 480 ± 4.5 nm, Em. 
515 ± 10 nm) and mCherry (Ex. 555 ± 4.5 nm, Em. 600 ± 10 nm) 
were determined. To determine the background levels of 
fluorescence, in each experiment a strain transformed with 
pBAD30 (parental plasmid of pS1, devoid of genes coding for GFP 
and mCherry) was analyzed in all tested conditions using the 
same protocol as with the experimental samples. The 
autofluorescence detected at different OD600 using that control 
strain was used to graph the background level according to OD600. 
The GFP background vs. OD600 fitted an exponential curve, while 
the mCherry background fitted a linear curve. The respective 
curve equations were used to estimate and subtract the GFP and 
mCherry background fluorescence at different OD600 for each 
sample during kinetics. Quantifications reported in this work were 
performed 2 h after induction. At this time point and using the 
reporter strain with the parental plasmid (S1), the GFP 
fluorescence signal was 20.1% ± 4.8% of the maximum (plateau) 
signal in control conditions and 34.2 ± 1.1 under stress conditions. 
The fluorescence signal of mCherry was 8.8% ± 2.0% of the 
maximum signal under control conditions and 34.5% ± 5.6% 
under oxidative stress conditions. The four values were within the 
initial linear segment of fluorescence appearance in time 
(Supplementary Figure S1).

Results

Measurement of the impact of codon 
choice on translation efficiency

Previously, we have shown that under oxidative stress caused 
by paraquat or hydrogen peroxide, tRNAGly is partially inactivated 
in E. coli K-12 MG1655, while other tRNAs remain as active as 
observed under control conditions. We  further found that in 

addition to tRNAGly inactivation, paraquat stress induces a change 
in Gly codon preference. While under control conditions GGA 
was the least efficient Gly codon, under 250 μM paraquat this 
codon is translated at a similar efficiency as the other three codons 
for this amino acid (Leiva et al., 2020). Although tRNAGly was the 
only tRNA found to be inactivated under these conditions, codon 
translation efficiency may change due to several other factors. 
Most importantly, codon translation may be altered by changes in 
the fraction of a tRNA that is aminoacylated (e.g., due to changes 
in amino acid availability; Subramaniam et al., 2013a; Katz et al., 
2016) or because of chemical modifications of the tRNA anticodon 
loop (Buck and Griffiths, 1982; Katz et al., 2016).

In order to determine whether the efficiency of translation of 
other codons is also altered under oxidative stress, we designed a 
library of 61 reporter plasmids. Each of these plasmids encode an 
operon composed of the genes coding for GFP followed by 
mCherry in transcriptional fusion. A different set of four 
contiguous identical codons is introduced between the fourth and 
fifth codons of GFP, so that each of the 61 reporters has a different 
amino acid coding codon added (Figure 1A). Changes on the 
efficiency of translation of such codons are expected to affect the 
synthesis of GFP if their speed of translation is similar or slower 
than that of translation initiation. In fact, our previous work has 
shown that addition of four codons is enough to report differences 
in the efficiency of translation of those codons (Elgamal et al., 
2014; Rojas et al., 2018; Leiva et al., 2020). Also, we have observed 
that under these conditions the stability of different segments of 
the reporter mRNA is similar (Leiva et  al., 2021). Therefore, 
we  expect that changes in transcript level or alterations of 
translation initiation will affect the synthesis of GFP and mCherry 
in a similar manner. Thus, the changes in the ratio between GFP 
and mCherry fluorescence should mainly reflect the effects of 
alteration in GFP translation (Rojas et al., 2018; Leiva et al., 2020, 
2021). In addition to the 61 reporters with four repeats of a single 
codon, two additional control reporters were constructed using 
four randomly selected codons. Finally, the parental plasmid [S1; 
(Elgamal et al., 2014; Rojas et al., 2018)] that contains two codons 
in the cloning site was used as an additional control.

Efficiency of translation of 61 fluorescent 
reporters under control conditions

E. coli K-12 MG1665 transformed with each of the 61 reporter 
plasmids or each of the control plasmids were cultured in 
minimal media (M9) supplemented with glycerol and branched 
amino acids (M9br media) to prevent changes in translation in 
response to the known decreases in branched amino acids 
synthesis under oxidative stress (Imlay, 2008). At an OD600 of 0.6 
two aliquots of the culture were taken. Expression of GFP and 
mCherry was induced in both aliquots by the addition of 
arabinose. However, while in the control culture the media 
continued to be M9br, in the “stress” aliquot, 250 μM paraquat 
was added to the media. All cultures were further incubated in 96 
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FIGURE 1

Effect of codons on the production of GFP in control and oxidative stress conditions. (A) A scheme of the reporter library used to test the effects 
of codons in translation under control and oxidative stress conditions. In each reporter 4 codon repetitions were inserted after the fourth codon of 
gfp that is cloned in transcriptional fusion upstream of the gene coding for mCherry. Each reporter plasmid was transformed into E. coli K-12 
MG1655. Cells were cultured in minimal media supplemented with branched amino acids under control or oxidative stress conditions induced by 
250 μM paraquat. In both conditions expression of GFP and mCherry was induced and fluorescence of both proteins was quantified after 2 h of 
induction. The graph in (B) shows the average fluorescence of GFP normalized by the fluorescence of mCherry for each reporter strain under 
control and oxidative stress conditions. (C) The ratio between the values observed in stress and control conditions were calculated and a 
histogram was constructed with the number of reporters presenting each ratio using bins of 0.1 units.
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well plates, following OD600 as well as GFP and mCherry 
fluorescence. For all experiments, the fluorescence of GFP 
normalized by that of mCherry after 2 h of incubation 
was analyzed.

Under unstressed conditions, strains carrying the reporters 
enriched in glycine or proline codons were among the slowest to 
synthesize GFP, a result that is likely a consequence of the 
previously described lower speed of peptide bond formation using 
A site Pro or Gly charged tRNAs (Pavlov et al., 2009; Johansson 
et al., 2011; Chevance et al., 2014; Avcilar-Kucukgoze et al., 2016). 
In addition to Gly and Pro codons, we  observed a slower 
production of GFP when the gene is enriched in acidic amino 
acids (Asp and Glu; Figure 1B; Supplementary Table S2). This 
results are in agreement with ribosome profiling experiments that 
show that Asp, IUPAC nomenclature of aminoacids. Pro and Gly 
codons are translated at a slower rate, although those experiments 
were performed in a richer medium containing all amino acids 
(Mohammad et al., 2019), a condition that likely affects tRNA 
aminoacylation levels (Avcilar-Kucukgoze et al., 2016).

Beyond the amino acids specific data, our analysis suggests 
that the efficiency of codon translation can strongly vary 
between codons that code for the same amino acid, although 
this is not observed for all amino acids. As proposed by 
Subramaniam et al., stronger variations between the efficiency 
of translation of GFP are observed for reporters enriched with 
amino acids encoded by a large number of codons 
(Subramaniam et  al., 2013b). For example, the widest 
differences between the production of GFP by reporters 
enriched in codons coding the same amino acids are observed 
for Arg, Leu, and Ser. Each of these amino acids is coded by 
six codons. In average, we observed a 4.4-fold ratio between 
the most and the least efficient reporter enriched for each of 
these amino acids. In contrast, a similar analysis showed only 
an 1.2-fold average difference between the most and least 
efficient reporter in case of amino acids coded by two codons 
(Supplementary Figure S2). Some of the least efficient codons 
of these six codon groups have also been previously described 
as “slow” for in vivo translation [e.g., Arg AGG (Chevance 
et  al., 2014)]. These differences in GFP production do not 
seem to be  a consequence of altered 5′ UTR folding, as 
predictions of the secondary structure of this region do not 
reveal a clear alteration in the accessibility of the Shine-
Dalgarno and initiation codon of the reporters that exhibit a 
lower GFP florescence (Supplementary Figure S3).

Finally, although in the case of some amino acids such as 
Val there is a relation between efficiency of GFP translation 
and frequency of codon usage under the non-stress condition, 
for most amino acids such as Leu or Ser we do not observe a 
clear correlation (Supplementary Figure S4), similar to what 
others have observed (Subramaniam et al., 2013b). Thus, as 
discussed in the previous paragraphs, the data obtained using 
our GFP/mCherry reporters confirm results that have been 
obtained by others using different strategies, thereby validating 
our approach.

Effects of oxidative stress on codon 
translation

We next analyzed the effect of oxidative stress on the expression 
of gfp in our codon enrichment library. As expected from the known 
global inhibition of transcription and translation under oxidative 
stress, we observed that the levels of fluorescence generated in all 
reporter strains were much lower under oxidative stress than under 
non-stress conditions. For instance, the GFP and mCherry 
fluorescence for the strain carrying the parental S1 plasmid 
decreased ~92% and ~86%, respectively, after 2 h incubation in each 
of the tested media (Supplementary Table S3). Nevertheless, 
we observed different degrees of fluorescence reduction for each 
strain. For most reporters we  observed a decrease in the ratio 
between GFP and mCherry fluorescence. Interestingly, for some 
we observed an increase or a maintenance of the fluorescence ratio 
under oxidative stress (Figures 1C, 2A). This behavior is observed 
mainly for codons that are inefficient under non-stress conditions 
such as CCC (Pro), CCT (Pro), CTC (Leu), GGA (Gly), and TCC 
(Ser). As a result of these changes, some of the least efficient codons 
under control conditions behave as “normal” codons under oxidative 
stress. Although some reporters show a smaller decrease in GFP/
mCherry ratios than the S1 control (or even an increase), in most 
cases the ranking of efficiency of GFP production between the 
different codons that code for a single amino acid is maintained 
under oxidative stress. Hence, the most efficiently translated codon 
under control conditions, usually remains as the most efficiently 
translated codon under oxidative stress in the case of most amino 
acids (Supplementary Figure S4).

Oxidative stress decreases the impact of 
elongation on GFP production

In addition to the evident decrease in expression of all reporters 
and the alteration in the efficiency ranking of reporters enriched 
on specific codons, oxidative stress strongly decreases the diversity 
of translation efficiencies that are observed under non-stress 
conditions. While under control conditions we observed a broad 
range of gfp translation efficiencies from about 0.57 to 8.3 times 
mCherry efficiency (~15 times between the least and most efficient 
reporters), under oxidative stress, the range is significantly reduced 
with GFP fluorescence values ranging between approximately 1.2 
and 2.3 times mCherry fluorescence (~1.9 times between the least 
and most efficient reporters; Figure 2). Thus, while the change of 
only four adjacent codons may alter the efficiency of GFP synthesis 
by one order of magnitude under control conditions, its impact 
under oxidative stress is almost 8-fold smaller.

The fact that codon choice does not impact the synthesis of 
GFP under oxidative stress, strongly suggests that under this 
condition a different step becomes limiting for the gfp translation 
process. To confirm that elongation of translation has a smaller 
impact on protein synthesis under oxidative stress, we tested the 
effect of a strong inhibition of elongation on GFP production. To 
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this end, we transformed the GFP reporters enriched with each of 
the 4 Pro codons as well as the parental plasmid (S1) in an E. coli 
strain lacking the gene coding for EF-P [E. coli K-12 MG1655 
∆efp::FRT (∆efp)]. EF-P is a translation elongation factor known 
to improve the translation of continuous proline codons that, in 
the absence of EF-P, induce translational pauses, which correspond 
to strong decreases of the speed of translation on particular 
mRNA locations (Doerfel et al., 2013; Ude et al., 2013; Elgamal 
et al., 2014; Hersch et al., 2014; Hummels and Kearns, 2020). In 
the wild type strain cultured under non-stress conditions, 
synthesis of GFP was similar to what we reported in Figures 1, 2, 
with a greater GFP production observed for the reporters enriched 
with commonly used Pro codons (CCA and CCG) than for 
reporters with rarely used Pro codons (CCT and CCC). Also in 

agreement with the results reported at Figures 1, 2, under oxidative 
stress the differences between reporters are lost, observing similar 
GFP/mCherry ratios for the four reporters enriched with Pro 
codons as well as for the parental plasmid. In contrast to these 
results, but in agreement with previous reports, we observed that 
in the ∆efp strain cultured under non-stress conditions, GFP 
production was much lower than mCherry production for the 
reporters containing 4 contiguous Pro codons. As a consequence, 
the ratio between GFP and mCherry fluorescence is much smaller 
for the reporters with 4 contiguous Pro codons than for the 
parental S1 plasmid. Nevertheless, under stress conditions, GFP 
production in the ∆efp strain is similar to that of mCherry and 
consequently, the GFP/mCherry ratios of the Pro enriched 
reporters is similar to what is observed for the parental plasmid. 

A

B

FIGURE 2

The effects of codon choice on the production of GFP are suppressed by oxidative stress. (A) The ratios between GFP and mCherry fluorescence 
for each reporter strain observed under oxidative stress conditions are plotted against the values observed under non-stress conditions. A linear 
tendency trend line is plotted in red with dotted lines representing the 95% confidence interval of the best-fit line (B) Histogram showing the 
number of reporters that present each GFP/mCherry fluorescence ratios under control and oxidative stress conditions. The total number of 
reporters in each range were normalized against the most frequent number for the condition (Frequency/Mode) so that the height of bars are 
similar for both conditions. Bins for both conditions are 0.5. Control bars are thinner to allow visualization of bars for the stress condition. Data 
presented in this figure is a different representation of data presented in Figure 1B and Supplementary Figure S4.
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These results suggest that under oxidative stress there is a step of 
translation that is inhibited to a speed that is even slower than 
translation of poly-Pro in the absence of EF-P. Otherwise, 
poly-Pro reporters would be expected to have produced less GFP 
than the S1 reporter in the ∆efp strain under oxidative stress 
(Hersch et al., 2014).

Changes to translation initiation have 
stronger impacts on GFP/mCherry 
production than changes to translation 
elongation

As initiation is usually considered to be  the slowest step of 
translation (Milón and Rodnina, 2012; Gualerzi and Pon, 2015), 
we hypothesized that under oxidative stress there is a much stronger 
decrease of initiation than of elongation of translation. If under 
control conditions the difference between the rate of translation 
initiation and elongation is small, then changes to elongation would 
have some impact on GFP synthesis (Hersch et al., 2014). In contrast, 
if under stress the rate of translation initiation suffers a stronger 
inhibition than elongation, then the impact of the latter on GFP 
synthesis would eventually be negligible. To test this hypothesis, 
we used 4 reporters that combine changes that affect the elongation 
step with changes that affect the initiation step of translation. To this 
end, we used the GFP/mCherry reporters that carry either four 
additional CTC or four additional CTG codons. These codons were 
selected because under non-stress conditions CTG allowed for a 
more efficient synthesis of GFP than CTC. However, under oxidative 
stress the efficiency of GFP synthesis by reporters enriched in these 
codons is very similar. In addition to the codon cluster, we altered 
the 5′ UTR of both reporters. In one version, named “SD,” the 
reporter uses a “canonical” 5′ UTR, including a Shine-Dalgarno 

sequence (SD) that allows for the efficient synthesis of GFP under 
control conditions. In the second or “lm” version, the 5′ UTR of both 
plasmids was mostly eliminated generating a leaderless mRNA 
(lmRNA). In all reporters the gene coding for mCherry uses a 
canonical SD led translation mechanism (Supplementary  
Figure S5). As mCherry translation initiated by the same mechanism 
in all reporters, we use it as an internal control for normalization. 
Although lmRNA translation of most genes is less efficient than SD 
translation under non-stress conditions, we have recently observed 
that under oxidative stress induced by 250 μM paraquat, lmRNA 
translation is activated (Leiva et al., 2021). Using these new set of SD 
reporters, we observed that changes in the selection of Leu codons 
added to the vector led to a 6.4-fold difference in GFP synthesis 
under non-stress conditions (Figure  3). Nevertheless, under 
oxidative stress, this difference strongly decreased to 1.1-fold 
(Figures 4A,B). Instead, changing initiation from the SD dependent 
to leaderless mechanism led to an increase of ~1.8-fold in GFP 
synthesis under oxidative stress (1.8-fold for CTC and 1.7-fold for 
CTG codon; Figures 4A,C). Thus, while codon choice do not have 
an effect on translation yield under oxidative stress indicating that is 
much faster than the limiting step, the choice of initiation mechanism 
do affect protein yield indicating that its speed is more limiting. 
Interestingly, under the non-stress condition, the effect of codon 
choice on the production of GFP was smaller when translation 
initiated by a leaderless-led mechanism than when using a SD-led 
mechanism (Figure  4B). This result is congruent with our 
interpretation. Previous reports have shown that the effect of pauses 
during the elongation step on translation yield is reduced as the 
speed of initiation decreases and turns more limiting to the process 
(Hersch et al., 2014). Thus, as leaderless initiation is slower than 
SD-led initiation under non-stress conditions (Leiva et al., 2021), it 
is expected that it will reduce the effect of faster steps of the process 
like elongation as observed in Figure 4B.

FIGURE 3

The strong inhibition of poly-proline codons translation caused by the deletion of efp does not affect translation under oxidative stress. Reporter 
plasmids enriched in proline codons were transformed in WT and Δefp E. coli K-12 MG1655. GFP and mCherry fluorescence were subsequently 
measured under control and oxidative stress conditions. The differences in GFP production under control conditions are not observed under 
oxidative stress.
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FIGURE 4

Altering translation initiation affects GFP synthesis under oxidative stress. (A) Ratios between GFP and mCherry synthesis under control and 
oxidative stress conditions were measured using reporters enriched in CTC and CTG Leu codons in the context of Shine-Dalgarno (SD RNA) and 
leaderless (lmRNA) translation. The ratios between these values are shown in (B) to highlight the effect of changing codons in the reporters and in 
(C) to highlight the effect of changing the translation initiation mechanism without altering codon choice. Statistical analyses: unpaired two tailed 
t test with Welch’s correction. ****p < 0.0001, ***p < 0.001.

Discussion

The bacterial response to hostile and stressful conditions 
requires an adaptation of the proteome to survive to such 
threats. This adaptation will depend on alterations to all the 
processes involved in defining protein concentrations, that is, 
transcription, translation and protein degradation. Under 

oxidative stress, bacterial cells suffer metabolic changes that 
are expected to indirectly affect many of these processes. For 
instance, ATP levels have been shown to decrease under at 
least some oxidative stress conditions (Barrette et al., 1989). 
This decrease is expected to impact initiation and elongation 
of both, translation and transcription. The increased 
concentration of (p)ppGpp will also affect both processes 
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(Seither and Brown, 1984; Fitzsimmons et  al., 2018). As 
previously mentioned, several steps of translation are in fact 
altered under oxidative stress by these or other reasons. Such 
alterations include global and specific changes to initiation as 
well as diverse changes to elongation efficiency and fidelity 
(Kojima et al., 2009; Ling and Söll, 2010; Liu et al., 2012; Wu 
et  al., 2014; Nagano et  al., 2015; Zhong et  al., 2015; 
Yutthanasirikul et al., 2016; Willi et al., 2018; Steiner et al., 
2019; Zhu and Dai, 2020). Nevertheless, under conditions 
where large changes are observed in all steps of gene 
expression, it is difficult to determine which of the changes 
will ultimately lead to a relevant impact on protein 
concentration, and thus, to bacterial adaptation. Our data 
strongly suggests that for E. coli K-12 MG1655 under oxidative 
stress caused by 250 μM paraquat, only changes to translation 
initiation will produce relevant alterations in protein levels, 
while changes to other steps of translation will only have 
minor effects. This does not mean that alterations of 
translation elongation are irrelevant, as any change to this step 
might still have an important impact on translation fidelity 
and protein folding, effectively altering the proportion of 
functional protein (Ling and Söll, 2010; Spencer et al., 2012; 
Hu et al., 2013; Bullwinkle et al., 2014; Wu et al., 2014; Buhr 
et al., 2016; Steiner et al., 2019; Liu et al., 2021). Nevertheless, 
while searching for mechanisms that regulate expression at the 
level of translation in E. coli K-12 MG1655, it is probable that 
researchers will identify mechanisms related to translation 
initiation rather than translation elongation. However, this 
might not be  the case when studying other E. coli model 
strains such as E. coli BL21 or NCM3722. It has been proposed 
that in these strains the limiting step of translation under 
oxidative stress is elongation as a consequence of massive 
tRNA degradation (Zhong et al., 2015; Zhu and Dai, 2020). 
Thus, further research will be required to fully understand the 
strategies that bacteria like E. coli use to confront the hostile 
oxidative stress condition.
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