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Abstract
Background CamAPS FX is a hybrid closed-loop smartphone app used to manage type one diabetes. The closed-loop 
algorithm has a default target glucose of 5.8 mmol/L (104.5 mg/dL), but users can select personal glucose targets (adjustable 
between 4.4 mmol/L and 11.0 mmol/L [79 mg/dL and 198 mg/dL, respectively]).

Method In this post-hoc analysis, we evaluated the impact of personal glucose targets on glycemic control using data from 
participants in five randomized controlled trials.

Results Personal glucose targets were widely used, with 20.3% of all days in the data set having a target outside the 
default target bin (5.5-6.0 mmol/L [99-108 mg/dL]). Personal glucose targets >6.5 mmol/L (117 mg/dL) were associated with 
significantly less time in target range (3.9-10.0 mmol/L [70-180 mg/dL]; 6.5-7.0 mmol/L [117-126 mg/dL]: mean difference = 
−3.2 percentage points [95% CI: −5.3 to −1.2; P < .001]; 7.0-7.5 mmol/L [126-135 mg/dL]: −10.8 percentage points [95% CI: 
−14.1 to −7.6; P < .001]). Personal targets >6.5 mmol/L (117 mg/dL) were associated with significantly lower time (<3.9 
mmol/L [<70 mg/dL]; 6.5-7.0 mmol/L [117-126 mg/dL]: −1.85 percentage points [95% CI: −2.37 to −1.34; P < .001]; 7.0-7.5 
mmol/L [126-135 mg/dL]: −2.68 percentage points [95% CI: −3.49 to −1.86; P < .001]).

Conclusions Discrete study populations showed differences in glucose control when applying similar personal targets.

Keywords
algorithm, glucose control, hybrid closed-loop, personal glucose target, type 1 diabetes

Introduction

CamAPS FX (CamDiab, Cambridge, UK) is an interopera-
ble hybrid closed-loop smartphone app used to manage type 

one diabetes (T1D). The app receives sensor glucose data 
from the Dexcom G6 CGM system (Dexcom, San Diego, 
CA, USA), and the algorithm adjusts insulin administration 
via a compatible insulin pump (Dana RS or Dana i; Sooil, 
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Seoul, South Korea, or Ypsopump; Ypsomed, Burgdorf, 
Switzerland). The closed-loop algorithm has a default target 
glucose level of 5.8 mmol/L (104.5 mg/dL), but users can 
select personal glucose targets, adjustable between 4.4 
mmol/L (79 mg/dL) and 11.0 mmol/L (198 mg/dL) in 0.1 
mmol/L (1.8 mg/dL) increments, which can be set differently 
for each half-hour block of the 24-hour period.

In this post-hoc analysis, we aimed to evaluate the impact 
of user-selected personal glucose targets on glycemic 
control.

Methods

We analyzed data from participants with T1D using CamAPS 
FX in five randomized controlled trials across different 
demographic cohorts: very young children aged one to seven 
years,1 children and adolescents aged six to 19 years,2 ado-
lescents aged 10 to 17 years using closed-loop from diagno-
sis,3 adults aged ≥18 years,4 and older adults aged ≥60 
years.5 All studies received regulatory and ethical approval; 
participants/guardians signed informed consent. Selection of 
personal targets was determined by the user and could be 
adjusted throughout the study to suit the needs of the user.

We included 18 484 days of data from 185 participants for 
whom the closed-loop system was enabled for at least 70% 
of the 24-hour period. Data of each day were binned into 0.5 
mmol/L (9.0 mg/dL) bins (4.0-11.0 mmol/L [72-198 mg/dL]) 
according to the average of the personal glucose targets 
applied that day. Only bins with a minimum of 14 days of 
data were included in the analysis. Data from each target bin 
were compared using analysis of variance with the post-hoc 

Tukey test for pairwise comparisons with the default target 
bin (5.5-6.0 mmol/L [99-108 mg/dL]). Statistical analyses 
were performed using SPSS (Version 27.0; IBM Corp., 
Armonk, NY, USA). P values <.05 were considered statisti-
cally significant.

Results

Personal glucose targets were widely used, with 20.3% of all 
days in the data set having a personal target outside the 
default target bin (5.5-6.0 mmol/L [99-108 mg/dL]). Over 
95% of customized personal targets were set above the 
default target. Personal targets were used most frequently for 
very young children (>25% of days) and then older adults 
(>20% of days), while older children and adolescents used 
this functionality the least (<10% of days).

The mean glucose level increased significantly with a 
higher personal target (6.5-7.0 mmol/L [117-126 mg/dL] bin: 
mean difference 0.59 mmol/L [10.6 mg/dL; 95% CI: 0.41-
0.77 mmol/L, 7-14 mg/dL; P < .001]; 7.0-7.5 mmol/L [126-
135 mg/dL] bin: 1.36 mmol/L [24.5 mg/dL; 95% CI: 1.08-1.65 
mmol/L, 19-30 mg/dL; P < .001]) and was significantly 
lower with a lower personal target (5.0-5.5 mmol/L [90-99 
mg/dL] bin: mean difference −0.57 mmol/L [10.3 mg/dL; 
−1.00 to −0.14 mmol/L, −18 to −3 mg/dL; P < .01]) than 
when the default target was applied (Table 1 and Figure 1).

Personal glucose targets above 6.5 mmol/L (117 mg/dL) 
were associated with significantly less time in target range 
(3.9-10.0 mmol/L [70-180 mg/dL]; 6.5-7.0 mmol/L [117-126 
mg/dL] bin: mean difference −3.2 percentage points [95% 
CI: −5.3 to −1.2; P < .001]; 7.0-7.5 mmol/L [126-135 mg/
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Table 1. Glycemic Metrics by Personal Glucose Target Bin.

Mean glucose 
(mmol/L) [mg/dL]

Time in sensor glucose range (%)

 
3.9-10.0 mmol/L  
(70-180 mg/dL)

<3.9 mmol/L 
(70 mg/dL)

<3.0 mmol/L 
(54 mg/dL)

>10.0 mmol/L  
(180 mg/dL)

>16.7 mmol/L  
(301 mg/dL)

Personal glucose target bin
 5.01-5.50 mmol/L (90-99 mg/dL) 

(n = 3)
7.5 [135] 75.9 5.9 1.0 18.2 2.3

 5.51-6.00 mmol/L (99-108  
mg/dL) (n = 139)

8.1 [146] 73.6 4.1 0.9 22.3 2.6

 6.01-6.50 mmol/L (108-117  
mg/dL) (n = 48)

8.1 [146] 73.2 4.1 0.9 22.7 2.0

 6.51-7.00 mmol/L (117-126  
mg/dL) (n = 19)

8.6 [155] 70.4 2.3 0.4 27.4 2.5

 7.01-7.50 mmol/L (126-135  
mg/dL) (n = 7)

9.4 [169] 62.7 1.4 0.2 35.8 3.9

Figure 1. Glycemic metrics across different personal glucose target bins. The circle size reflects the n number with average personal 
glucose targets within the bin.
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dL] bin: −10.8 percentage points [95% CI: −14.1 to −7.6;  
P < .001]) (Table 1), but the time in target only dropped 
below the recommended 70% when the personal target was 
set >7.0 mmol/L (126 mg/dL). The reduced time in target 
with higher personal targets occurred in parallel with signifi-
cantly increased time above 10.0 mmol/L (180 mg/dL) (6.5-
7.0 mmol/L [117-126 mg/dL] bin: mean difference 5.1 
percentage points [95% CI: 3.0-7.2; P < .001]; 7.0-7.5 
mmol/L [126-135 mg/dL] bin: 13.5 percentage points [95% 
CI: 10.2-16.9; P < .001]).

Lower personal targets were associated with increased 
time with glucose levels <3.9 mmol/L (70 mg/dL; 5.0-5.5 
mmol/L [90-99 mg/dL] bin: mean difference −0.57 percent-
age points [95% CI: −1.00 to −0.14; P < .005]) although 
the data set was relatively small (Table 1). Only personal 
targets >6.5 mmol/L (117 mg/dL) were associated with sig-
nificantly lower time <3.9 mmol/L (70 mg/dL) (Figure 1) 
(6.5-7.0 mmol/L [117-126 mg/dL] bin: −1.85 percentage 
points [95% CI: −2.37 to −1.34; P < .001]; 7.0-7.5 mmol/L 

[126-135 mg/dL] bin: −2.68 percentage points [95% CI: 
−3.49 to −1.86; P < .001]). No personalized targets were 
associated with significant differences in time with glucose 
levels <3.0 mmol/L (<54 mg/dL) (which was ≤1.0% 
across all bins).

There was no significant difference in glycemic outcomes 
with personal targets between 5.5 and 6.0 mmol/L (99-108 
mg/dL) and between 6.0 and 6.5 mmol/L (108-117 mg/dL) 
suggesting that adjusting the personal target by >1 mmol/L 
(18 mg/dL) may be required for clinically meaningful 
changes to glucose outcomes.

Glucose metrics when different personal targets are 
applied are shown by study cohort in Table 2.

Discussion

Discrete study cohorts showed differences in glucose control 
when applying similar personal targets. The burden of 
hypoglycemia was greatest in very young children even 

Table 2. Glycemic Metrics by Personal Glucose Target Bin Per Study Cohort.

Metric

Study cohort

 

Very young 
children  

(1-7 years)  
(n = 73)

Children and 
adolescents  
(6-19 years)  

(n = 25)

Adolescents with 
new onset diabetes 

(10-17 years)  
(n = 44)

Adults (≥18 
years) (n = 25)

Older adults 
(≥60 years)  

(n = 18)

Personal glucose target bin
 5.01-5.50 mmol/L (90-99 

mg/dL)
Mean glucose (mmol/L) [mg/dL] 7.0 [126] 8.3 [149] — 7.2 [130] —
Time 3.9-10.0 mmol/L (70-180 mg/dL) 79.3 68.3 — 80.2 —
Time <3.9 mmol/L (70 mg/dL) 7.4 5.4 — 4.8 —
Time <3.0 mmol/L (54 mg/dL) 1.1 1.1 — 0.8 —
Time >10.0 mmol/L (180 mg/dL) 13.3 26.3 — 15.1 —
Time >16.7 mmol/L (301 mg/dL) 1.1 4.2 — 1.5 —

 5.51-6.00 mmol/L  
(99-108 mg/dL)

Mean glucose (mmol/L) [mg/dL] 7.9 [142] 8.5 [153] 8.4 [151] 7.8 [140] 7.4 [133]
Time 3.9-10.0 mmol/L (70-180 mg/dL) 72.8 69.3 71.6 76.1 84.0
Time <3.9 mmol/L (70 mg/dL) 5.7 3.9 3.1 3.7 2.2
Time <3.0 mmol/L (54 mg/dL) 1.3 0.9 0.7 0.8 0.3
Time >10.0 mmol/L (180 mg/dL) 21.6 26.8 25.4 20.2 13.8
Time >16.7 mmol/L (301 mg/dL) 2.4 3.8 3.8 1.3 0.4

 6.01-6.50 mmol/L  
(108-117 mg/dL)

Mean glucose (mmol/L) [mg/dL] 8.1 [146] 8.5 [153] 7.9 [142] 8.7 [157] 7.5 [135]
Time 3.9-10.0 mmol/L (70-180 mg/dL) 72.2 70.8 77.4 70.2 84.8
Time <3.9 mmol/L (70 mg/dL) 4.8 3.5 2.6 2.6 2.2
Time <3.0 mmol/L (54 mg/dL) 1.1 0.8 0.5 0.7 0.3
Time >10.0 mmol/L (180 mg/dL) 23.1 25.8 20.0 27.2 13.8
Time >16.7 mmol/L (301 mg/dL) 1.9 3.3 2.0 2.9 0.4

 6.51-7.00 mmol/L  
(117-126 mg/dL)

Mean glucose (mmol/L) [mg/dL] 8.8 [158] 9.9 [178] 8.4 [151] — 7.5 [135]
Time 3.9-10.0 mmol/L (70-180 mg/dL) 67.7 58.6 72.9 — 84.8
Time <3.9 mmol/L (70 mg/dL) 2.6 1.7 1.8 — 1.7
Time <3.0 mmol/L (54 mg/dL) 0.5 0.4 0.3 — 0.1
Time >10.0 mmol/L (180 mg/dL) 29.6 39.7 25.4 — 13.5
Time >16.7 mmol/L (301 mg/dL) 2.9 7.0 1.4 — 0.1

 7.01-7.50 mmol/L  
(126-135 mg/dL)

Mean glucose (mmol/L) [mg/dL] 9.0 [162] — 11.0 [198] — 9.8 [176]
Time 3.9-10.0 mmol/L (70-180 mg/dL) 66.0 — 49.5 — 59.5
Time <3.9 mmol/L (70 mg/dL) 1.8 — 1.3 — 0.1
Time <3.0 mmol/L (54 mg/dL) 0.3 — 0.2 — 0.0
Time >10.0 mmol/L (180 mg/dL) 32.2 — 49.2 — 40.5
Time >16.7 mmol/L (301 mg/dL) 2.3 — 14.3 — 1.4
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when higher personal targets were used (Table 2), reflecting 
the challenges of diabetes management in this population.1

Older adults were able to achieve >80% time in range 
with the application of higher personal targets up to 7.0 
mmol/L (126 mg/dL), a threshold at which there was only 
1.1% of time in hypoglycemia (<3.9 mmol/L [70 mg/dL]), 
suggesting that higher personal targets may be beneficial in 
this population.

A similar trend of reduced time spent in the target glucose 
range when higher algorithm target glucose settings are 
applied has also been reported with the Omnipod (Insulet 
Corporation, Massachusetts, US) closed-loop system and in 
real-world data from the Medtronic 780G (Medtronic, 
Northridge, California, US) closed-loop systems.6,7 The 
Medtronic 780G settings that predicted the highest time in 
range were an active insulin time of two hours and the lowest 
glucose target of 5.6 mmol/L (100 mg/dL).

Strengths of our analysis include the use of data from par-
ticipants across a wide range of age demographics and from 
multicenter, multinational clinical trials. Limitations include 
the retrospective analysis and that personal targets were 
averaged over the 24-hour period. Selection of personal tar-
gets was determined by the user, which may reflect individ-
ual differences in assessment of hypoglycemia and 
hyperglycemia risk. The largest cohort of participants were 
very young children who have the greatest hypoglycemia 
burden; however, this was accounted for in the analysis.

In conclusion, personal targets are a well-accepted and 
useful tool to individualize glucose control to suit the needs 
of the user. Our analysis allows users and health-care profes-
sionals to understand the impact of personal target adjust-
ments on glucose control and the recommended glycemic 
targets.8

Abbreviations

CGM, continuous glucose monitor; HCL, hybrid closed-loop; T1D, 
type 1 diabetes; UK, United Kingdom; USA, United States of 
America.
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