
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Gagan Chhabra,
University of Wisconsin-Madison,
United States

REVIEWED BY

Takamichi Ito,
Kyushu University, Japan
Shengqin Su,
Shanghai Hengrui Pharmaceutical Co.,
Ltd., China

*CORRESPONDENCE

Bruce Ashford
bruceash@uow.edu.au

SPECIALTY SECTION

This article was submitted to
Skin Cancer,
a section of the journal
Frontiers in Oncology

RECEIVED 13 April 2022

ACCEPTED 27 June 2022
PUBLISHED 02 August 2022

CITATION

Thind AS, Ashford B, Strbenac D,
Mitchell J, Lee J, Mueller SA, Minaei E,
Perry JR, Ch’ng S, Iyer NG, Clark JR,
Gupta R and Ranson M (2022) Whole
genome analysis reveals the genomic
complexity in metastatic cutaneous
squamous cell carcinoma.
Front. Oncol. 12:919118.
doi: 10.3389/fonc.2022.919118

COPYRIGHT

© 2022 Thind, Ashford, Strbenac,
Mitchell, Lee, Mueller, Minaei, Perry,
Ch’ng, Iyer, Clark, Gupta and Ranson.
This is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction
in other forums is permitted, provided
the original author(s) and the
copyright owner(s) are credited and
that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 02 August 2022

DOI 10.3389/fonc.2022.919118
Whole genome analysis reveals
the genomic complexity in
metastatic cutaneous squamous
cell carcinoma
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Metastatic cutaneous squamous cell carcinoma (CSCC) is a highly morbid

disease requiring radical surgery and adjuvant therapy, which is associated with

a poor prognosis. Yet, compared to other advanced malignancies, relatively

little is known of the genomic landscape of metastatic CSCC. We have

previously reported the mutational signatures and mutational patterns of

CCCTC-binding factor (CTCF) regions in metastatic CSCC. However, many

other genomic components (indel signatures, non-coding drivers, and

structural variants) of metastatic CSCC have not been reported. To this end,

we performed whole genome sequencing on lymph node metastases and

blood DNA from 25 CSCC patients with regional metastases of the head and

neck. We designed amultifaceted computational analysis at the whole genome

level to provide a more comprehensive perspective of the genomic landscape

of metastatic CSCC. In the non-coding genome, 3′ untranslated region (3′UTR)
regions of EVC (48% of specimens), PPP1R1A (48% of specimens), and ABCA4

(20% of specimens) along with the tumor-suppressing long non-coding RNA

(lncRNA) LINC01003 (64% of specimens) were significantly functionally altered

(Q-value < 0.05) and represent potential non-coding biomarkers of CSCC.

Recurrent copy number loss in the tumor suppressor gene PTPRD was

observed. Gene amplification was much less frequent, and few genes were
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recurrently amplified. Single nucleotide variants driver analyses from three

tools confirmed TP53 and CDKN2A as recurrently mutated genes but also

identified C9 as a potential novel driver in this disease. Furthermore, indel

signature analysis highlighted the dominance of ID signature 13 (ID13) followed

by ID8 and ID9. ID9 has previously been shown to have no association with skin

melanoma, unlike ID13 and ID8, suggesting a novel pattern of indel variation in

metastatic CSCC. The enrichment analysis of various genetically altered

candidates shows enrichment of “TGF-beta regulation of extracellular matrix”

and “cell cycle G1 to S check points.” These enriched terms are associated with

genetic instability, cell proliferation, and migration as mechanisms of genomic

drivers of metastatic CSCC.
KEYWORDS

CSCC, cutaneous, squamous cell carcinoma, metastases, UTR - Untranslated regions,
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Introduction
Cutaneous squamous cell carcinoma (CSCC) is the second

most common malignancy, after basal cell carcinoma (BCC),

affecting up to 1,000,000 people in the United States annually

(1). In time, and as a result of the aging population and changing

ratios of BCC/CSCC, the mortality rate of CSCC is likely to

exceed that of melanoma (2). Although primary CSCC is

common, metastasis only occurs in 2%–5% of CSCC (3–5).

CSCCs arising in the head and neck generally show a predictable

pattern of spread, predominantly metastasizing to the

intraparotid, level II (upper jugular), and perifacial lymph

nodes (4). CSCCs that have metastasized to regional lymph

nodes are associated with a worse prognosis (6), with modest

progress made in the management of regionally advanced

disease over the last 15 years. Most patients with regional

metastases from CSCC of the head and neck are managed

with a multimodality approach, which usually involves surgery

(parotidectomy and neck dissection) and adjuvant external

beam radiotherapy depending on the site and stage at the time

of diagnosis (7–9). More recently immunotherapy has attracted

great interest as a potential alternative for unresectable or distant

metastatic disease (10, 11).

Despite the very high incidence, relatively little is known

regarding the genomic landscape of metastatic CSCC. We have

previously described the genomic mutational burden,

mutational signatures, and mutations in CCCTC-binding

factor regions using whole genome sequencing (WGS) data

from 15 CSCC metastases (12) and associated cell lines (13).

However, the majority of studies to date has reported on somatic

variation in primary CSCC (14–17) and/or CSCC metastases

(17–21), using whole exome sequencing (WES) and/or targeted
02
next generation sequencing, which by definition focuses on the

coding genome. Thus, the extent of analysis of non-coding

(including regulatory) regions of the genome is limited and

varies across studies. Pickering et al. (21), the only study

employing WES and incorporating 32 primary and only seven

metastatic samples, did not include regulatory or non-exome

regions analysis. Both Li et al. (19) [29 lymph node metastatic

formalin fixed paraffin embedded (FFPE) samples] and Zehir

et al. (18) (MSK-IMPACT) (28 primary and 27 metastatic FFPE

samples) used targeted next-generation sequencing (NGS), with

limited non-coding analysis. Zehir et al. (18) specifically

included the TERT promoter in their targeted panels but

otherwise included no regulatory elements. Li et al. (19)

similarly did not include regulatory or non-coding variant

analysis. Yilmaz et al. (17) performed WES and/or targeted

NGS on 18 metastatic and 10 primary FFPE CSCC samples and

reported coding gene drivers based purely on mutational

frequencies, without adjusting for gene length or covariates.

Additional functional driver predictions analysis would be

required to confidently call genes as drivers (22). Furthermore,

FFPE processing has well-known impacts on the quality of DNA

for sequencing analyses (23), and it is important to note that for

most of the metastatic studies, FFPE samples were collected.

Furthermore, none of these studies addressed variation in either

5′ or 3′ untranslated regions (UTRs) or other non-coding

elements such as promoters (other than TERT promoter) or

long non-coding RNAs (lncRNAs). Sequence variants occurring

within these functional non-coding elements are important, as

they have the potential to alter gene expression. For example,

lncRNAs are thought to influence the expression of proteins by

pre- and post-translational influences on DNA/RNA and

proteins, chromatin function, miRNA activity, and signaling

pathways by an array of mechanisms (24, 25). 3′UTRs regulate
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crucial aspects of post-transcriptional gene regulation (26).

Mutations in these regions can deregulate gene expression by

disrupting miRNA–mRNA interactions, in which both tumor

suppressor genes and oncogenes can drive cancer progression

(27, 28). This variation in the so-called cis-elements can also

impact gene expression by altering translation initiation in

cancer (29).

Given the shortcomings associated with WES and NGS

analyses of complex genomes, in the current report we have

performed WGS on 25 metastatic CSCC samples and applied a

detailed, multifaceted computational analysis at the whole

genome level to provide a comprehensive understanding of the

genomic landscape of metastatic CSCC. This included

processing of WGS data for somatic variations in both coding

and non-coding regions and indel signatures, apart from

structural variants and copy number alterations analyses. For

non-coding genomic regions, we have focused on UTRs,

lncRNA, and promoter regions, as these represent non-coding

regions that are most accessible to interrogation in high

mutational burden tumors using currently available tools.
Materials and methods

Study population, sample collection,
and processing

This study was undertaken with Institutional Human

Research Ethics approval (UOW/ISLHD HREC14/397). Thirty-

two patients with resectable metastatic CSCC were identified by

the treating surgeons preoperatively. Clinicopathological data

including age, sex, extent of nodal metastases, histology, and

immunosuppression status were collected. In addition to whole

blood (for germline DNA), sections of fresh tumor from nodal

metastases were collected during surgery and immediately snap

frozen. These sections were used for DNA extraction (Qiagen

AllPrep, Qiagen, Hilden, Germany) and for cellularity estimates.

Only samples with >30% tumor (range, 35%–95%) proceeded to

DNA quality control (QC). QC comprised spectrophotometry

(Nanodrop 2000 Thermo Fisher Scientific Inc.), gel

electrophoresis, and single nucleotide polymorphism (SNP)

array. Of the 32 samples sequenced, 25 passed QC (96% from

men) (Table 1). The remaining seven samples had insufficient

clonal tumor content [median variant reads ≤ 5 or median variant

allele frequency (VAF) < 0.1] or had an extreme GC bias as

determined by PURity and PLoidy Estimator (PURPLE) (30).

Briefly, if more than 220 copy number segments were

unsupported by a corresponding structural variants at either

end, the sample was flagged as fail-segment. The mean

sequencing coverage of the 25 samples was 94.56× (range, 64–

143) for tumor and 41.08× (range, 30–56) for blood.
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Variant calling and functional
significance of SNVs and indels

FASTQ reads were aligned to reference genome GRChr38

using BWA-kit version 0.7.17 (BWA-MEM read aligner) (for

details, refer to https://github.com/Sydney-Informatics-Hub/

Fastq-to-BAM). The Genome Analysis Tool Kit (GATK)

4.1.2.0 and its BaseRecalibrator tool was used to refine the

read alignment. SNPs and insertion–deletion (indel) variants

were called by implementing GATK’s Best Practices Workflow.

These pipelines use HaplotypeCaller for germline short variant

discovery and Mutech2 caller for somatic short variant discovery

for SNVs and indels (for details, refer to https://github.com/

Sydney-Informatics-Hub/Somatic-ShortV). Furthermore,

variants effect prediction and annotations were completed

using OpenCravat platform (31). Mutation Annotation Format

(MAF) files were generated based on variant effect predictor

annotations. Three different methods for driver discovery were

then used; OncodriveFML (32), MutSigCV (22), and

dNdScv (33).

OncodriveFML predicts the functional significance of both

coding and non-coding variants, as it is one of the few tools

designed for non-coding genomic analysis (32). It first

determines the functional impact of the observed somatic

mutations using Combined Annotation Dependent Depletion

(CADD) for specified genomic elements (UTR, promotor, and

coding regions) across the cohort. Later, for the statistical

significance, it compares the average functional impact score

of the observed mutations in the element with the average

functional impact scores of a similar number of the random

mutational set. The CADD score provides a priority for

identifying mutations with functional, deleterious, and

pathogenic impacts. These scores are calculated by combining

the information from multiple annotations into a single metric.

MutSigCV identifies genes that are mutated more often than

expected by chance and reduces the number of false positives in

the generated list of significant genes, which is especially useful

for tumors, such as metastatic CSCC, with high mutation rates

(22). This is achieved by incorporating various types of

information such as patient-specific mutation frequencies and

mutation spectra, gene-specific mutation rates, expression levels,

and replication times.

dNdScv is designed to test for positive and negative selection

in cancer genomes (33). As UV-induced cancer genomes such as

CSCC can affect the accuracy of the dNdScv model, we carefully

monitored the annotation of CC>TT changes (sometimes

reported as C>T changes). Results report significance for

missense and truncating mutations and indels as global p-

values. Genes that were falsely flagged as significant with

negative selection were not considered for this analysis.

For downstream analysis, genes that were predicted to be

driver genes by at least two of these tools were considered. First,
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TABLE 1 Clinicopathological data of the cohort of 25 patients with CSCC lymph node metastases.

Sample Age
(years)

Sex Primary
location

Metastasis
location

Nodal
stage1

Lymph node
ratio2

Extracapsular
spread

Grade3 Immuno-suppressive
treatment

CSCC_0001 30 male left lip left neck N3b 3/27 yes 1 no

CSCC_0002 78 male right ear right parotid N3b 2/52 yes 3 no

CSCC_0003 74 male unknown right parotid N3b 2/42 yes 3 no

CSCC_0004 64 male bilateral lip bilateral neck N2c 3/55 no 2 no

CSCC_0005 78 male left forehead left parotid N2a 4/4 Not stated 3 no

CSCC_0006 69 male left cheek left neck N3b 2/42 yes 3 azathioprine

CSCC_0007 87 male unknown left neck N2b 1/16 no 3 no

CSCC_0009 66 male bilateral
forehead

right neck N3b 3/109 yes 2 cyclosporine A, tacrolimus

CSCC_0010 64 male left scalp left neck N3b 2/11 yes 3 no

CSCC_0011 69 male unknown right parotid N3b 3/108 yes 3 no

CSCC_0012 77 male right nose right neck N3b 4/64 yes 2 no

CSCC_0013 77 male right pinna right parotid N3b 1/1 yes 2 no

CSCC_0014 79 female left cheek left perifacial N3b 1/1 yes 3 no

CSCC_0022 66 male scalp left neck N3b 3/24 yes 3 no

CSCC_0024 54 male lip right neck N3b 3/32 yes 2 no

CSCC_0025 82 male parotid Parotid N1 1/15 no 3 no

CSCC_0066 56 male Unknown Parotid N1 1/1 no 3 no

CSCC_0124 80 male Parotid Parotid N3b 1/6 yes Not
stated

no

CSCC_0125 43 male parotid parotid N3b 1/20 not stated not
stated

no

CSCC_0126 66 male left temple left neck N3b 3/8 yes 3 no

CSCC_0130 70 male unknown left parotid N3b 1/6 yes 3 no

CSCC_0132 76 male right ear parotid/neck N2b 23/43 no 3 no

CSCC_0133 75 male unknown parotid N3b 1/4 yes not
stated

no

CSCC_0134 71 male unknown right neck N3b 9/17 yes not
stated

no

CSCC_0135 82 male unknown right neck 3b 1/48 yes 3 no

1Staging according to AJCC 8th edition.
2Lymph node ratio (Number of positive nodes/total nodes harvested).
3Grade 1: well differentiated; Grade 2: moderately differentiated; Grade 3: poorly differentiated.
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genes with significant p-values <0.005 were filtered from each of

the three tools, and shared genes were determined using a Venn

diagram. We then compared the functional impact of SNVs in

these selected driver genes to previously reported primary and

metastatic CSCC data (18, 19, 21, 34) available on cBioportal

(35). This included 92 samples of metastatic CSCC (WES= 10,

targeted NGS = 82) and 88 samples of primary CSCC (WES=32,

targeted NGS=56).
Copy number variation

Copy number alterations in the 25 metastatic genomes were

derived using PURPLE (30), which estimates copy number and

purity of tumor sample by using read depth ratio from COBALT

and tumor B-allele frequency (BAF) fromAMBER. The pipeline is
Frontiers in Oncology 04
available at github of HMF Tools (https://github.com/

hartwigmedical/hmftools). Driver genes with significant

amplifications and deletions were then identified using PURPLE

driver copy number outputs. For driver genes, PURPLE searches

for genes with high level amplification (minimum exonic copy

number > 3 * sample ploidy) and deletion (minimum exonic copy

number < 0.5) and then uses iteration to establish the most

significant focal peaks.

GRIDSS2 and its companion interpreter tool LINX were

employed for somatic structural variant analysis and gene fusion

(36). COSMIC3-based SNVs and indels signatures from the whole

genome were built using MutationalPatterns (37) software.

The driver gene candidates obtained from various genetic

alteration analyses such as copy number variation drivers,

somatic variant drivers, and other non-coding drivers were

combined for enrichment analysis. In the case of copy number
frontiersin.org
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gain/loss, we selected only those genes affected in >20% of the

samples in our cohort. Using the Enrichr web application (38),

we determined the involvement of the candidate driver genes in

various cellular components of the cells, biological pathways,

and predicted miRNA and drug targets.
Results

Patient characteristics and
clinicopathological data

Twenty-five metastatic CSCC samples from lymph nodes in

the head and neck region were collected between 2015 and 2019

that passed WGS QC criteria for analysis (Table 1). The median

age of patients was 69 (range, 30–87), and 24/25 (96%) were

male. While this sex disparity is a limitation of our study in that

potential sex differences may have been missed, it is in keeping

with the disease burden seen in our practice in NSW, Australia,

particularly for advanced and metastatic CSCC (39). This

is in keeping with findings that age, male sex, and

immunosuppression are among the risk factors for metastasis

(40). Two patients were immunocompromised; one patient was

on long-term azathioprine for rheumatoid arthritis, and the

other was on a combination of cyclophosphamide and

tacrolimus following solid organ transplantation.

The location of the index primary lesion was known in 11

patients (Table 1). Nodal metastases were isolated from the neck

in 13 patients and in the parotid in 12 patients. The majority of

patients had either moderately differentiated (n = 8) or poorly

differentiated (n = 12) CSCC, with evidence of extranodal

extension found in 20/25 (80%) nodal samples.
Tumor mutational burden

Based on whole genome level calculations, the average tumor

mutational burden (TMB) for SNVs and indels across the 25

cases was 238.7 mutations per megabase (median, 166.99

mutations/Mb; range, 32.52–995.66 mutations/Mb) and 2.25

indel/megabase (range, 0.63–5.9 mutations/Mb), respectively

(Figures 1A, B; Supplementary Table S1) with the majority of

somatic variants occurring in the non-coding regions as

expected (12). The only female tumor in this cohort had the

second highest TMB at 499 mutations/Mb. There was no

correlation between age, differentiation, nodal stage, or

extracapsular spread of the metastasis and TMB.
Mutational signatures

We performed mutational signature analyses of the 25

genomes based on COSMIC V.3.2 (https://cancer.sanger.ac.uk/
Frontiers in Oncology 05
signatures/). Signatures are designated as single base substitution

(SBS) or small insertion and deletion (ID) signatures. SBS

signatures 7a and 7b were the most prevalent (Figure 1C;

Supplementary Table S2) in keeping with a UV association in

metastatic CSCC as we previously reported in a smaller cohort

using COSMIC V2 (12). Substantial representation of SBS7c was

also seen. SBS32 and SBS7d were observed in one sample. Indel

signature analysis showed that ID8, 9, and 13 dominated over

others (Figure 1D; Supplementary Table S2).
Short variants

Coding short variants
The overwhelming majority of coding SNVs were missense

mutations, followed by nonsense mutation, which represented

<5% of variants (Figure 2A). Figure 2B shows various DNA

sequence alterations, including single, double, and triple

nucleotide variants and insertion and deletion (Supplementary

Data 1). Over 80% of SNVs were C>T (Figures 2C, D). This is

consistent with the dominant effect of UV radiation on

pyrimidine bases and the UV signature referred to above and

is independent of the degree of differentiation or any other

clinicopathological feature. Genes predicted to be driver genes

via OncoDriveFML include TP53, CDKN2A, and ZNF730

having Q-values <0.1 (Figure 2E). MutSigCV and dNdScv

analyses also found TP53 and CDKN2A as the most significant

mutated driver genes in our cohort (Supplementary Table S3).

Genes that were predicted to be driver genes (p-value < 0.005) by

at least two tools were considered for downstream analyses

(Figure 2F). This resulted in 12 genes: TP53, CDKN2A, C9,

C9orf131, SLC22A6, KHDRBS2, COLEC12, LINGO2, CDHR5,

ZNF442, PRLR, and DHRS4. Of this list, TP53, CDKN2A, and C9

were shared as significant by all three tools. Interrogation of the

cBioPortal dataset for CSCC (metastatic = 92 and primary=88

cases) (18, 19, 21) with short variant analysis (Supplementary

Figure S1) revealed recurrent mutations not only in TP53 and

CDKN2A but also in C9, COLEC12, and SLC22A6. Not all genes

identified as high impact and recurrent variants in our cohort

were included in these targeted studies, which underscores the

deficiencies of panel-based analyses in discovery projects.

The only sample with no mutation in TP53 was CSCC_0009

(Figure 2G). The TMB of this sample was 122/Mb or 51% of the

average across the cohort. Five samples without CDKN2A

mutations averaged a TMB of 470/Mb or 201% of the average

for the cohort.
Variation in non-coding regulatory regions
The 3′UTRs that potentially play an important role in

metastatic CSCC were discovered using OncodriveFML. SNVs

within the 3′UTR region of EVC, PPP1R1A, ABCA4, and LUM

showed significantly higher observed functional impact than the
frontiersin.org
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expected functional impact (Q-value <0.03) (Figure 3A;

Supplementary Table S3). We observed variation within the 3′
UTR of both EVC and PPP1R1A in 48% of samples with a Q-

value of 0.011 and 0.022, respectively (Figure 3B; Supplementary

Table S4). The unique PPP1R1A variant with cDNA change of

c.*491C>T [Chr12:54579896 (G to A)] was found in five samples

(Supplementary Figure S2).

There are many reported limitations in the analysis and

interpretation of 5′UTRs and promoters for high mutational

burden tumors (41–43), a finding that we also observed

(Supplementary Figure 3). Currently, no robust methodology

exists to analyze these regions with confidence in CSCC; thus,

analyses of 5′UTRs and promoter regions were not

investigated further.

lncRNAs likely to have a potential impact on tumorigenesis

were also predicted using OncodriveFML. Four lncRNAs were

significantly (q < 0.05) biased towards high-impact mutations

i.e., LINC01474 and LINC01003, RP4-597N16.4, and RP11-

61J19.4 (Figure 3C; Supplementary Table S3). Among these,

LINC01474 and LINC01003 showed a high statistical
Frontiers in Oncology 06
significance Q-value of 0.0158. lncRNA LINC01003 was altered

in 64% of the cohort. Another recurrently mutated lncRNA in

our cohort was RP11-61J19.4 (48% of samples) (Figure 3D;

Supplementary Table S4).
Structural and copy number variation

The extent of chromosomal copy number gain and loss was

averaged across the genome for all 25 tumor samples (Figure 4A;

Supplementary Table S5). Chr5p and 8q were the most

frequently amplified regions, with 18q being the region with

the most recurrent deletion. At sample level (Figure 4B), there

were chromosome arm gains in chromosome 7 and 5p in the

majority of the samples and losses in 8p, 18q, and 21q. Recurrent

gain of 7, 8q, and 5p and loss of 8p, 18, and 21 were also

previously reported by Pickering et al. (21). Figure 4B also shows

a Circos plot obtained from the PURPLE pipeline for

CSCC_0004 as a representative example that summarizes

various information at the sample level.
A

B

D

C

FIGURE 1

Overview of tumor mutational burden and signatures (whole genome-based). Panels (A, B) illustrate the indel and SNV mutational burden in
each sample, respectively. Panels (C, D) show indel (ID) and SNV mutational signatures for each sample, respectively, obtained using COSMIC
V3.2 database. Full details are available in Supplementary Table S2.
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Structural variation analysis revealed that CSCC metastases

are characterized by various complex, deleted, and unbalanced

translocation events. Table 2 provides the summary of various

structural events observed. Deletion and complex structural

variants are common in CSCC; however, unbalanced

translocation and other structural events were also observed

(Table 2). The detailed effects of these structural events for
Frontiers in Oncology 07
putative oncogenes and tumor suppressor genes (TSGs) are

described in Table 3. Amplification events are linked to

complex structural variants. Potential oncogene/TSG driver

amplification and deletion were predicted by the PURPLE-

GRIDSS-LINX pipeline, as reported in Table 3. Recurrent gene

deletions were more common than gene amplifications. The

most frequently deleted gene was PTPRD (Chr9p, 24% of
A B

D

E F

G

C

FIGURE 2

Overview of key coding mutations. (A) Variants classification, (B) variant types, where SNP, DNP, TNP, INS, and DEL are single nucleotide
polymorphisms, double nucleotide polymorphisms, triple nucleotide polymorphisms, insertion, and deletion, respectively (C, left panel) % of
various transitions, (C, right panel) Ti (transition) and Tv (transversion) in all 25 samples, and (D) % transitions for each sample. (E) Driver coding
genes prediction results from OncodriveFML tool. The plot shows the most significantly altered genes (in the plots above the red line, Q-values
are below 0.1). Q-values are corrected p-values using the Benjamini/Hochberg correction. (F) Venn diagram showing the overlap of genes
predicted to be driver genes (p-value < 0.005) by three different driver detection tools, i.e., OncoDriveFML, MutSigCV, and dNdScv. (For details,
refer to Supplementary Table S3). For further analysis, genes predicted to be driver genes by at least two tools were considered. (G) Detailed
sample-level information of the SNVs and types of variants in the top altered genes (mentioned in Figure 2).
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A B

DC

FIGURE 3

Driver genes prediction in non-coding genomic regions. Plots show the result of OncodrivFML (2.2.0) tool and mutations in the most
significantly altered non-coding genes or regions in the cohort of 25 patient samples. (A) Potential 3′UTR regions associated driver candidates.
(B) Variants with significantly altered 3′UTR regions. (C) Potential lncRNA driver candidates. (D) Variants with significantly altered lncRNAs. Plots
in panels (A) and (C) show the frequency of observed mutations with respect to the expected frequency of the mutations in the corresponding
regions. Q-values are corrected p-values using the Benjamini/Hochberg correction. The plots in panels (B, D) show frequencies of 3′UTR and
lncRNAs variants among the cohorts, respectively.
TABLE 2 Summary of various event categories of structural variants.

Sample SGL DEL DUP Complex UNBAL_trans Pair.other INF

CSCC_0001 SMAD4 SMAD4

CSCC_0002 CDKN2A

CSCC_0005 MYC MYC

CSCC_0007 CRLF2

CSCC_0009 PTPRD

CSCC_0011 PTPRD CALR HEBP2- NTRK2

CSCC_0012 PTPRD EGFR PTPRD

CSCC_0013 APC

CSCC_0014 CREBBP CREBBP

CSCC_0025 CDKN2C PARD6G

CSCC_0066 PTPN13

CSCC_0124 NEGR1 NEGR1

CSCC_0132 PTPRD RAF1-FGF3-CCND1

CSCC_0133 PTPRD PTPRD CALR-chr1-chr3-chr6-chr8-chr22

CSCC_0134 MCL1, CCND1-FGF3-Chr17

CSCC_0135 PTPRD
Frontiers in Onco
logy
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 frontie
For more details, refer to Supplementary Figures S4 and S5. Association can be noted between gain (Table 3) and complex SV events. The gene list was derived using LINX output. Only
samples with events are shown in the table.
NBAL_TRANS, unbalanced translocation; INF, inferred breakend; DEL, deletion; DUP, duplication; SGL, single breakend SV support
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samples). PTPRD deletion is already reported in primary and

metastatic CSCC (44, 45). Deletion of PTPRD (n=6) and

CDKN2A (Chr9p) (n=1) did not co-occur in our cohort

(Table 3), although PTPRD loss and significant mutation of

CDKN2A co-occurred in six samples (CSCC_9, 11, 12, 133, 132,

and 134) (Table 3; Figure 2G). Deep deletion of CDKN2A was

reported in only 2/92 cases available on cBioPortal

(Supplementary Figure S1).

Loss of heterozygosity (LOH) was found at the focal, arm,

chromosome, telomere, and centromere levels. The most

common LOH events were that at the chromosome and arm

level with these events concentrated to PTPRD locus (Table 3).

No recurrent events for other genes were observed (Table 3).

Various examples of PTPRD structural events are reported in

Supplementary Figure S4. A few other examples of the

unbalanced translocation and complex structural variants are

shown in Supplementary Figure S5.

The most frequently amplified genes (2/25, 8%) were CALR,

CCND1, and FGF3 (Table 3). Interestingly, EGFR was amplified

in only one sample. Amplification of CCDN1 and FGF3 co-

occurred in two samples (CSCC_0134 and CSCC_0132).

CCDN1 and FGF3 are next to each other on the chromosome.

These two cases had extensive nodal involvement (>50% of

lymph nodes harboring tumor).

Despite this widespread genomic instability, only two

coding–coding gene fusions were observed in our cohort. The

first was between STRN and DLG2 in sample CSCC_0009

(STRN : exon 1 ENST00000263918 ; DLG2 : exon 7

ENST00000376104). STRN encodes a calcium-dependent
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calmodulin-binding protein (46). DLG2 plays a role in pain

signaling, and deletion is seen in both human and canine

osteosarcoma (47). We noted above that CSCC_0009 is the

only sample without TP53 mutations. CSCC_0009 came from a

patient who had undergone liver transplantation and was on

immunosuppressive therapy. The primary tumor that gave rise

to this metastasis showed perineural involvement, which was

also present in the metastatic deposit. The second gene fusion

was between NTRK2 and HEBP2 in CSCC_0011. This seems to

be caused by an unbalanced translocation event (Supplementary

Figure S5B).
Enrichment analysis

Gene enrichment analysis was performed using the 21

genetically altered candidates identified above as significant/

candidate driver genes, i.e., TP53, CDKN2A, C9, KHDRBS2,

SLC22A6, COLEC12, LINGO2, CDHR5, ZNF442, C9orf131,

PRLR, DHRS4, PPP1R1A, EVC, LUM, ABCA4, LINC01003,

LINC01474 (RP11-151D14.1), RP4-597N16.4, RP11-61J19.4,

and PTPRD. The top significant pathway enrichment terms

[Bio Planet 2019 (48)] are shown in Figure 5A. Most of the

significant BioPlanet-enriched terms come from TP53 and

CDKN2A, such as TP53 network, tumor suppressor ARF,

CTCF pathway, and cell cycle (G1/S checkpoint). However,

CDKN2A, LUM, CDHR5, and COLEC12 contribute to

important cancer-related enrichment pathways, such as “TGF-
TABLE 3 List of reportable drivers (likelihood type onco/TSG) genes.

Sample DEL GAIN LOH_CHR LOH_ARM LOH LOH_SV_TELO LOH_SV_CENTRO

CSCC_0001 SMAD4 SMAD4

CSCC_0002 CDKN2A

CSCC_0003 KDM6A KDM6A

CSCC_0005 MYC

CSCC_0007 CRLF2

CSCC_0009 PTPRD PTPRD

CSCC_0011 PTPRD CALR PTPRD

CSCC_0012 PTPRD EGFR PPP2R3B, PUDP, STS,WWC3 PTPRD

CSCC_0013 APC APC

CSCC_0014 CREBBP CREBBP

CSCC_0025 CDKN2C, PARD6G PARD6G CDKN2C

CSCC_0066 PTPN13 PTPN13

CSCC_0124 NEGR1 NEGR1

CSCC_0132 PTPRD RAF1,CCND1,FGF3 PTPRD

CSCC_0133 PTPRD CALR PTPRD

CSCC_0134 MCL1,CCND1,FGF3

CSCC_0135 PTPRD PTPRD
The types of drivers are as follows: GAIN, amplification by SV; DEL, homozygous deletion; LOH, focal LOH; LOH_ARM, chromosome arm level LOH; LOH_CHR, chromosome level
LOH; LOH_SV_TELO, LOH from SV to telomere; LOH_SV_CENTRO, LOH from SV to centromere. Only samples with events are shown in the table.
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beta regulation of extracellular matrix.” Full details of these

enrichment analyses are available in Supplementary Table S6.

The Jensen diseases enrichment tool identified skin cancer

with highest significance (Figure 5B), with Jensen compartment-

based enrichment analysis showing that most of these genes
Frontiers in Oncology 10
belong to the extracellular compartment (Figure 5C). Other

ontology enrichment analysis (MGI mammalian phenotype

level 4 2021; Supplementary Table S6) showed enrichment of

increased fibroblast proliferation MP:0011703 where CDKN2A,

TP53, and LUM alterations are the main contributors.
A

B

FIGURE 4

Chromosomal and recurrent genetic copy number variation. (A) Combined chromosomal CNV across 25 metastatic CSCC samples at the
chromosomal level. The X-axis represents the differences of mean minimum copy number (bands) and means of overall samples ploidy (after
adjustment for purity). Refer to Supplementary Table S5. (B) Chromosomes arm loss and gain at the sample level (red denotes a gain, and blue
denotes a loss). Both arms of chromosomes 7 and 5p show gains. 8p, 18q, and 21q show loss. (A chromosome arm is defined to be deleted if at
least half of its bases are one or more copies less than the sample ploidy. A chromosome arm is defined to be amplified if at least half of its
bases are one or more copies more than the sample ploidy.). Also shown is a Circos plot obtained from the PURPLE pipeline for CSCC_0004 as
a representative example that summarizes various information at the sample level. (More details of interpretation at https://github.com/
hartwigmedical/hmftools/blob/master/purple/README.md#circos).
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We also performed enrichment analyses to predict drugs and

miRNA targets for these driver candidates. Figure 6A shows the

top 10 significant hits against drug annotations, which suggests

that many of these driver genes are known therapeutic targets

(dSig; Supplementary Table S6). With respect to miRNA targets,

hsa-miR-331-5p was predicted to interact with six driver gene

candidates, including TP53 and C9 (Figure 6B). For this

prediction, the enricher platform uses TargetScan miRNA

database (50). At the same time, hsa-miR-1181 was one of the

most significantly enriched miRNAs for these driver candidates,

but can target only two driver genes.
Discussion

This is the largest study to employ WGS to assess the

mutational landscape of metastatic CSCC and demonstrates

the breadth of somatic variation across non-coding and coding

regions. Furthermore, we updated and expanded the

understanding of UV-mutational signature patterns in
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metastatic CSCC (12), including the identification of novel

indel (ID) signature patterns. This highlights for the first time

the nature and depth of variation within regulatory regions, with

special attention devoted to UTR and lncRNA. Additionally, we

reported various structural events at whole genome scale for this

diseases and also compared driver genes and SNVs to previous

WES/targeted NGS studies on metastasis CSCC.

At 238 mutations/Mb (median of 166.99 mutations/Mb)

within metastatic CSCC at the whole genome scale, the rate of

TMB is substantially higher than that of other cancers known to

have a high mutational burden, including melanoma, which is 49

mutations/Mb (51). Pickering et al. (21) found a median of 61.2

mutations/Mb from their WES of high-risk primary (n= 32) and

metastatic (n =7) CSCC. Their finding shows lower TMB than

our study because they analyzed only coding DNA, which has

much lower TMB than non-coding DNA in CSCC (12). The

high TMB was associated with substantial structural variation,

without recurrent gene fusions.

Alexandrov et al. (52) detailed patterns of mutational

signatures in 23,829 tumor samples (1,965 WGS) from the
A

B

C

FIGURE 5

Enrichment analysis results of genetically mutated genes (21 candidates). (A) GO-Cellular Component terms showing eight significantly enriched
terms (obtained from BioPlanet 2019). Panels (B, C) showing most significant Jensen diseases and Jensen compartments enriched terms,
respectively. For details, refer to Supplementary Table S6.
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Pan Cancer Analysis of Whole Genomes (PCAWG) datasets

including 17 small ID signatures, expanded to 18 in COSMIC

version 3.2 (https://cancer.sanger.ac.uk) (53). However, no

cutaneous SCCs (primary or metastatic) are included in this

dataset. We identified the predominance of ID signatures 8, 9,

and 13 (100% of samples effected) in our 25 metastatic CSCC

samples. ID8 is thought to be both related to double-strand DNA

break repair dysfunction and to age-related changes. Melanoma

is the only other cancer type reported to have a predominant ID

13 signature (52). Our data also provide evidence of

concomitance of ID13 with SBS 7a and 7b (Figures 1C, D;

Supplementary Table S2) in keeping with a UV-mediated

mechanism for this signature. While we found ID9 to be a

dominant indel signature in CSCC, it is rare in melanoma

(2/104) but predominant in soft tissue sarcoma (52). The

mechanism of ID9 is unclear, but this departure from what is

found in melanoma clearly shows some point of difference in

these UV-induced skin cancers. When comparing the TMB

associated with ID9 signature among different cancers, the

dominance in CSCC is clearly visible (Figure 7). One case of

SBS32 is due to azathioprine exposure.

We identified substantial somatic variation within the 3′
UTR region of EVC, LUM, and PPP1R1A. EVC affects ciliary

Hedgehog (Hh) regulation. Aberrant overexpression of EVC

(and upregulation of Hh) has been reported in adult T-cell

leukemia as a result of epigenetic modulation (54). The

expression of EVC is reduced in nodal deposits of metastatic

breast cancer compared with primary breast cancer, suggesting a

role in the metastatic process (55). LUM is a major keratan

sulfate proteoglycan that plays a role in collagen fibril
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organization, circumferential growth, epithelial cell migration,

and tissue repair, among many other functions (56). PPP1R1A

encodes a protein phosphatase inhibitor, which appears to have

a variable but significant role in the metastatic process. For

example, it is overexpressed in Ewing sarcoma and has been

proposed as a driver of metastasis (57). Conversely, levels of

PPP1R1A were reduced in breast cancer when compared to

adjacent non-diseased breast tissue (58). Within our cohort, we

observed a unique recurrent missense mutation in the 3′UTR of

PPP1R1A in five samples.

LINC01003 was the most mutated lncRNA in our cohort

(64% of samples). In multiple myeloma, LINC01003 behaves as a

tumor suppressor genomic element. Upregulation suppresses

multiple myeloma by repressing cell viability and adhesion and

promoting apoptosis. This effect is via its sponge effect on miR-

33a-5p and its target PIM1 (59).

As has been frequently reported for CSCC (5)

(Supplementary Figure S1), TP53 and CDKN2A were also the

most recurrently altered genes in our cohort. Loss of function

mutations within TP53 and CDKN2A are well known to

adversely impact cell cycle pathway control and DNA repair

mechanisms, thus increasing TMB. Furthermore, TP53 and

CDKN2A mutations in other squamous cell carcinomas such

as NSCLC (60) and HNSCC (61) correlates with response to

immune checkpoint inhibitors. With TP53 and CDKN2A as

driver genes in our study, the generally high response rates to

immune checkpoint inhibitors in advanced and metastatic

CSCC is not surprising. Kilnakis et al. (62) describe a pattern

of TP53 mutation that differed between primary and metastatic

disease in head and neck (mucosal) SCC. They found an overall
A B

FIGURE 6

Enrichment analysis results for drug and miRNA targets. (A) Over-enrichment analysis of 20 driver candidates (deleted PTPRD excluded) against
DSigDB (Drug SIGnatures DataBase) (49) annotation showing top 10 significantly enriched Drug/Compound. (B) Computationally predicted
targets of miRNAs (TargetScan miRNA 2017). The x-axis represents the significance of the term (decreasing from left to right). (For details, refer
to Supplementary Table S6).
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lower rate of mutations in metastatic tumors but a higher

concentration of missense mutations in the DNA binding

regions of the gene. However, Yilmaz et al. (17) reported a

significantly higher TP53 mutation frequency in metastatic

(85%) compared to primary CSCC (corrected p-value <0.002).

Our cBioPortal dataset analysis indicated no difference in variant

frequency for TP53 between primary and metastatic CSCC (refer

to Supplementary Figure S1), suggesting retention in

metastatic tumors.

Of note in our study was the absence of significant or

recurrent SNVs affecting NOTCH1/2. Inman et al. (15)

compared well-differentiated to moderately and poorly

differentiated primary CSCC and identified NOTCH1,

NOTCH2, TP53, and CDKN2A as the most commonly

mutated genes, with ATP1A1, HERC6, MAPK1P1L, GRHL2,

TRAPPC9, FLNB, and MAP3K9 identified as common early

events in primary CSCC. Within this group, GRHL2 was

associated with less well-differentiated tumors including those

with a worse prognosis. In our cohort, only a single splice variant

in GRHL2 was identified, suggesting that its role in metastatic

disease is limited.

C9 (encodes complement component 9) was also identified

as a potential driver gene by three driver identification tools,

with SNVs identified in 52% of the samples in our cohort. C9 is

part of the membrane attack complex (MAC) and has been

shown to modulate cellular behavior in the tumor

microenvironment (TME) (63). Since the TME plays a crucial

role in tumorigenesis, progression, metastasis, and recurrence,

C9 might have significant potential in CSCC progression to
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metastasis. Various other components of the complement

system have been linked to CSCC progression and

immunosuppression and implicated as potential therapeutic

targets (64–66). With respect to C9 specifically, it appears to

be recurrently mutated in CSCC specimens (31% in primary and

10% in metastatic CSCC) as identified in the cBioPortal database

(Supplementary Figure S1). and high expression levels have been

proposed as a potential biomarker for the detection of gastric

cancers (67) (68). Furthermore, the restrained expression of C9

in tumor-associated macrophages promotes non-small cell lung

cancer progression (69).

Apart from TP53, CDKN2A, and C9, we identified nine other

potential driver genes with the most recurrently mutated gene

being KHDRBS2 (48% of cohort) with various impacts,

including stop gained, complex, and synonymous types apart

from missense variant across the cohort. In the cBioPortal

database, this gene is mutated in 20% of metastatic CSCC

specimens (Supplementary Figure S1), suggesting that it is a

reasonably recurrently mutated gene in this disease.

A comparison of mutational frequency of primary and

metastatic CSCC on the cBioPortal data suggests the potential

of COLEC12 (primary=25%; metastatic=60%) and SLC22A6

(primary=16%; metastatic=30%) as drivers in metastatic CSCC

(Supplementary Figure S1). Both COLEC12 and SLC33A6 are

mutated in 44% of the samples in our cohort, and many of them

are high-impact SNVs. COLEC12 is involved in leukocyte

recruitment and cancer metastasis (70) and regulates the

apoptosis of osteosarcoma (70). Moreover, COLEC12 is a

potential biomarker of anaplastic thyroid cancer (ATC) (71).
FIGURE 7

Comparison plot of ID9 mutations for various cancers. CSCC shows the highest ID9 mutations per Mb. The bottom x-axis represents the cancer
types, and the upper x-axis shows the number of samples measured for specific cancer types. y-Axis indicates the number of mutations per Mb.
Data for other cancers was obtained from ID9 signature details from COSMIC V3.2 and compared with CSCC data. CSCC data is calculated as
ID9 signature score/3100 (coverage for hg38 genome).
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In one study of cancerous gastric stromal cells (GSCs), the role of

COLEC12 is found in mediating the crosstalk between GSCs and

dendritic cells (DCs) (72). On the other hand, SLC22A6 is

known as an organic anion transporter 1 (OAT1). Expression

and function alterations of OAT1 play an essential role in

therapeutic efficacy and the toxicity of many drugs, such as for

anti-cancer drugs methotrexate, bleomycin, and cisplatin-related

toxicity (73–75). OAT1 variation associated with cardiotoxicity

in pediatric acute lymphoblastic leukemia and osteosarcoma

(76). Furthermore, the role of OAT1 in breast cancer metastasis

has been reported (77). Important cancer-related roles of the

other potential CSCC drivers are reported in Supplementary

Table S7.

Loss of PTPRD was the most prominent copy number

alteration in our 25 samples. PTPRD encodes protein tyrosine

phosphatase receptor D, which belongs to a family of receptors

whose action opposes that of the tyrosine kinases, which are

central to cell growth and differentiation and oncogenic

transformation. Large-scale genomic events impacting

CDKN2A can also affect PTPRD due to their proximity on

chr9 (78). In head and neck SCC, PTPRD inactivation

significantly increases STAT3 hyperactivation, which was

associated with decreased survival and resistance to epidermal

growth factor receptor (EGFR)-targeted therapy (79). PTPRD

has been implicated as a tumor suppressor in several cancers

with inactivating somatic variants found in >50% of GBM and

between 10% and 20% of head and neck mucosal SCC (HNSCC)

(80). Lambert et al. (45) described deletions of PTPRD in 37% of

metastatic primary CSCC and metastases. In addition, some of

their cases also displayed a variant in the minor allele concordant

with the deletion leading to a LOH event. It is thus possible that

PTPRD plays a tumor suppressor role in preventing

metastatic CSCC.

There were no recurrently amplified genes except for CALR,

CCND1, and FGF3, which were each only amplified in 2/25

samples (Table 3). CALR encodes a ubiquitous endoplasmic-

reticulum-bound calcium receptor (81). Cellular stress can move

CALR fragments to the plasma membrane from the ER and

influence immune recognition of cancer cells. Recent analysis of

CALR fragments in myeloproliferative disease suggests an

immunosuppressive influence of extracellular CALR (82).

Cyclin D1 (CCND1) amplification is associated with nodal

metastasis and worse survival in oral SCC (83). In a review of

CCND1 copy number variation in metastatic non-cutaneous

melanoma, amplification was prominent in those patients whose

disease did not respond to immune checkpoint inhibition (84).

FGF3 amplification is more common in metastatic breast cancer

than primary tumors (85). Targetable FGF3 amplification was

associated with a poorer prognosis and lung metastasis in

hepatocellular carcinoma (86). This amplification was seen in

only 2% of total HCC but was most common in those cancers

showing rapid response to sorafenib.
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With respect to enrichment of driver gene alterations

observed in our samples, dysregulation of the cell cycle

pathway appears to be the central genomic theme of

metastatic CSCC supported mainly by TP53 and CDKN2A.

CDKN2A encodes the CDK inhibitor p16INK4a. This inhibitor

is an important controller of the activity of CDKs and

progression from G1 to mitosis in the cell cycle. Inactivating

mutations in CDKN2A with effects on p16INK4a regulatory

functions uncouple cell cycle control to promote cell survival

and tumorigenesis (87). CDK4/6 inhibitors such as palbociclib,

which has demonstrated response in metastatic breast cancer,

may likewise be a potential therapeutic strategy for metastatic

CSCC. Interaction between CDKN2A and TP53 throughMDM2

and its regulation by ARF (also encoded by CDKN2A) further

disable cell cycle and apoptotic pathways (GO: molecular

function enrichment shows MDM2/MDM4 family protein

binding). The pro-tumorigenic functions of the p53-MDM2-

ARF network is gaining traction as a target for novel therapeutic

strategies (88), which could also be applied to CSCC.

The cellular process defined by the term “TGF beta

regulation of extra cellular matrix” was also significantly

enriched showing a role for LUM, CDHR5, COLEC12, and

CDKN2A in this process (Figure 5A). Compartment

enrichment analysis found that these genetically altered genes

are part of the extracellular compartment. Our previous

differential expression study confirmed that TGFb and the

extracellular matrix component have an important role in

metastatic CSCC (89). Inactivation of cell cycle control

(through CDKN2A alterations for example) would allow

tumor cells to escape from TGFb-mediated suppressive effects.

As loss of this growth-inhibitory response occurs at a level

downstream of the core TGFb signaling pathway, TGFb then

switches to a tumor-progression factor promoting epithelial-to-

mesenchymal transition while inhibiting proliferation,

differentiation, and the antitumor activity of multiple immune

cells (90). As TGFb receptor inhibition in combination with

gemcitabine or immunotherapy is showing promise in other

cancers (91, 92), this approach may also be applicable to

metastatic CSCC.

Finally,miR-331-5p shows promise as a potentiator of CSCC

drivers . miR-331-5p downregulation contributes to

chemotherapy resistance/relapse in leukemia (93), and it

inhibits proliferation by targeting PI3K/Akt and ERK1/2

pathways in colorectal cancer (94).
Conclusion

WGS provides insight into the unparalleled burden of

mutation within metastatic CSCC, and our study has provided

a deeper understanding of the genomic complexity of this

disease. The functional impact of the varied and complex
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genetic alterations observed in metastatic CSCC should be

validated in the future in confirmatory studies comparing

whole genomes of non-metastatic primary tumors to

metastatic tumors. This knowledge would significantly

contribute to the identification of biomarkers in primary

CSCC for predicting metastasis.
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