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Abstract

Background

Infection with human immunodeficiency virus type 1 (HIV) typically results from transmission

of a small and genetically uniform viral population. Following transmission, the virus popula-

tion becomes more diverse because of recombination and acquired mutations through

genetic drift and selection. Viral intrahost genetic diversity remains a major obstacle to the

cure the HIV; however, the association between intrahost diversity and disease progression

markers has not been investigated in large and diverse cohorts for which the majority of the

genome has been deep-sequenced. Viral load (VL) is a key progression marker and under-

standing of its relationship to viral intrahost genetic diversity could help design future strate-

gies for HIV monitoring and treatment.

Methods

We analysed deep-sequenced viral genomes from 2,650 treatment-naive HIV-infected

persons to measure the intrahost genetic diversity of 2,447 genomic codon positions as

calculated by Shannon entropy. We tested for associations between VL and amino acid

(AA) entropy accounting for sex, age, race, duration of infection, and HIV population

structure.
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Results

We confirmed that the intrahost genetic diversity is highest in the env gene. Furthermore,

we showed that mean Shannon entropy is significantly associated with VL, especially in

infections of >24 months duration. We identified 16 significant associations between VL (p-

value<2.0x10-5) and Shannon entropy at AA positions which in our association analysis

explained 13% of the variance in VL. Finally, equivalent analysis based on variation in HIV

consensus sequences explained only 2% of VL variance.

Conclusions

Our results elucidate that viral intrahost genetic diversity is associated with VL and could be

used as a better disease progression marker than HIV consensus sequence variants, espe-

cially in infections of longer duration. We emphasize that viral intrahost diversity should be

considered when studying viral genomes and infection outcomes.

Trial registration

Samples included in this study were derived from participants who consented in the clinical

trial, START (NCT00867048) (23), run by the International Network for Strategic Initiatives

in Global HIV Trials (INSIGHT). All the participant sites are listed here: http://www.insight-

trials.org/start/my_phpscript/participating.php?by=site

Author summary

Viral intrahost genetic diversity complicates the cure of HIV; nevertheless, there is a lack

of large and diverse cohort studies based on near-full and deep-sequenced HIV genomes.

Here, we analysed deep-sequenced viral genomes from 2,650 demographically diverse

and treatment-naive HIV-infected persons to measure the intrahost genetic diversity of

2,447 genomic codon positions as calculated by Shannon entropy. First, we verified that

intrahost genetic diversity is highest in the env gene. Then, we identified that mean Shan-

non entropy positively associates with viral load, mostly in infections of>24 months

duration. Finally, we showed that intrahost diversity in 16 HIV genomic positions signifi-

cantly associated with viral load and explained 13% of the variance in viral load, whereas

equivalent analysis based on variation in HIV consensus sequences explained only 2% of

VL variance. Overall, our study shows that higher viral intrahost genetic diversity posi-

tively associates with viral load and is a better disease progression marker than variation

of HIV consensus sequences. Our findings further suggest that better understanding of

pathogen genomics is required to better address infectious diseases.

Introduction

Human immunodeficiency virus type 1 (HIV) shows high genetic diversity between and

within the human hosts [1,2]. While within-host viral diversity is initially limited by the trans-

mission bottleneck, HIV genomes quickly diversify as a result of a high viral replication rate

and high error rates during replication [3]. Such high genetic diversity allows the virus to

avoid the host’s immune response and can lead to development of drug resistance during treat-

ment [1]. HIV-1 set-point viral load (spVL), the approximately stable viral load (VL) measured
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by plasma HIV-RNA in the early chronic phase of HIV-infection, is associated with clinical

progression of HIV-infection [4]. SpVL has been shown to be associated with human genetics

and, even more pronounced, with viral genetics [5].

Intrahost viral genetic diversity balances between adaptation to the host environment and

maintenance of replication ability, and it allows to explore intrahost HIV evolution in cross-

sectional datasets. Even though longitudinally collected datasets are preferred for intrahost

HIV evolution, cross-sectional datasets are easier to collect and scale up [6,7]. Among various

methods for intrahost genetic diversity quantification, Shannon entropy is commonly used

and easy to interpret [8–10]. Shannon entropy reflects both the number of present variants

and their frequencies [9]. Shannon entropy is highest at the genomic position when all possible

encoded amino acids (AAs) are present at equal frequencies [11]. Higher HIV intrahost diver-

sity could be a result of the faster evolution of HIV escape mutants or, alternatively, could be a

result of a more robust host immune response to HIV [12].

To date, the relationship between intrahost genetic diversity and disease progression mark-

ers, e.g. viral load (VL), have been investigated in relatively highly selected and small cohorts

(up to 187 individuals in Hightower et al., 2012 [10]) and have typically been based on tech-

niques that allows for only low depth sampling for variation in a minor part of the HIV

genome [10,12–21]. Investigations based on near-full and deep genome sequencing of HIV

genomes from large and diverse cohorts are required to further elucidate the relationship

between intrahost genetic diversity and disease progression and generalize previous findings

from smaller and more homogenous cohorts.

Participants from across 35 countries in the Strategic Timing of AntiRetroviral Treatment

(START) clinical trial represent a demographically diverse cohort of treatment naïve HIV-pos-

itive persons infected with a range of different HIV subtypes and for which near-full viral

genomes have been deep sequenced [22–25]. Hence, by using genomic data from the START

cohort, we aimed to identify how Shannon entropy at AA positions as a measure of intrahost

diversity varies across the HIV genome, and how it relates to the VL. We further aimed to

identify the AA positions in which Shannon entropy was most associated with the VL, and

finally, we compared whether interhost or intrahost HIV genetic variation better explained

variance in VL.

Methods

Ethics statement

Samples included in this study were derived from participants who consented in the clinical

trial, START (NCT00867048) [23], run by the International Network for Strategic Initiatives

in Global HIV Trials (INSIGHT). The study was approved by the institutional review board or

ethics committee at each contributing center, and written informed consent was obtained

from all participants. All informed consents were reviewed and approved by participant site

ethics review committees. All the participant sites are listed here: http://www.insight-trials.

org/start/my_phpscript/participating.php?by=site.

Study population

Samples included in this study were derived from participants from the START trial, which

included 4,685 participants fulfilling the following criteria: 1) a CD4+ cell count>500 cells/μl

at baseline, 2) no history of AIDS, 3) no previous history of antiretroviral treatment and 4)

were above 18-years-old at study entry [23,26]. For this study, we included participants which

had baseline plasma samples with a VL measurement� 1,000 copies/mL and viral genomes

sequenced by next-generation sequencing (N = 3,785).
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HIV sequencing, alignment, variant calling, and subtyping

The detailed laboratory procedure is described in Bennedbæk et al., 2021 [25]. In short, viral

RNA was extracted from plasma and amplified using two amplicons spanning 7,125 nt (HIV-1

HXB2 genome regions 1,485–5,058 and 5,967–9,517) of the 9,719 nt (74%) HIV genome and

sequenced by next-generation sequencing (S1 Fig). Reads were first aligned against the

GRXh37.p13 human reference genome with Bowtie2 v2.2.8 and only read pairs with either

read not aligned to the human genome were retained. Virvarseq [27] was used for alignment

of cleaned reads and AA variant calling with the HXB2 HIV reference genome (GenBank

accession number K03455.1) with default parameters. Virvarseq alignment, realignment, and

AA variant calling were performed per gene basis (rev and tat genes were split into separate

analyses for each reading frame). The two amplicons with primer regions excluded did not

completely cover the genes gag, pol, rev, and tat, therefore, variant calls for the gene coding for

the Gag protein were considered from HXB2 reference genome codon position 240, for Pol

until AA position 980, for Rev from position 7, and for Tat from position 52. No sequencing

was available for Vpr and Vif (S1 Fig). Minimum Phred quality scores for all called codons

were>20. Variant calling was only performed for samples that had at least 10% of the gene

covered by aligned reads with a minimum 10-fold sequencing depth. Variants were called if

there was a minimum of 500-fold sequencing depth and a minimum of 1% of aligned reads

supported the variant. Samples which had�500 codon positions with�500-fold sequencing

depth were excluded from the analysis (N = 1,135). Consensus variants were called if there was

a minimum of 10-fold sequencing depth and minimum 50% of aligned reads supported the

variant.

Additional analyses were performed to test the robustness of the results with minimum

sequencing depth thresholds set to 300-fold and 1,000-fold, respectively (instead of a 500-fold

threshold). In these analysis, 1,002 and 1,379 samples with�500 codon positions with

�500-fold sequencing depth were excluded from the analysis, respectively (instead of 1,135

samples).

The detailed subtyping description is available in other publications [22,25]. In short, the

consensus sequences were used for subtyping using REGA version 3.0 [28] and the subtypes

were confirmed by a manual inspection. Samples with more than three predicted subtypes

were labelled as “Mixed”. If less than 100 participants were assigned a particular subtype, the

subtype was grouped as “Other” in this study.

Shannon entropy

Shannon entropy was used as a measure of intrahost diversity and was calculated for each AA

position in each sample. Shannon entropy Hi at the position i, where

Hi ¼ �
X

a

fa;ilog2fa;i;

and fa,i is the frequency of the amino acid (AA) a at position i. Mean Shannon entropy at the

AA position was used for identification of the most variable HIV-1 genomic positions. The

threshold defining the most variable positions was arbitrarily chosen to be 0.3. Sample’s mean

Shannon entropy was used for correlation with log10(VL) and regression analyses.

Statistical analysis

The association analysis was performed with R [29]. A multiple linear regression model was

fitted to assess associations of VL with sample’s mean Shannon entropy. VL measurements

were log10 transformed prior to analysis. Age, sex assigned at birth, race, duration of infection,
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the first four principal components of the HIV genetic data, subtype, and the average sequenc-

ing depth of positions with�500-fold sequencing depth (hereafter referred as average

sequencing depth) were considered as covariates to account for population structures. Bonfer-

roni correction was used to account for multiple testing in the association between VL and

Shannon entropy at AA positions.

Principal component analysis (PCA) was performed using the consensus AA calls with

EIGENSOFT software v6.1.4 [30]. Furthermore, only AA variants which had allele frequency

�5% and�95% were used. PCA analysis was based on 2,180 AA variants and the first four

principal components (PCs) were used for regression model construction to account for the

population structure as previously described [24]. R software [29] was used for explained vari-

ance analysis and visualizations. The explained variance was calculated by comparing the vari-

able’s sum of squares with the total sum of squares from analysis of variance (ANOVA)

analysis. The final model during the model selection was chosen based on the ANOVA analy-

sis when comparing to previous models. The significant associations from the multiple linear

association analysis for the Shannon entropy of the 2,447 HIV AA positions using the same

covariates as in the previous regression analysis were referenced against the best-defined cyto-

toxic T lymphocyte (CTL) epitopes from the HIV molecular immunology database [31]. Addi-

tional robustness re-analyses were performed using 300-fold and 1000-fold sequencing depth

thresholds, resulting in 2,542 and 2,085 HIV AA positions being considered, respectively.

A 5-fold cross validation was performed by randomly splitting the dataset into 5 equal

parts, using one part as a test dataset and the rest as training data to calculate parameters for

the regression model. The model was evaluated by calculating root-mean-square deviation

(RMSE) and R2 parameters after fitting the model on the test and train datasets.

The duration of infection variable was based on a study by Sharma et al. 2019 [32] where

the duration of infection was determined to be�6 months based on multi assay algorithm

(MAA) serological and non-serological markers of recent infection or the self-reported date of

infection. 6–24 month duration of infection was determined 1) if MAA failed to confirm a

recent infection, infection date was unknown and the diagnosis date was<6 months before

randomization or 2) if HIV diagnosis was 6–24 months before randomization. Participants

were considered to be infected for>24 months if their HIV diagnosis was >24 months before

randomization.

Dryad DOI

https://doi.org/10.5061/dryad.6djh9w13s [26]

Results

Study participants and genome sequencing

A total of 3,785 START clinical trial participants had HIV genomes sequenced [22,24,25].

After read alignment to the HXB2 reference genome, 1,135 genomes had 500 or less (out of

2,549) codon positions covered by�500 reads. These genomes were removed from further

analysis leaving 2,650 HIV genomes in the study (S1 Table). It should be noted that the sam-

ples of the excluded genomes had a significantly lower VL than the included HIV genomes

(Wilcoxon signed-rank test, p-value<2.2x10-16). The included genomes on average had a

5,521-fold (range 214–40,501-fold) sequencing depth, and an average sequencing depth of

11,638-fold (range 667–163,667-fold) for the positions included in this analysis (i.e., the posi-

tions with�500-fold sequencing depth). VL of the included samples correlated weakly with

sequencing depth (Pearson’s correlation coefficient– 0.12).
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Shannon entropy calculation

While we calculated Shannon entropy for all 2,549 HIV genomic codon positions within the

targeted genomic regions (Fig 1), 102 positions, which had sufficient sequencing depth in

�800 samples, were excluded from further analysis as these positions showed an aberrant

number of samples with sufficient sequencing depth (may be a result of unsuccessful mapping

of reads to highly variable genomic regions) and coincided with high entropy. The excluded

positions were all either within Env or near the start or end of amplicons (Fig 1 and S2 Table).

Accordingly, a total of 2,447 positions were included with a distribution over the HIV genome

as follows: Gag—262 positions, Pol—979 positions, Env—799 positions, Vpu—78 positions,

Tat—47 positions, Rev—107 positions, Nef—207 positions.

The most variable positions in the sampled HIV genomes

A total of 2,447 AA positions were considered for the most variable position identification.

Overall, 36 positions had mean Shannon entropy�0.3 (S3 Table and Fig 1): five high entropy

positions were in Gag, two in Pol, and 29 in Env. Mean Shannon entropy was significantly

higher (Wilcoxon signed-rank test, p-value<2.2x10-16) within Env variable loop regions than

in other Env positions. The entropy distributions in the most variable positions were similar

between different races and subtypes (S1 Table and S2 and S3 Figs).

If we performed the analysis using a more stringent 1,000-fold requirement for sequenc-

ing depth of included positions (instead of the 500-fold requirement in main analysis), we

identified the same positions to show high entropy; except if the positions were excluded

from the analysis due to the increased requirement for sequencing depth (S4 Table). If we

used a less stringent 300-fold requirement for sequencing depth, we also identified the same

positions to show high entropy; yet we then also identified additional 22 high entropy posi-

tions that did not have enough sequencing depths to be included in the more stringent anal-

yses (S4 Table).

Intrahost diversity correlation with viral load

To investigate the linear dependence between sample’s mean Shannon entropy and log10

VL, and the duration of infection, respectively, we performed a univariate linear regression

of log10 VL and the sample’s mean Shannon entropy, and explored their differences based

on the duration of infection (Fig 2). We observed that entropy increased with VL regardless

of the duration of infection. Sample’s mean Shannon entropy alone, as deduced by ANOVA

analysis, explained 4.14% of the observed VL variance. Contrarily, a univariate model of

log10 VL association with the average sequencing depth explained 0.68% of the variance in

VL (S5 Table).

The median VL was lowest in the infections with >24 months duration while the median

of the sample’s mean Shannon entropy was highest in this group. Pearson’s correlation coef-

ficient between VL and the sample’s mean Shannon entropy was 0.20, 0.19 and 0.33 for

infection duration of <6 months, 6–24 months and >24 months, respectively. Sample’s

mean Shannon entropy, as deduced by ANOVA analysis, explained 3.91%, 3.56%, and

10.70% of the variance in VL for infection duration of <6 months, 6–24 months and >24

months, respectively. The explained variance using a 300-fold and 1000-fold sequencing

depth thresholds, respectively, was comparable to the main analysis (S4 Table). ANOVA

analysis revealed that all three variables: sample’s mean Shannon entropy (p-value<2.2x10-

16), duration of infection (p-value = 3.5x10-9) and their interaction (p-value = 2.0x10-2) have

a significant effect on VL.
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Mean intrahost diversity association with viral load

Next, we built a multiple linear regression model to further explore the relationship between

log10 VL and Shannon entropy (S5 Table). The final model included participant’s age, sex

assigned at birth, race, duration of infection and the first four PCs (which are used to account

for the viral genetic population structure) as covariates (S5 Table). In total, the final regression

model (i.e., sample’s mean Shannon entropy together with all the covariates) explained 10.3%

of the variance in VL. The explained variance in VL for the re-analysis using a 300-fold and

1000-fold sequencing depth thresholds, respectively, was comparable to the 500-fold threshold

used in the main analysis (S4 Table). The final model including only the participants infected

for>24 months explained 13.0% of the variance in VL. If we added the average sequencing

depth as a covariate to the multiple linear regression model together with other covariates, the

model explained 10.7% rather than 10.3% of the variance (S5 Table). To confirm that our find-

ings are not affected by overfitting, we performed a 5-fold cross validation analysis. The aver-

age RMSE of the training and testing dataset was 0.574 (0.571–0.577) and 0.578 (0.565–0.587),

respectively. The explained variance was 9.3% for the test dataset and 10.4% for the train data-

set. Shannon entropy averaged per gene for each sample in the final multiple linear regression

model (Model 6 in S5 Table) did not associate significantly with VL (p-value = 0.31 for Gag, p-

value = 0.24 for Pol, p-value = 0.48 for Env, p-value = 0.48 for Vpu, p-value = 0.33 for Rev, p-

value = 0.34 for Tat, p-value = 0.21 for Nef).

Fig 1. Mean Shannon entropy over the HIV genome (top) and number of samples with minimum 500-fold genome sequencing depth over the

genome (bottom). A total of 2,447 HIV AA positions are shown on the x-axis. Gag positions 1–239, Pol positions 981–1004, Rev positions 1–6 and

Tat positions 1–51 are not shown, as they were not covered by the amplicons. Red horizontal line in the top figure shows the used Shannon

entropy threshold. Grey points at the top plot mark the HIV genome positions which were excluded from the analysis (�800 samples). Grey

horizontal line at the bottom plot shows the threshold for the minimum number of samples.

https://doi.org/10.1371/journal.pcbi.1010756.g001

Fig 2. The relationship between sample’s mean Shannon entropy, viral load (VL) and infection duration.

https://doi.org/10.1371/journal.pcbi.1010756.g002
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HIV intrahost position entropy association with viral load

To disentangle the effect intrahost diversity at the specific HIV genome positions has on log10

VL, we performed the multiple linear association analysis for the Shannon entropy of 2,447

HIV AA positions using the same covariates as in the previous regression analysis (i.e., partici-

pant’s age, sex assigned at birth, race, duration of infection and the first four PCs). In 16 cases

(six positions in Pol, nine positions in Env and one position in Nef; Fig 3) the VL association

with the Shannon entropy at the specific HIV AA position was below Bonferroni-corrected p-

value threshold (p-value<2.0x10-5). In all 16 positions the association was driven by a general

trend and not a few outliers (Table 1 and S4 Fig). Together Shannon entropy values from the

16 associated AA positions explained 12.6% of the variance in VL. The full model explained

21.9% of the variance in the VL (S6 Table). Average RMSE values from train and test data in

the 5-fold cross validation analysis were similar (S7 Table). The joint model including all 16

positions revealed that only half of the variants were significantly associated with VL when

considered together (S5 Table) which is likely a result of multicollinearity between the Shan-

non entropy in different HIV genomic positions (S5 Fig). The regression model with the con-

sensus AA variants using the same covariates showed that 13 significantly associated

consensus AA variants explain 0.01−0.65% of the variance in VL and the full model with the

covariates explained 6.2% of the variance in VL (S8 Table).

Fig 3. Manhattan plot of the associations between viral load (VL) and Shannon entropy at AA positions projected on the HIV genome. Red horizontal

line marks the Bonferroni p-value threshold (p = 2.0×10−5). The x-axis denotes gene AA positions. A total of 2,447 HIV AA positions are shown on the x-axis.

Gag positions 1–239, Pol positions 981–1004, Rev positions 1–6 and Tat positions 1–51 are not shown, as they were not covered by the amplicons.

https://doi.org/10.1371/journal.pcbi.1010756.g003
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Only three associated AA positions (Pol34, Env453 and Env812) had no mutation entries

based on the data from HIV mutation browser [33], i.e., were conserved positions. Seven out

of 16 associated AA positions overlapped with one or more best-defined CTL epitopes

(Table 1). We did not find that the associated AA positions overlapped significantly differently

with the CTL epitope positions than expected by chance (Fisher’s exact test; p-value = 1) [31].

Discussion

While we and others have associated variation in consensus sequences of the HIV-1 quasispe-

cies with disease progression markers in studies with>1,000 individuals [5,24,34], equivalent

analyses of intrahost viral diversity have, despite showing strong associations, been conducted

on cohorts with only up to 187 individuals [10] and have typically been based on low depth

sampling of genetic variation in only a minor part of the HIV genome [10,12–21]. Conse-

quently, our study addresses the need for associations between intrahost diversity and disease

progression markers in a large and demographically diverse cohort with near-full deep-

sequenced HIV genomes. Moreover, we compare the strength of the association between VL

and intrahost diversity with VL and consensus HIV AA variants (Table 2).

We first identified the most variable positions of the HIV genomes. Then, we built a multi-

ple regression model to associate the differences in VL with the sample’s mean intrahost diver-

sity, and finally, we identified 16 HIV genome positions where intrahost diversity of the

position was associated with VL, which is an established marker of HIV disease progression

[4]. Note, while VL is a useful measure, VL tends to increase over time and to different degrees

in different individuals, and this increase may be an important component of progression

[35].

Our most variable HIV genome position analysis confirmed that intrahost diversity is not

equally distributed across the HIV genome and is higher in Env with several higher entropy

positions in Gag and Pol [36,37]. Additionally, we could not find an association of HIV intra-

host diversity and the HIV subtype or the race of the participant. It is important to emphasize

Table 1. Sixteen HIV amino acid (AA) positions where Shannon entropy was significantly associated with viral load (VL).

Gene AA position Effect size (95% CI) p-value Mean Shannon entropy CTL epitope coordinates (HLA alleles) a

Pol 34 0.229 (0.129–0.330) 7.53×10−6 0.10

Pol 75 0.262 (0.156–0.369) 1.32×10−6 0.07

Pol 97 0.221 (0.143–0.298) 3.15×10−8 0.19 90–98 (B�44)

Pol 195 0.161 (0.089–0.233) 1.09×10−5 0.28 188–198 (C�01:02)

Pol 329 0.263 (0.146–0.380) 1.02×10−5 0.07 328–336 (A�30:02, C�12:02)

Pol 441 0.338 (0.213–0.463) 1.33×10−7 0.09

Env 32 0.168 (0.095–0.240) 5.96×10−6 0.22 31–39 (B�18:01,B�44); 31–40 (B�44:02)

Env 87 0.136 (0.076–0.196) 8.71×10−6 0.34

Env 102 0.340 (0.193–0.487) 6.03×10−6 0.06

Env 240 0.162 (0.090–0.234) 1.03×10−5 0.23

Env 336 0.168 (0.098–0.237) 2.41×10−6 0.34

Env 453 0.400 (0.246–0.555) 4.17×10−7 0.07

Env 674 0.246 (0.147–0.345) 1.36×10−6 0.18

Env 775 0.353 (0.192–0.513) 1.70×10−5 0.07 770–780 (A�03:01, A�30:01)

Env 812 0.274 (0.149–0.399) 1.78×10−5 0.10 805–814 (B�40:01)

Nef 15 0.210 (0.119–0.301) 6.50×10−6 0.22 13–20 (B�08:01)

a CTL epitope reference: https://www.hiv.lanl.gov/content/immunology/tables/optimal_ctl_summary.html

https://doi.org/10.1371/journal.pcbi.1010756.t001
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that we identified the most variable HIV genome positions as an absolute measure across the

genome and not relative to the background variability of a given genomic region, i.e., we used

the same threshold for genome variability throughout the genome without considering the

overall higher or lower variability of the specific gene. Furthermore, our analysis of Shannon

entropy averaged per gene for each sample showed that that the relationship between Shannon

entropy and VL is not driven by intrahost diversity in one particular gene.

The relationship between VL and sample’s mean Shannon entropy revealed a positive cor-

relation between these parameters where the infections of short duration showed a weak corre-

lation and infections of longer duration were moderately correlated with VL which could be

explained by the initial transmission bottleneck followed by viral diversification [38–40]. It is

in agreement with the established knowledge that spVL as a prognostic marker can only be

employed in chronic infection [41]. These findings concur with a study by Kafandro et al.
2017, where the authors showed that Shannon entropy can confidently discriminate between

recent and chronic infections [42]. Moreover, the lower VL in chronic infections than in

recent infections might be due to the nature of the cohort where participants with a longer

infection duration who still had a high CD4+ cell count are likely to better control the infection

innately [7]. Finally, our results indicate that the sample’s mean Shannon entropy, especially in

infections of longer duration, is informative when explaining VL variation among patients

since together with other covariates in our model explains >10% of the overall variance in VL.

Our findings are in line with a smaller study by Bello et al. 2007 which found a significant posi-

tive correlation between viral genetic changes and VL in long-term nonprogressors (LTNP)

[15] even though our study was not limited to LTNP. Note, that the observed results could not

be explained by the fact that more variability is observed in higher sequencing depth. Addi-

tionally, while the directionality of the relationship between VL and intrahost diversity cannot

be determined from our study, the work by Bello et al. 2007 showed that increase in intrahost

diversity directly leads to the increase of VL [15].

The regression model in our main analysis did not include HIV subtypes as subtype assign-

ment did not improve the model significantly; instead, the first four principal components of

genome consensus sequences were sufficient to account for the genomic population structure.

We also tested how robust our results were to changes in the sequencing depth required to

Table 2. Variance in viral load (VL) explained by linear regression analysis with different models. PC1-PC4

denotes first principal components of principal component analysis performed on consensus AA variants to account

for the viral population structure. The 16 and 13 HIV AA positions are all positions significantly associated with VL

when position-wise Shannon entropy or consensus variants, respectively, are used to explain VL.

Model % of VL variance

explained

VL ~ Sample’s mean Shannon entropy (all samples) 4.14

VL ~ Sample’s mean Shannon entropy (samples from <6 months infection duration) 3.91

VL ~ Sample’s mean Shannon entropy (samples from 6–24 months infection duration) 3.56

VL ~ Sample’s mean Shannon entropy (samples from >24 months infection duration) 10.7

VL ~ Average sequencing depth 0.68

VL ~ Sample’s mean Shannon entropy + age + sex + race + duration of infection +

[PC1-PC4]

10.3

VL ~ Sample’s mean Shannon entropy + age + sex + race + duration of infection +

[PC1-PC4] + average sequencing depth

10.7

VL ~ Shannon entropy at 16 HIV AA positions + age + sex + race + duration of infection

+ [PC1-PC4]

21.9

VL ~ Consensus variants at 13 HIV AA positions + age + sex + race + duration of

infection + [PC1-PC4]

6.2

https://doi.org/10.1371/journal.pcbi.1010756.t002
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include positions (and thus samples) and to the addition of the average sequencing depth as a

covariate to the model. Results were robust to both tests, and, while VL of the included samples

correlated weakly with sequencing depth, we found average sequencing depth alone to explain

little of the variance in VL. Finally, we obtained similar results in our analysis when we applied

5-fold cross validation, suggesting that the model was not overfitted.

Our analysis showed that VL was significantly associated with the intrahost diversity of 16

HIV AA positions and as shown by the joint multiple regression model, the intrahost diversity

in these HIV AA positions is not independent of each other and has a collinear relationship.

One explanation for VL association with Shannon entropy at these HIV AA positions could be

that these positions are less conserved and acquire mutations faster. We hypothesize that these

processes correlate with the acquisition of other adaptive mutations, and, therefore, higher VL

[6]. On the other hand, higher Shannon entropy in the associated positions could provide an

advantage to the virus when avoiding the immune response, so the higher VL would be a direct

outcome of the increased entropy as some of the associated positions are a part of best-defined

CTL epitopes. [31,36,37]. While both explanations are plausible, we did not find support that

increased Shannon entropy at these positions could give rise to a direct increase in VL. Fur-

thermore, by using a multiple regression model with HIV consensus sequences and the same

covariates as in this work, we confirmed that VL associates poorly with HIV consensus

sequences [21]. Therefore, we conclude that the HIV genome position entropy is a substan-

tially better marker of VL than the HIV mutations identified from consensus sequences

[24,34]. However, the association of VL with Shannon entropy in the 16 identified HIV AA

positions should be further tested in other studies, and more work is needed to define how

intrahost genome diversity at an early point in time could be a predictor of later changes in

CD4+ cell count, VL or other markers.

Our study has several limitations. We based our analysis on the full dataset to have maxi-

mum statistical power instead of leaving a part of the dataset out for validation. While our

analysis only included a single isolate per participant (i.e., a single time-point), samples from

multiple time-points could have provided further information about time-dependent relation-

ships between identified associations, viral genome diversification, and markers of disease pro-

gression. Additionally, the inclusion of host genetics in the association analysis between

Shannon entropy and VL could have furthered our understanding of the relationship between

the intrahost diversity at the specific positions and host immunotypes. Furthermore, success of

sequencing varied across both samples and genomic positions which limited the number of

samples and genomic positions that could be analysed, and we only included variants pre-

sented by at least 1% of covering sequencing reads which may make us disregard variation.

Moreover, sequencing was based on two amplicons covering the majority but not full length of

the HIV genome which prevented us from identifying associations outside of the sequenced

amplicons. Sequence reads were aligned against the HXB2 reference genome which belongs to

subtype B and, therefore, some reads from other subtypes might not have been aligned at the

most variable genomic regions. Finally, no participants with low VL were included in the anal-

ysis because of the nature of the cohort and, therefore, our analysis fails to identify associations

dependent on inclusion of such participants.

In conclusion, by using a large and demographically diverse cohort of HIV-infected treat-

ment-naive participants, we confirmed that the highest intrahost diversity is accumulated in

the Env region. Furthermore, we showed that both sample’s mean intrahost genetic diversity

and the intrahost genetic diversity at the 16 HIV genomic positions have a positive relationship

with VL, and that intrahost genetic diversity is a better marker of disease progression than

HIV variants identified from consensus sequences. Accordingly, HIV intrahost genetic diver-

sity should be taken into account when analysing HIV genomes and the clinical outcomes.
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