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Altered differentiation of endometrial
mesenchymal stromal fibroblasts is associated
with endometriosis susceptibility
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Cellular development is tightly regulated as mature cells with aberrant functions may initiate

pathogenic processes. The endometrium is a highly regenerative tissue, shedding and

regenerating each month. Endometrial stromal fibroblasts are regenerated each cycle from

mesenchymal stem cells and play a pivotal role in endometriosis, a disease characterised by

endometrial cells that grow outside the uterus. Why the cells of some women are more

capable of developing into endometriosis lesions is not clear. Using isolated, purified and

cultured endometrial cells of mesenchymal origin from 19 women with (n= 10) and without

(n= 9) endometriosis we analysed the transcriptome of 33,758 individual cells and com-

pared these to clinical characteristics and in vitro growth profiles. We show purified

mesenchymal cell cultures include a mix of mesenchymal stem cells and two endometrial

stromal fibroblast subtypes with distinct transcriptomic signatures indicative of varied pro-

gression through the differentiation processes. The fibroblast subgroup characterised by

incomplete differentiation was predominantly (81%) derived from women with endometriosis

and exhibited an altered in vitro growth profile. These results uncover an inherent difference

in endometrial cells of women with endometriosis and highlight the relevance of cellular

differentiation and its potential to contribute to disease susceptibility.
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Every tissue is a complex biological system consisting of
heterogenous cell mixtures that developed through cellular
differentiation and maturation. Tight regulation of these

processes are required to maintain homeostasis. They can be
influenced by both cell-autonomous and non-autonomous fac-
tors. Differentiation is contingent on stochastic interactions and
subject to biological variability1. Any alterations in the differ-
entiation or maturation process may give rise to subtle biological
variations, introduce heterogeneity that leads to functional con-
sequences and influence disease susceptibility.

The endometrium is the reproductive tissue that lines the
uterus and plays a critical role in reproduction. It is unique in that
it is consistently shed and regrown each month, generating up to
10 mm of new mucosa. Over the reproductive life of a woman, it
undergoes >400 cycles of growth, differentiation and shedding2.
The endometrium is made up of luminal and glandular epithelial
cells supported by a vascularised stroma with immune infiltra-
tion. Endometrial stromal fibroblasts are regenerated from
endometrial mesenchymal stem cells (eMSC) located at perivas-
cular locations in basalis, not shed during menstruation3. In the
endometrium, local niche effects largely restrict eMSC differ-
entiation into mesodermal stromal fibroblasts4 that subsequently
differentiate into secretory decidual cells under hormonal sti-
mulation. As a highly regenerative tissue, the endometrium has
the potential each month for aberrant differentiation to occur.

Endometriosis is a reproductive disorder characterised by the
growth of endometrial tissue outside the uterus. Endometrial cells
are thought to enter the peritoneal cavity through retrograde
menstruation5. Up to 80% of women experience retrograde men-
struation, however, only a proportion develop endometriosis6.
Inherent factors in the cells of some women must underlie an
increased disease susceptibility. A number of studies have reported
differences between the endometrium of women with and without
endometriosis, although differentially expressed genes have been
difficult to consistently replicate7, potentially due to the dynamic
nature of the tissue. Recent large scale genome-wide gene expression
studies on endometrial tissue also reported no significant difference
in gene expression between women with and without endometriosis
once the menstrual stage and multiple testing correction was
applied8,9. Although increasing in power, these studies are limited by
the complex milieu of cells and cellular states that may mask subtle
differences.

Cells of mesenchymal lineage are some of the most abundant
in the endometrium and are strongly implicated in endometriosis
pathogenesis. SUSD2+ eMSC have been identified in both peri-
toneal and menstrual fluid and may have a key role in the
establishment and proliferation of ectopic endometrial tissue10

through their clonogenic and multipotent differentiation
capacity5. eMSC from women with endometriosis had impaired
in vitro decidualisation11, as well as altered activation of signalling
pathways during decidualisation12,13.

To identify inherent variation in the endometrium that could
underlie endometrial susceptibility we therefore assessed gene
expression of individual mesenchymal-derived cells isolated and
cultured from the endometrium and their association with clin-
ical parameters and in vitro growth. We identified eMSCs and
two distinct endometrial stromal fibroblasts populations gener-
ated by divergent differentiation from MSC to their mature cell
state, one of which was characterised by gene expression profile
indicative of an altered immune state and was found significantly
more frequently to have been derived from women with endo-
metriosis. This study links single-cell transcriptome data with
both functional and clinical characteristics and uncovers a
potential role for divergent mesenchymal-derived stromal fibro-
blast maturation to contribute to endometriosis susceptibility.

Results
Pure, single cells of mesenchymal origin were isolated from
women with and without endometriosis. Endometrial stromal
cells isolated from endometrial biopsies were grown in culture
and stored frozen (Fig. 1a). We selected 22 frozen samples for
analysis and to ensure pure, viable cells of mesenchymal lineage
from thawed preparations and conducted two-channel FACS
sorting with forward and side scatter (Fig. 1b), propidium iodine
(PI) exclusion (Fig. 1c) and platelet-derived growth factor β+
(PDGFB+) expression (Fig. 1d). The mean cell concentration
after initial thaw was 2.19 × 106; (range 0.172 × 106–3.46 × 106)
with 90.0% remaining viable after the thawing process. One
sample did not yield a sufficient cell concentration, and two
samples had a final viability <80% and were not carried forward
to single-cell analysis, resulting in a final 19 samples.

Of the resulting 19 samples, ten were derived from patients
with endometriosis and nine were from women which had no
endometriosis observed during surgery. For all 19 women (both
cases and controls) no adenomyosis was observed during
surgery. One control patient was diagnosed with subserosa
uterine myomatosis and one case was diagnosed with intramural
uterine myomatosis. Using the most severe form of the lesion to
define endometriosis subtype14, two endometriosis patients were
classified as superficial peritoneal, two were classified as
endometrioma (with one having an endometrioma only and
the other an accompanying superficial lesion). The remaining
six endometriosis patients were classified as DIE with four
patients having a DIE lesion accompanied by a superficial lesion,
one patient having a combination of a superficial peritoneal
lesion, OMA and DIE lesion and one patient with an OMA and
DIE lesion.

Serum progesterone measurements were available for all 19
patients and age and BMI were available for 18 patients. Nine
endometrial stromal cell preparations were isolated during the
proliferative phase (7× cases and 2× controls), four were isolated
during the periovulatory period (1× case and 3× controls) and six
during the secretory stage (2× cases and 4× controls). No
significant difference in menstrual cycle phases was observed
between cases and controls (Supplementary Table 1). The average
age and BMI of all patients were 35.17 ± 1.71 and 24.16 ± 1.06
respectively. There was no significant difference in age (case=
35.17 vs control= 35.0, p= 0.939), although there was a
significant difference in BMI (case= 24.16 vs control= 27.29).
Cells were frozen down between passages 4 and 7, with p4= 4
(2× case, 2× control), p5= 4 (0× case, 4× control), p6 (7× case,
1× control) and p7= 1 (1× case, 0× control). A chi squared
comparison indicated a significant difference between cases and
controls (p= 0.026) with a slightly higher mean passage number
for stromal cells from endometriosis cases, reflective of an
enhanced growth profile. Through this process, we were able to
prepare single endometrial cells of mesenchymal origin from 19
patients that were subsequently analysed through transcriptome-
wide gene expression profiling.

Single-cell RNA-sequencing and assessment of cluster resolu-
tion identified three consistent subtypes of endometrial
mesenchymal cells. In order to increase the size of the patient
cohort, we used a multiplexing approach to combine samples
from different patients into four microfluidic runs of the 10X
Genomics Chromium Platform (P1: Patients 1–6, P2: 7–11, P3:
12–16 and P4: 16–19) (Fig. 1a). We obtained sequencing data
from the four scRNA-seq libraries constructed from our four
pools of 19 endometrial stromal cells (ESC). Endometriosis cases
and controls were distributed across each pool (P1: Control= 2,

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03541-3

2 COMMUNICATIONS BIOLOGY |           (2022) 5:600 | https://doi.org/10.1038/s42003-022-03541-3 | www.nature.com/commsbio

www.nature.com/commsbio


Fig. 1 Experimental design and quality control for high throughput single-cell RNA sequencing of purified endometrial mesenchymal cells.
a Endometrial biopsies were isolated, from 19 different women and cultured. In vitro growth assays, DNA isolation for genotyping and PDGFRβ+ FACS
purification was performed. Purified cells from nineteen samples were pooled into four lanes and run on the 10X Chromium controller and scRNA-seq data
was analysed and cell clustering was performed. Samples were assigned to their source individual and clusters compared to clinical data. Both scRNA-seq
data and clinical data were compared to in vitro growth. Mesenchymal stromal cells were purified via FACS (b) forward and side scatter, c viability and
d PDGFRβ+ expression. UMAP plot distribution of scRNA-seq data was determined both e pre- and f post harmony correction of between-pool variations
introduced through technical variations. g Clustree analysis was used to determine the most stable level for cellular clustering. h UMAP plot of integrated
scRNA-seq data at a clustering resolution of 0.1 identified three distinct clusters with minimal subsequent mixing at a finer resolution. i At a cluster
resolution of 0.1, cell numbers from each pool in each cluster remained stable suggesting clusters were formed from biological differences rather than
technical effects. j UMAP plot of scRNA-seq data labelled by cell cycle phase inferred by the CellCycleScoring function in Seurat. a Created with
BioRender.com.
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Case= 4, P2: Control= 3, Case= 2, P3: Control= 3, Case= 2,
P4: Control= 2, Case= 2).

For each pool, the number of cells obtained were 10,411 (P1),
9869 (P2), 10,894 (P3) and 9808 (P4) making a total of 40,982
cells. Demuxlet identified 3982 doublets that were randomly
distributed across each pool (Supplementary Fig. 1a–d). We also
excluded 358 ambient cells, 2884 with >10% mitochondrial DNA
that was considered stressed or dying cells, and cells with either
very high (>6500), or very low (<200) numbers of expressed
genes. From the initial 40,982 cell dataset we retained 33,758 high
quality singlets for analysis with an average read depth of 58,541
(P1), 58,277 (P2), 53,825 (P3) and 55,836 (P4) for each pool. We
detected a median of 19,803 (P1), 20,095 (P2), 20,651 (P3) and
22,472 (P4) unique molecular identifiers (UMI) per cell with the
total number of genes with measurable expression of 21,885 (P1),
21,736 (P2), 22,178 (P3) and 21,996 (P4). In total, 20,590 unique
genes were identified across all four pools with the median
number of genes expressed per cell as 3780 (P1), 3761 (P2), 3941
(P3) and 4050 (P4). After doublet-filtering and quality control,
between-pool batch effects were corrected using Harmony
(Fig. 1e, f).

We next investigated transcriptome similarity and assessed
whether potential cellular subtypes were present through
unsupervised Louvain clustering using Seurat v3.0.215. A critical
step in deriving relevant data from single-cell datasets is selecting
the appropriate resolution for clustering. Increasing resolution
increases cell clusters, although potentially at the expense of
biological relevance (Supplementary Fig. 2). Using the clustree16

package, we produced a cluster tree with 13 levels of resolutions
ranging from 0.01 to 1.0 (Fig. 1g) to visualise the similarity
between cells at multiple resolutions and track how cells move
between clusters as the resolution is varied. This package uses a
hard clustering algorithm to cluster data at multiple resolutions
producing a set of cluster nodes, the overlap between clusters is
used to build edges and the resulting graph represents how each
cluster relate to each other, which are distinct and which are
unstable. This allows the visualisation and exploration of all
possible choices16. At a coarse resolution (0.1), three distinct
nodes were identified that established stable clusters with minimal
movement across nodes at increasingly finer resolutions. At this
coarse resolution, there was also a distinct spatial separation for
each cluster (Fig. 1h) and the number of cells from each
experimental pool within each cluster was consistent (Fig. 1i). In
contrast, clustering at a finer resolution (0.6) generated 20 clusters
which lacked distinct spatial resolution and revealed mixing
between clusters and possible over clustering resulting from
technical artifacts (Supplementary Fig. 2). Through the inclusion
of multiple patients, multiplexing of samples and deep sequencing
of expressed genes we were able to sequence a dataset of sufficient
size and quality to identify three stable clusters of distinct
mesenchymal cells.

Cell cycle scoring indicates cluster 1 harboured an increased
portion of proliferating cells. Genes can be periodically regu-
lated during the cell cycle17, influencing their transcriptome and
affecting the ability to accurately cluster cells based on phenotype.
To characterise the cell cycle for each cell, we calculated G1, G2M
and S scores using the CellCycleScoring function in Seurat and
human cell cycle phase gene expression profiles18. The majority
of cells analysed (69.65%) showed a G1 phenotype, whilst 15.77%
of cells were classified as G2M and 14.58% were classified as S
phase (Fig. 1j). We observed an enrichment of the proliferating
cells (G2M) in cluster 1 (54.94%). Cluster 1 also had an increased
proportion of cells in S phase (31.94%) compared to clusters 0
(7.88%) and 2 (12.64%). The majority of cells in cluster 0 and 2

were classified as the quiescent G1 phase (90.80% and 84.11%
respectively). This analysis indicated most cells analysed were in
the G1 phase and the cell cycle was not directly associated with
cell clusters.

Differential gene expression between clusters reveals discrete
signatures indicative of varied interaction with the micro-
environment. We next examined the differentially expressed genes
(DEGs) that underlie these cluster differences (Fig. 2a). Setting a log
fold change (logFC) > 0.25 and adjusted p value < 1 × 10−4 we found
152 significant DEGs between cells in cluster 0 and all other cells
(Supplementary Data 1). A comparison between cluster 1 and all
remaining cells found 707 DEGs (Supplementary Data 2), and
cluster 2 (Supplementary Data 3) and all other cells found 113
DEGs. Spatial representation of three of the top DEGs in cluster 0
(IGFBP5; logFC= 0.984; adj. p value < 1.0 × 10−305; MMP11;
logFC= 0.887; adj. p value < 1.0 × 10−305 and ACTA2; logFC=
0.728; adj. p value < 1.0 × 10−305) (Fig. 2b) revealed strong variation
and non-synonymous distribution within the cluster, accompanied
by low but consistent expression in the two other clusters. A similar
spatial resolution was observed for UBE2S (logFC= 1.67; adj.
p value < 1.0 × 10−305) with high expression in cluster 1 but low,
consistent expression in the remaining clusters, although both
PTTG1 (logFC= 1.833; adj. p value < 1.0 × 10−305) and UBE2C in
particular (logFC= 2.02,; adj. p value < 1.0 × 10−305) showed a
limited expression confined mostly to cluster 1. In cluster 2, MMP3
(logFC= 2.31; adj. p value < 1.0 × 10−305), CST1 (logFC= 2.19; adj.
p value < 1.0 × 10−305 and MMP10; (logFC= 1.56; adj. p value <
1.0 × 10−305) showed significant differential expression, and both
CST1 and MMP10 expression were limited mostly to cluster 2. We
also performed differential expression analysis between specific
cluster pairs (cluster 0 vs 1, 1 vs 2, and 0 vs 2) and detected 242, 246
and 17 significant DEGs, respectively (logFC > 0.5, adj. p value < 1
× 10−4; Supplementary Data 4, 5 and 6).
To gain further insight into the biological differences under-

lying the three clusters, we performed pathway analysis using the
top 200 significant DEGs for each cluster using Reactome, KEGG
and gene ontology databases (Fig. 2c). This revealed significantly
enriched processes involved in extracellular matrix organisation
(adj. p value < 1.33 × 10−12) and focal adhesion (adj. p value=
1.1 × 10−3) for cluster 0. For cluster 1 we observed significant
enrichment of cell cycle (adj. p value= 6.97 × 10−12),
progesterone-mediated oocyte maturation (adj. p value= 4.28 ×
10−8) and oocyte meiosis (adj. p value= 2.53 × 10−7), whereas
cluster 2 DEGs were enriched for extracellular matrix organisa-
tion (adj. p value= 1.89 × 10−14) but also antigen processing and
presentation (adj. p value= 0.0049), and allograft rejection (adj. p
value= 0.0389), indicating a potentially immune-reactive cell
population (Fig. 2c). This analysis indicated gene expression
profiles of cluster 0 and 2 were associated with the extracellular
organisation, with cluster 0 focussed on adhesion, whereas cluster
2 may be influenced by the immune response. Cluster 1 appeared
specifically related to reproductive development.

Cell-type annotation confirmed gene expression signatures
consistent with cells of mesenchymal origin. Mesenchymal
maturation can take multiple pathways leading to divergent
progeny such as fibroblasts, adipocytes and smooth muscle
cells19. To annotate our transcriptomically defined cell clusters we
applied SingleR20. This utilises the transcriptomic signatures from
the Human Primary Cell Atlas, a database curated from publicly
available microarray datasets of human primary cells21. The
analysis confirmed a close alignment with cells of mesenchymal
lineage, albeit with variations in mesenchymal progeny dis-
tributed across the clusters (Fig. 3a). The five most prevalent cell
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types identified were fibroblasts (84.78%), mesenchymal stem
cells (MSCs, 13.66%), smooth muscle cells (1.21%), induced
pluripotent stem (IPS) cells (0.24%) and tissue stem cells (0.11%)
(Fig. 3b).

Overlay of the different cell types with the clustering analysis
revealed fibroblasts were the predominant cell type of cluster 0,
representing (98.34%) of the cells in this cluster, with 0.93%
identified as MSCs. As this was the largest cluster of fibroblast
cells we designated this cluster ‘fibroblast major’. Similarly,
cluster 2 while distinct from cluster 0 was predominately
fibroblasts (97.34%) with the inclusion of some MSCs (2.50%)
and was subsequently termed ‘fibroblast minor’. The clustering
differences observed between the fibroblast clusters (clusters 0
and 2) could not be attributed to cell cycle differences (Fig. 2e).
Cluster 1 was identified predominantly as MSCs (57.42%), and
as such was named the ‘MSC cluster’, although 42.53% of cells
within this cluster were also identified as fibroblasts (Fig. 3c).
Analysis of gene expression signatures, therefore, supported the
mesenchymal lineage of the cell dataset, but also indicated subtle
differences exist within cells that can be used to delineate
variations.

Cell fate trajectory analysis identified the degree of mesench-
ymal differentiation for each cell. To investigate dynamic bio-
logical processes within our dataset we applied pseudotime and
RNA velocity analysis using Monocle 2 and scVelo22–25. This
allowed the opportunity to study cellular differentiation or lineage
progression by ordering individual cells along a trajectory, which
can then be used to infer the state of individual cells in processes
such as cell maturation (Fig. 3d). Overlay of the clustering data on
the pseudotime trajectory predictions suggested a directional
progression from cluster 1 (MSC cluster) as the root cell directing
a cell fate lineage towards cluster 0 (fibroblast major) (Fig. 3e).
This directional progression was also observed in the RNA
velocity analysis (Fig. 3f), supporting the hypothesis that the cell
differentiation pathway extends from cluster 1 (MSC cluster) to
cluster 0 (fibroblast major). Cluster 2 (fibroblast minor) in con-
trast, was spread uniformly across the differentiation trajectory.
Finally, we overlaid cell cycle information onto the trajectory plot
and observed that most G2M phase cells, as well as the S phase
cells corresponding to MSCs and the less differentiated fibroblasts
consistent with the initial cell cycle analysis of each cluster and
indicative of the higher proliferative ability of the MSCs (Fig. 3g).

Fig. 2 Differential gene expression and cell cycle characteristics of cell clusters. a A heatmap representation of the differentially expressed genes (DEGs)
across the different clusters. b UMAP plots coloured by log normalized expression of the top DEGs per cluster show strong gene expression in cells
consistent with the location of the respective cluster, although for each gene the individual cellular expression is variable. IGFBP5, MMP11 and
ACTA2 showed strong expression in cluster 0, but in distinct cells. Grey cells do not express the indicated gene. c Pathway analysis indicated a role for
extracellular matrix organisation in cluster 0, oocyte maturation and meiosis and cluster 1 and activation of matrix metalloproteinases, interferon-gamma
signalling and antigen processing and presentation in cluster 2.
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Comparison of the degree of gene expression change in each cell
identified cluster 1 as the root cells extending to cluster 0 as the
terminal differentiation. Cluster 1 existed across this trajectory
and represented either incomplete or dedifferentiated
mesenchymal cells.

Deconvolution of pooled samples successfully assigned each
cell to the patient of origin. To ascertain whether cell types or
cell clusters were associated with clinical phenotype we assigned
each cell from the 33,758 cell dataset to the source patient. To
demultiplex the individual patient samples in the four micro-
fluidic pools we collected SNP genotyping information and used
demuxlet26 to assign each cell to the patient from which it was
derived. Demuxlet uses statistical modelling to identify RNA-seq
reads that overlap single nucleotide polymorphisms (SNPs).
Using SNP data and imputation generated from genotyping the
most likely donor for each cell can be identified. Demuxlet
identified an average of 1229 SNPs (range= 13–3970) per cell

across pools; P1 (mean= 1264 SNPs/cell), P2 (mean= 1270
SNPs/cell), P3 (mean= 1213 SNPs/cell) and P4 (mean= 1176
SNPs/cell) (Supplementary Fig. 3a–d), allowing the confident
assignment of 100% of the cells. Using this method the patient of
origin for each cell and the number of cells analysed for each
patient in each pool was identified (Fig. 4a).

Comparison of gene expression profiles and cell clusters
identified an association between the fibroblast minor cluster
and endometriosis status in cultured stromal cells. We wished
to identify biological or clinical variables from our sample set that
correlate with either cell type, or cell clustering. Splitting the cells
based on the two major cell types identified, we assessed the
correlation between gene expression and other variables including
a number of passages, menstrual stage at the time of sample
collection, patient age and endometriosis subtype. Almost all
factors had a correlation close to zero and were well below the cut
off value (r2 > 0.3) to suggest any association with gene expression

Fig. 3 Cell type identification. SingleR was used to assign cell types based on transcriptomic signatures. The strongest correlations were observed in red
with the weakest in blue. a Heatmap visualisation of the transcriptomic signatures aligned strongly with cells of mesenchymal origin. This was consistent
across all three clusters, although the actual identity varied across the clusters. b Distribution of the top cell type assignments across the three clusters.
Circle size represents the proportion of each cell type identified in each cluster. Analysis indicated that fibroblasts were the predominant cells in cluster 0
and cluster 2. The majority of cluster 1 were MSCs, although 42.53% were considered fibroblast. c UMAP plot of scRNA-seq data labelled by cell type.
Overlay of cell type on spatially resolved distribution depicts fibroblasts as the predominant cell in cluster 0 and cluster 2 and an association between
MSCs with cluster 1. d Pseudotime cell fate trajectory analysis using Monocle 2 placed each cell on a continuum based on the similarity of the
transcriptome. e An overlay of the clusters identified the majority of the cluster 1 MSCs as the root source directing cell fate lineage towards the fibroblast
major cluster (cluster 0). The additional fibroblast minor cluster (cluster 2) was uniformly scattered across the continuum. f scVelo analysis supports the
developmental trajectory direction of cluster 1 (green) to cluster 0 (red). A similar direction is also taken by cluster 2. g An overlay of the cell cycle analysis
identifies the majority of G2M phase cells aligned with earlier trajectory and MSCs, transitioning to S phase followed by movement towards the majority
G1 stage cells.
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(Supplementary Table 2). We also assessed whether any of these
characteristics could be associated with the cell numbers within
each cluster. We found no significant association between the
number of cells in each cluster with age (Cluster 0: p= 0.3306,
Cluster 1: p= 0.7670, Cluster 2, p= 0.8552), or BMI (Cluster 0:
p= 0.4386, Cluster 1: p= 0.1352, Cluster 2, p= 0.9794) nor was
there an association between cell passage with any of the clusters
identified (Cluster 0: p= 0.1906, Cluster 1: p= 0.4724, Cluster 2,
p= 0.1408) (Supplementary Table 3).

We subsequently assessed whether the number of cells,
including MSCs, fibroblasts and smooth muscle cells, were
derived from either woman with or without endometriosis. In
total, 16,650 cells (49.3%) were sourced from 9 women without
endometriosis and 17,108 (50.7%) cells from 10 women with

endometriosis. The results indicate no significant variation in the
percentage of fibroblasts from the endometrium of cases (84.93%)
compared to controls (81.74%) (Fig. 4b). There was also no
difference between the percentage of MSCs derived from the cases
(14.48%) versus the controls (17.83%) (Fig. 4c). The percentage of
smooth muscle cells derived from cases (0.24%) was larger
compared to controls (0.08%) (Fig. 4d) although the difference
did not reach significance (p= 0.0738).

Our data indicate that fibroblasts could be split into two
distinct groups. We therefore also compared the number of
fibroblast major (cluster 0), fibroblast minor (cluster 2) and MSC
cluster (cluster 1) cells that were from women with and without
endometriosis (Fig. 4e). The MSC cluster (cluster 1) had a total of
9033 cells of which 4199 (46.5%) were from women with

Fig. 4 Cell type and cell cluster relationship to endometriosis status. a Genotype data and demuxlet were used to deconvolute individual samples from
the mixed pool of cells; 100% of cells were correctly assigned to the patient donor. In total 20 samples from 19 patients were loaded into 4 well of the 10X
chromium controller. Overlaying clinical data and comparing the number of cells derived from women with endometriosis (cases, n= 10) and without
endometriosis (controls, n= 9) using an unpaired t test found no significant difference between b the number of fibroblasts (p= 0.7403), c the number of
MSCs (p= 0.9185) or d the number of smooth muscle cells (p= 0.0723). e UMAP plot of scRNA-seq data labelled by endometriosis status. f Percentage
of cells assigned case or control status across all cells and per cluster (cluster 0, 1 and 2). A Chi-squared comparison between each cluster confirmed a
significant association (p < 0.0001) between endometriosis cases and cluster 2. Error bars represent the standard error of the mean (SEM).
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endometriosis and 4834 (53.5%) from women without endome-
triosis. The fibroblast major cluster (cluster 0) contained
22,881 cells with 11,418 (49.9%) from women with endometriosis
and 11,463 (50.1%) from women without endometriosis. The
fibroblast minor cluster (cluster 2) which contained 1844 cells
consisted of 1491 (80.9%) cells from women with endometriosis
and only 353 (19.1%) cells from women without endometriosis
(Fig. 4f). A Chi-squared test indicated significantly more
fibroblast minor cells (cluster 2) were from women with
endometriosis (p < 0.0001). These data, therefore, indicate that
the strongest association with gene expression profiles of the
fibroblast minor cluster is the endometriosis status of the patient
of origin.

In vitro analysis confirmed cellular clusters displayed unique
growth profiles. Finally, we performed an analysis of cell growth
rates for a continuous 100 h period using a subset of 11 cell
preparations and the xCELLigence assay. We compared growth
rates of individual cell preparations, endometriosis status, and the
percentage of cell type (MSCs and fibroblasts) or cell subset (MSC
cluster, fibroblast major, fibroblast minor). For individual pre-
parations, the growth rates varied for both endometriosis cases
and controls (Fig. 5a). Grouping cell preparation by endome-
triosis status showed variable rates of proliferation between cases
and controls at different time points. Cells from controls had an
initial (0–15 h) increased rate of proliferation with the growth rate
eventually plateauing after 35 h. In contrast, the growth rate of
cells from endometriosis cases continued to increase until the end
of the incubation period (100 h) resulting in an increased number
of cells from endometriosis cases, reflecting an increased capacity
of continued growth although the difference was not significant
(p= 0.1737) (Fig. 5b).

We also investigated the association between the contents of
each cell preparation and growth rates by plotting the correlation
between the percentage of each cell type, as determined by
scRNA-seq and SinglR analysis and cell growth rates against time.
The analysis revealed a positive association between MSC content
and cell index that reached the strongest correlation between 8.25
and 9.75 h (Pearson’s r= 0.6364, p= 0.0402) (Fig. 5c). Similarly,
there was an opposite negative correlation with the percentage of
fibroblasts and cell index between 8.5 and 9.5 h (Pearson’s
r=−0.618, p= 0.0478) (Fig. 5d).

As the scRNA-seq analysis identified two subsets of fibroblasts
(fibroblast major and fibroblast minor) we further assessed the
association between the per cent content of these cells in each cell
preparation and growth rates. We found that each subtype
displayed contrasting growth profiles, with the fibroblast major
cluster (cluster 0) showing a non-significant positive association
with growth rate and the fibroblast minor cluster (cluster 2)
showing a significant negative correlation between 17.25 and 26 h
(Pearson’s r=−0.681, p= 0.025) (Fig. 5e). confirming the
relative presence of each fibroblast influenced in vitro growth
profiles at later time points after seeding compared to MSCs. This
analysis indicated that variations in the in vitro cell cultures
identified by gene expression signature can still influence cell
growth patterns even after being placed in culture.

MMP3 and ACTA2 are expressed by distinct sets of stromal
cells in the endometrium. To assess whether the gene expression
markers of the fibroblast minor (MMP3) and fibroblast major
(ACTA2) clusters could be detected at the protein level and
whether these markers were expressed in distinct cells of
mesenchymal origin in the endometrium, we probed endometrial
samples from women with and without endometriosis, isolated at
either the proliferative or secretory stage of the menstrual cycle

with specific antibodies for either MMP3, or ACTA2. Immuno-
fluorescent images indicated only minimal MMP3 (red) expres-
sion in all endometrial samples (Supplementary Fig. 4). To
exclude epithelial cell expression of these proteins we also per-
formed co-staining with cytokeratin (green) a marker specific for
epithelial cells. (Supplementary Fig. 4). Co-localisation with
cytokeratin confirmed MMP3 expression in epithelial cells,
however, some non-epithelial, stromal cells were also positive for
MMP3. MMP3 expression appeared strongest in both endome-
triosis and control samples during the secretory stage with a
slightly more prevalent expression in the endometriosis compared
with control samples (Fig. 6a, b).

Incubation with serial sections of the same endometrial
samples with ACTA2 (green) and cytokeratin (red) on adjacent
slides (Supplementary Fig. 5) also confirmed the expression of
ACTA2 in endometrial cells. Co-staining with cytokeratin (red)
indicated the majority of ACTA2-positive cells were non-
epithelial stromal cells, although in some cases epithelial cells
also showed positive expression. The positive ACTA2 stromal
cells appeared to be more common in the samples isolated from
the proliferative phase compared to samples isolated from the
secretory stage, irrespective of endometriosis status (Fig. 6c, d).
No comprehensive quantification was performed to confirm these
changes in expression. Importantly, using serial sections, we
confirmed that both MMP3 and ACTA2 were expressed in
endometrial stromal cells in the endometrium. Furthermore, we
noted MMP3 expression appeared restricted to only a small
number of endometrial stromal cells, consistent with the small
cluster we observed at the gene level and that co-expression of
MMP3 and ACTA2 in endometrial stromal cells was not detected
when viewed under higher magnification (Fig. 6b and d). This
supports the existence of independent endometrial stromal
fibroblasts in endometrial samples.

Discussion
Cellular heterogeneity both within tissue and within cell types is a
key driver of tissue variation and disease susceptibility. To better
understand endometrium and endometrial pathologies such as
endometriosis, we assessed cell heterogeneity within the endo-
metrial mesenchymal cell lineage and its association with clinical
variables and in vitro cellular function. By profiling their gene
expression at the single-cell level we identified three mesenchymal
cell populations; a MSCs and two distinct stromal fibroblasts
groups and charted their dynamic changes in gene expression.
These data revealed the abundance of MSCs isolated was not
related to endometriosis, but was associated with increased short-
term in vitro growth. In addition, one fibroblast subpopulation
displayed a gene expression profile indicative of dysregulated
differentiation, and altered immune reactivity, and their percen-
tage within each cell preparation inhibited in vitro growth rates.
Importantly, this subpopulation was more likely to be derived
from the endometrium of women with endometriosis compared
to women without endometriosis. These results support a diver-
gence in mesenchymal differentiation that alters fibroblast func-
tion and may predispose some women to endometriosis
susceptibility.

Single-cell transcriptome analysis has previously revealed
insights into endometrial cells, although it has not yet provided
insight into clinical observations or endometrial pathologies.
Previous analysis of the whole endometrium confirmed six dis-
tinct cell types; endothelial, epithelial (ciliated and unciliated),
stromal and immune cells27, although variations within cell types
were not explored, potentially because it was not investigated and
underpowered to do so with only 2149 cells and one biological
replicate at each day of the menstrual cycle. In our study, we

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03541-3

8 COMMUNICATIONS BIOLOGY |           (2022) 5:600 | https://doi.org/10.1038/s42003-022-03541-3 | www.nature.com/commsbio

www.nature.com/commsbio


focused on cultured endometrial cells selected via the mesench-
ymal marker PDGFRβ. Previous single-cell investigations of
transcriptomic profiles of endometrial stromal cells showed that
64.9% of genes displayed consistent expression between both
fresh and cultured cells28. While subtle variation mediated by
niche environment will be lost during ex vivo processing, the use
of primary cultured cells provides the opportunity to examine cell
lineage differentiation in the absence of exogenous cues. It also
provides the opportunity to perform experiments at scale, inte-
grates clinical data and importantly assesses the transcriptomic
relationship to in vitro growth characteristics.

Using these cultured samples we identified a significant pro-
portion of MSCs remaining in all 19 culture preparations. MSCs
reside in both the basalis and functionalis of the endometrium
and are shed during menstruation potentially initiating endo-
metriotic lesion growth3. In this dataset, we did not identify any
differences in the MSC populations between women with and
without endometriosis. Pseudotime trajectory and RNA velocity
analysis indicated a variable differentiation from the MSC cluster
to the fibroblast minor cluster that may have derived from

inherent variability within a subset of MSC cells, or a lack of
appropriate niche signals in the culture environment. It has
previously been shown transcriptomic variations in MSCs are
inherited by daughter cells creating variation in the gene
expression profile and biological function, potentially leading to
increased disease susceptibility11.

The fibroblast minor cluster was characterised by a tran-
scriptome with potential for extracellular matrix organisation.
Some of the most differentially regulated genes included matrix
metalloproteinases (MMPs), MMP3 and MMP10, both of which
are within the stromelysin subclass of MMPs that have significant
roles in extracellular remodelling of laminin fibronectin and
gelatin (I–V) and collagens29. A genetic polymorphism in the
promoter of MMP3 is reported to be associated with
endometriosis30 and in the normal menstrual cycle, there is no
MMP3 expression in the proliferative phase, with an upregulation
during the secretory stage that is significantly higher in women
with endometriosis compared to women without31. Previous
evidence reports the focal expression of MMP3 in developing
endometrium32,33, data that would be consistent with our cluster

Fig. 5 Relationship between cell types and cell clusters and in vitro behaviour. We assessed cell growth rates over a 100 h period with the xCELLigence
assay and compared the cell index to the percentage of cell types, or cell clusters identified in each cell preparation. a A comparison of the cell index for
each individual preparation showed large variations in growth rates. b Categorisation of cell preparations based on endometriosis status showed varying
rates of increase for both cases and controls across the 100-h growth assay. At the 100 h endpoint, the number of cells was higher for endometriosis cases
(n= 7) compared to controls (n= 4), although not statistically significant when compared with an unpaired t test (p= 0.1737). We subsequently
compared the percentage of cell types in each preparation with the cell index using the Pearson correlation coefficient across all time points. This identified
an increasingly positive correlation with cell index that reached significance (dotted line) with c MSC between 8.25 and 9.75 h after cell seeding
(P= 0.0402), peaking at 9.25 (inset correlation graph). Conversely, for fibroblasts (d), a significant negative correlation (p= 0.0478) with cell index was
observed at the same time point (inset correlation graph). e Lastly, a comparison with the fibroblast cell clusters revealed the association with cell growth
was strongest between 17 and 26 h after initial seeding, with the slower growth rate of cluster 2 reaching significance (inset correlation graph) during this
time period (p= 0.0251). Error bars represent the standard error of the mean (SEM).
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analysis. Our immunofluorescent analysis of endometrial samples
from women with and without endometriosis supported a focal
expression of MMP3 with a more pronounced expression in the
secretory stage and in women with endometriosis. Importantly
this focal expression did not appear to overlap with the expres-
sion of ACTA2 a marker for the fibroblast major cluster. Studies
in the skin have suggested MMP10 expression is predominantly
limited to epithelial cells34, but has also been reported in
endometriosis35 and shown to control the immune response in
macrophages36. MMP10 expression is increased in the bladder37,
oesophagus38 and skin cancer39 and has been shown to be
instrumental in bladder tumour cell migration and invasion40,
and wound healing and matrix remodelling in skin cancer39.

The fibroblast minor cluster was also characterised by a strong
expression of CST1. CST1 has limited expression in most tissues
of the body41,42, although deep proteome and transcriptome
sequencing confirmed endometrial expression43. Upregulation of
CST1 has been observed in malignant tumours and is associated
with cancer cell proliferation, invasion and tumour
recurrence44–46. The combination of extracellular matrix with
upregulation of these genes may provide the fibroblast minor
cluster, through its enhanced adhesion and infiltration cap-
abilities, the capacity to establish lesions and thus increase disease
susceptibility.

CST1 has also been proposed as a fibroblast senescence
marker47. Cellular senescence is a state of permeant cell-cycle
arrest and is accompanied by the secretion of extracellular matrix
proteins, proinflammatory cytokines and growth factors48. The
presence of senescent decidual endometrial stromal cells has been

observed both in vitro and in vivo49. Decidual endometrial
stromal fibroblasts differentiate from stromal fibroblasts
approximately mid cycle and in response to rising progesterone
concentrations. It was recently shown that an acute stress
response precedes decidualisation leading to either decidualised,
or senescent decidual cells50. In our study, we show altered dif-
ferentiation of mesenchymal cells initiated prior to exposure to an
acute stress response resulted in a subset of fibroblasts with high
expression of senescent marker CST1. It is possible an altered
gene expression profile developed prior to decidualisation could
predispose some stromal fibroblasts to follow a divergent pathway
during decidualisation resulting in cells with an altered gene
expression profile and functional activity. Senescent DCs could be
one such divergent outcome. Single-cell sequencing of cultured
endometrial stromal cells identified the emergence of this subset
of senescent decidualised stromal cells and found they were
linked to aberrant endometrial biology, increasing susceptibility
to recurrent pregnancy loss50.

The fibroblast minor cluster we observe with altered immune
reactivity may have a corollary to these subsets of decidualised
endometrial cells produced from divergent differentiation path-
ways. Variation in the transcriptome of decidualised cells was
observed that were acquired during maturation and were
dependent on gene expression profiles of the starting cell. Isolated
SUSD2+ and SUSD2- endometrial stromal cells that underwent
differentiation to decidualising stromal cells retained distinct
transcriptomic profiles that were characterised by differences in
the secretion of inflammatory mediators with the decidualised
SUSD2+ cells producing significantly more leukaemia inhibitory

Fig. 6 Protein expression of MMP3 and ACTA2 in the endometrium of women with and without endometriosis. Using MMP3 (Upper panels) and
ACTA2 (lower panels) specific antibodies and serial section of endometrium we identified protein expression of genes upregulated in the fibroblast minor
and fibroblast major clusters. a In endometrial tissue of women with and without endometriosis, we used cytokeratin (green) to identify and exclude
epithelial cells. MMP3 (red) in the marker for the fibroblast minor cluster was expressed in epithelial cells and a select number of non-epithelial cells.
b Inset shows higher magnification. Expression appeared more common in endometriosis patients compared to controls. The increased expression also
appeared in the secretory stage of both endometriosis patients and controls compared to the proliferative stage. c Endometrial tissue of women with and
without endometriosis also expressed ACTA2 (green), a marker for the fibroblast major cluster. Samples were also incubated with cytokeratin (red) to
identify epithelial cells. Expression was detected in both epithelial (red) and non-epithelial cells. d Expression of ACTA was widespread across non-
epithelial cells in both women with and without endometriosis and appeared stronger in samples derived from the proliferative stage.
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factor (LIF) and chemokine ligand 7 (CCL7) compared to the
decidualised SUSD2- stromal fibroblast4.

Information from this study may also contribute to the
understanding of endometriosis progression and not just patho-
genesis. Recent research is beginning to identify the importance
of fibrosis in endometriotic lesions, influencing both disease
progression and treatment (51,52). Gli1+ marks perivascular
MSC-like cells that contribute to organ fibrosis and in endome-
triosis, the immune environment of the peritoneal cavity can
stimulate fibrosis through smooth muscle metaplasia (SMM) of
endometrial stromal cells (51,52). The identification of the
smooth muscle cells in this dataset supports this hypothesis and
may represent a further progression of the differentiation path-
way that can be induced when exposed to variations in the
extracellular environment.

The identification of an aberrant differentiation pathway of a
key cell type within the endometrium raises the exciting potential
to understand disease susceptibility and generate diagnostic and
prognostic biomarkers and generate novel targets for treatment. It
should be cautioned however that this remains an in vitro study
that may limit its potential translation into clinical effectiveness.
Primarily, a potential confounding factor is the removal of these
cells from their in vivo environmental niche, which affects the
external influences that may control cellular function, develop-
ment and differentiation. Whether these same subsets of endo-
metrial stromal fibroblasts cells are still generated in an in vivo
situation cannot be answered in this study and should be
addressed in the future. The fact that this mechanism has been
identified in vitro, and removed from the normal environment,
does not invalidate the potential for these cells to harbour the
potential to take a divergent differentiation pathway. In fact, it
could be argued a similar process, after the removal from the
niche eutopic environment during menstruation occur once in
the ectopic environment and may initiate cues for this aberrant
differentiation programming to begin.

In addition, in vitro growth assays indicated differences in the
growth properties of each cell preparation, a characteristic com-
monly identified in primary cell cultures, and a limitation in
identifying consistent functional characteristics using cell pre-
parations from different patients. By charting the correlation of
cell types identified in our in vitro study we could identify distinct
growth profiles based on the variations in the proportion of dif-
ferent cell types that were initially isolated. These growth profiles
appear to endure even after long periods in culture, supporting
the view that important divergence in cellular differentiation can
lead to long term changes in function. Whether the relative
proportion of each of these cell types remains constant as the cells
age, or whether increasing passage manifests in alternate differ-
entiation trajectories is not assessed in this study but deserves
further attention. While it is not clear whether the gene expres-
sion signatures identified directly influence the function of these
individual cell preparations or relate to endometrial pathologies,
the gene expression signatures generated from the single-cell
sequencing strongly indicate variations in cell content even in
FACS cell populations that correlate with functional differences.

In addition, as an in vitro study, other technical effects could
also contribute. These analyses were performed with cryopre-
served cells that may alter gene expression. A recent systematic
analysis of the influence of cryopreservation on single-cell gene
expression found a significant variable influence on cell integrity
based on the method of cryopreservation used. However the use
of cryopreservation media showed no discernible effect on cell
integrity and impurities, measures of scRNA-sequencing tran-
script quality, and gene expression profiles of R= 0.98, with no
influence on storage time51. It is also possible cryopreservation
may bias cell composition through an increased sensitivity to the

freeze-thaw process for some rare cell subsets, which should be
considered. In our study, there was no variation in methods
applied based on clinical parameters and is thus unlikely to bias
the association with endometriosis.

In addition, validation studies will be vital in confirming the
existence of these cells in women with endometriosis. Appro-
priate validation approaches will however need to be carefully
selected, designed and optimised. The fibroblast cluster associated
with endometriosis is based on a combination gene signature,
with large numbers of genes, in highly similar fibroblasts cells. A
challenge will be to identify a single, or a couple of markers that
may be used for diagnostic purposes. Furthermore, these sig-
natures are based on subtle differences in expression that may be
difficult to quantify clinically. Whether these genes are actively
translated into proteins at detectable levels will also be relevant
for the development of cost-effective diagnostic tools. Most
importantly, the data from the study indicates these signatures
arise from aberrant differentiation. Understanding when to look
for and examine this aberrant differentiation will be vital for
effective translation. Irrespective of these limitations and future
work required this study raises important questions about the
dynamic nature of each endometrial cycle and the potential that
risks change each cycle.

In summary, previous work on endometriosis has suggested
significant differences in the endometrium of women with and
without endometriosis, although the mechanisms behind these
variations and their contribution to endometrial pathologies is yet
to be fully elucidated. Cell heterogeneity derived from variations
in cell states or altered maturation pathways is common and may
be embedded during cell fate lineage determination and can be
leveraged by disease processes. By analysing endometrial stromal
cells at a single-cell level with sufficient cell numbers, depth of
sequencing and appropriate resolution we have uncovered a
divergent mesenchymal differentiation of stromal fibroblasts that
is significantly more likely to occur in cells from women with
endometriosis. This could increase the susceptibility of the cells of
some women to initiate endometriosis lesions at any particular
cycle and may represent a potential biomarker. Divergent dif-
ferentiation of stromal fibroblasts may provide novel targets for
future treatment paradigms and warrants further investigation.

Methods
Sample collection. Prior to surgery the relevant institutional review board granted
ethical approval for the collection of samples and informed consent was obtained
from all patients. Exclusion criteria for the study included abnormal ovulatory
menstrual cycles and the use of either hormonal medication in the past 3 months.
Patients with prior or current infections and liver dysfunction were also excluded.
Prior to surgery whole blood was extracted and serum extracted. For the endo-
metrial stromal cell preparations, the menstrual stage was assessed via the mea-
surement of progesterone concentrations using a standard immunoassay. Patients
were assigned to 1 of 3 stages based on the serum progesterone concentration;
proliferative (0.181–2.84 nM), periovulatory (2.84–5.82 nM), or secretory
(>5.82 nM). Prior to laparoscopy endometrial biopsies were collected via soft
curette (Pipelle de Cornier, Laboratorie CCD, France) and stored in Complete
IMDM media (10% fetal calf serum (FCS), 1% antibiotics/antimycotics (Invitrogen
Life Technologies)) supplemented with 10% dimethyl sulfoxide (DMSO) (Thermo
Fischer Scientific, Waltham, MA, USA) using the slow freezing method in a Bicell
vessel at −80 °C. For analysis of protein expression in endometrial samples via
immunofluorescence endometrial curettes were collected and samples sent to
pathology for histopathological analysis and menstrual cycle dating and the
remaining tissue stored flash frozen in liquid nitrogen until further use. The pelvic
cavity of each patient was subsequently examined, any endometriotic lesions
removed and the patient staged according to the revised American Fertility Society
staging system (rAFS)52.

Endometrial stromal cell preparation. The endometrial stromal cells were pre-
pared as described previously53. Briefly, the tissue was thawed at 37 °C, washed
with serum-free medium to remove DMSO and dissected into smaller pieces. The
tissue was washed in phosphate-buffered saline (PBS) and incubated for 90 min at
37 °C in the presence of collagenase (10 mg/ml, Sigma) and subsequently filtered
through 100 μm mesh (Falcon) to remove debris and undigested material. This was
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followed by a second filtration through 40 μm mesh which will retain intact epi-
thelial glands and allow individual stromal cells to pass through. Two volumes of
IMDM was immediately added to the filtrate containing single stromal cells. The
cells were centrifuged 5 × 500 g, the supernatant discarded and the pellet resus-
pended in 1 ml fresh complete IMDM. Cells were seeded into 75 cm2 flask for
propagation.

Cells were maintained in culture using complete media (IMDM, 10% FCS, 1%
antibiotic/antimycotic). Growth curves and cell viability were monitored via the
recording of population doubling and cells maintained in a proliferative state by
passaging using a standardised 1:3 split with trypsin/EDTA when cells were ~80%
confluent. Once sufficient cell stocks were grown for subsequent experiments cells
were trypsinized and counted using the automated Countess Cell Counters
(Thermo Fisher Scientific). For cell freezing, cells were trypsinized, collected and
centrifuged for 5 min at 1000 g. Cells pellets were resuspended in chilled (4 °C)
cryopreservation media (Complete IMDM media with 10% DMSO (v/v) at 4 × 106

cells per vial. Vials were placed in a CoolCell (Merck) slow freezing container and
stored at −80 °C overnight, after which the cells were transferred to liquid nitrogen
storage.

Cell thawing, FACS selection and sample pooling. All samples were removed
from liquid nitrogen, thawed and washed twice in IMDM complete media. Directly
after thawing, cells were assessed for viability and their concentration was deter-
mined by manual cell counting. Cells were diluted in PBS to a final concentration
of 2 × 106 cells into 50 μl of PBS and were taken directly for FACS sorting for viable
and PDGRFβ+ cells. Positive PDGRFβ was used for sorting to ensure the analysis
was restricted to cells of mesenchymal lineage, as it is a marker for mesenchymal
cells present early during maturation and continues to be expressed throughout
development into mature mesenchymal derived stromal cells54.

For sorting the cells were incubated in blocking buffer (PBS, 40% FCS, 1% BSA)
for 30 min and subsequently incubated with the mouse monoclonal anti-human
PDGRFβ+ antibody conjugated to BV786-A (Becton Dickinson Cat No; 743038)
with a 1:37.5 dilution in PBS, 10% FCS and 1% BSA for 1 h. Prior to cell sorting,
2 μl of propidium iodide (PI) was added to each sample. FACS was performed
using the Aria II FACS machine (Becton Dickinson) with a dual-colour setting to
select PDGFRβ+ positive cells via dedicated excitation and emission settings for
Brilliant Violet 421 and cells that excluded PI. Sorted cells were collected in PBS
containing 10% FCS, and were then counted and their viability determined by
haemocytometer and Trypan Blue staining. Cells with viability <80% were excluded
from further analysis.

Pools of cells from multiple patient samples were generated prior to loading the
10x Genomics Chromium microfluidic chip channels. To obtain a final
concentration of 20,000 cells per pool with an equimolar concentration of cells
from each sample, we aimed to pool samples as follows: for pools of five samples,
we added ~8000 cells from each sample, and for pools of four samples we added
~10,000 cells per sample. This yielded a final count of ~20,000 cells per pool due to
the expected loss of cells during microfluidic processing.

Genotyping and imputation. DNA samples were isolated from the cell cultures
and were genotyped using the Infinium Global Screening Array (Illumina Inc, San
Diego). Quality control of genotypes was performed using PLINK55 and SNPs with
a missing rate of >5%, minor allele frequency (MAF) < 1 × 10-4 and with a Hardy-
Weinberg Equilibrium (HWE) p < 1 × 10−6 were removed, leaving 645,726 SNPs
for imputation. Imputation was performed using the 1000 Genomes Phase 3
reference panel. Genotyping data were used to identify the ancestry of each patient
using 1000 Genome genotype data and principal component analysis.

Single-cell RNA-sequencing and analysis. The FACS single-cell suspensions
were used to generate barcoded single-cell 3′ cDNA libraries for each of the pools
with the Chromium Single-cell 3′ Gel Bead and library kit v2 (10x Genomics).
Library quality control was performed with the Agilent Bioanalyzer High sensitivity
DNA chip (Agilent). Denatured libraries were loaded onto an Illumina Nova-
Seq6000 and sequenced with a 2 × 100 base-pair output for an average depth of
54,321 reads/cell.

The cellranger pipeline (v3.0.2) was used to process the sequencing data that
included the mkfastq, count and aggr functions. The raw Illumina base call files
were demultiplexed into sample-specific FASTQ files using cellranger mkfastq.
Quality control (QC) was performed on the sample-specific files and subsequently
aligned to the hg38 human reference using STAR56 within the cellranger count
algorithm. Aligned reads were filtered for valid cell barcodes and unique molecular
identifiers, and resulting count matrices were combined into a single dataset using
the cellranger aggr function. SNP genotyping data were used to identify doublets,
multiplets and ambient cells using the Demuxlet software26. The remaining cells
were taken forward for further analysis using the Seurat package (v3.0.2) in R
(v3.4.1). We applied the following QC and filtering steps to the raw data: exclude
(i) cells with >10% mitochondrial gene expression, (ii) cells with very low (<200) or
very high (>6,500) numbers of expressed genes and (iii) genes expressed in very
small numbers of cells (≤3). Between-cell gene expression was normalised using
scTransform57. Between-pool variation due to technical and biological differences
was corrected using filtered and normalised data with Harmony58.

Bioinformatic analysis. Seurat was subsequently used to perform Louvain clus-
tering of cells with the first 50 principal components and using a parameter sweep
across multiple resolutions between 0.01 and 1.0. Cluster stability was assessed
using clustree16 and, based on clustering stability, clustering information from
resolution 0.1 was retained for analysis. Differentially expressed genes (DEGs)
between each cluster were determined with the Wilcoxon rank-sum test in Seurat
with a minimum per cent expressing cells ≥0.25 and minimum absolute log fold-
change threshold ≥ 0.25. Gene expression differences were considered significant if
the adjusted p-value was <1 × 10−4 (Benjamini-Hochberg correction for multiple
testing) and the absolute log-fold expression changes ≥0.5. Pathway enrichment
analysis was performed with the top 200 DEGs in each cluster using the EnrichR
package59. The enrichment ranking for pathways, ontologies, transcription factor
networks and protein network analysis was calculated from the multiplication of a
log p-value from the Fisher exact test by the Z-score of the deviation of the
expected rank.

To identify the potential cell types within the dataset, a transcriptome-based
cell-type classification was performed with SingleR20 interrogating the Human
Primary Cell atlas (HPCA) and the Blueprint+Encode reference datasets. Cell fate
trajectory was predicted using the Monocle 2 package’s pseudotime analysis22

using the 500 genes with the highest variation in expression across all cells. For the
Monocle 2 analysis, variation in gene expression was determined using the
FindVariableFeatures function in Seurat and genes were ranked from the most to
least variable. The cellular trajectory was further analysed via RNA velocity using
dynamic modelling with velocyto24 and scVelo60.

Demultiplexing patient samples from single-cell pools. Sample demultiplexing
was performed using the Demuxlet software26 to assign cells to genotyped indi-
viduals and identify doublets. The position-sorted BAM file produced by the
cellranger count function and a VCF file containing the genotype information for
each sample were used as input into Demuxlet, where each cell barcode was
assigned to a specific sample (or a pair of samples) in the VCF file using the genetic
variation sequenced in each cell.

Real-time analysis of cell adhesion and proliferation. Additional cells that were
not processed for RNA sequencing were maintained in culture for additional
passages of up to 20 passages. Cell preparations that remained in a log phase of
growth, as determined by population doubling calculations, were used to assess
growth characteristics between passages 12–14. Cells were trypsinized and counted
using the methods described above. Sixteen-well E-plates (ACEA Bioscience) were
pre-incubated with 50 μl of prewarmed media and allowed to equilibrate in the
incubator at 37 °C with 5% CO2 for 60 min. Each well per plate was inoculated with
10,000 cells in a total volume of 100 μl, as this was previously determined as the
optimal seeding density for cellular proliferation. The xCELLigence RTCA was set
to perform a complete sweep across the plate to record cell growth, as Cell Index,
every 15 min. Growth was profiled over a 100 hour period. Cell index data were
normalised at the first time point post seeding to account for variations in cell
concentrations, and exported for statistical analysis in Graphpad Prism v8.

To assess whether the relative proportions of cells identified in the original
primary cell preparation could be associated with functional characteristics we
calculated two values. Firstly, we determine the percentage of cells in each in vitro
preparation that were assigned to a cell type, or cluster. This represented the
relative proportion of each cell type in each preparation. Secondly, to quantify
changes in functional characteristics we identified the number of cells of each
preparation present at continuous 15 min intervals after being freshly seeded onto a
real time xCELLigence growth plate. Finally, to determine the association between
these two variables (per cent of cell content and number of cells) at each time point
we calculated their correlation (Pearson’s r) and plotted this correlation value (r2)
against each time point.

Immunofluorescence on endometrial samples. Endometrial curettes were collected
from 20 patients. This included 10 women with endometriosis, 5 collected during the
secretory stage and 5 collected during the proliferative stage of the menstrual cycle. An
additional 10 samples were collected from women without endometriosis, 5 of which
were collected during the secretory stage and 5 of which were collected from the
proliferative stage of the menstrual cycle. Frozen samples were embedded into Tissue
Tek OCT (ProSciTech) and serial sections of 7 μm thickness were cut for each sample.
Dual immunofluorescences were performed by incubation of sections with primary
antibodies for either mouse anti-cytokeratin (Novus Biotechnie, 1:100) and rabbit
anti-MMP3 (Abcam, 1:100), or rabbit anti-cytokeratin (Abcam, 1:100) and mouse
anti-ACTA2 (Thermo Fisher Scientific, 1:100) for 1 h at 4 C overnight in a humidified
chamber. The next day primary antibodies were removed, sections were washed and
incubated with secondary antibodies Goat anti-Rabbit IgG (Alexa Fluor 647) (Abcam,
1:500) and Donkey anti-mouse IgG (Alexa Flour 488, 1:500) (Thermo Fisher Scientific)
for both combinations of primary antibodies. Incubation was performed for 1 hour at
room temperature after which sections were washed with Tris-buffered saline
containing 0.1% Triton x-100 and mounted with DAPI-containing mounting media
(ProSciTech) and a coverslip attached. Whole sections were digitised via scanning on
the AxioScan Z1 Fluorescent Imager (Zeiss).
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Statistics and reproducibility. All data have been presented unless otherwise
stated as mean ± standard error of mean (SEM). Samples sizes for each experiment
are indicated in the relevant results section or figure legends and represent bio-
logical replicates. Statistical analysis was performed in R (v3.4.1) and GraphPad
Prism v8 software.

Ethics approval and consent to participate. Tissue sample collection was
approved by the Cantonal ethics commission Bern (149/03) and the Metro North
Human Research Ethics committee (2019/QRBW/56763). Experimental proce-
dures were approved by the Cantonal ethics commission Bern (2019-01146) and
the University of Queensland Human Research ethics committee (2016001723)
(2019/HE002744).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
In accordance with our HREC approvals at The University of Queensland and Bern
Canton Ethics Committee and the open source policy for our funding for this study, only
non-identifiable datasets are to be made public. Expression data (raw and normalized)
and associated metadata were deposited in Zenodo and are available at https://zenodo.
org/record/6572045. Data may also be made available upon reasonable request to the
corresponding author. Differential expression gene lists are supplied in Supplementary
Data files 1–6. Numerical source data used to generate graphical figures is available at
Figshare61.

Code availability
All codes used for this manuscript are publicly available and have been cited in the text.
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