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Abstract. Coefficients from logistic regression are affected by noncollapsibility,
which means that the comparison of coefficients across models may be mislead-
ing. Several strategies have been proposed in the literature to respond to these
difficulties, the most popular of which is to report average marginal effects (on the
probability scale) rather than odds ratios. Average marginal effects (ames) have
many desirable properties but at least in part they throw the baby out with the
bathwater. The size of an ame strongly depends on the marginal distribution of
the dependent variable; for events that are very likely or very unlikely the ame
necessarily has to be small because the probability space is bounded. Logistic
regression, in contrast, estimates odds ratios which are free from such flooring
and ceiling effects. Hence, odds ratios may be more appropriate than ames for
comparison of effect sizes in many applications. Yet, logistic regression estimates
conditional odds ratios, which are not comparable across different specifications.

In this paper, we aim to remedy the declining popularity of the odds ratio by
introducing an estimand that we term the “marginal odds ratio”; that is, logit
coefficients that have properties similar to ames, but which retain the odds ra-
tio interpretation. We define the marginal odds ratio theoretically in terms of
potential outcomes, both for binary and continuous treatments, we develop esti-
mation methods using three different approaches (G-computation, inverse proba-
bility weighting, rif regression), and we present an example that illustrates the
usefulness and interpretation of the marginal odds ratio.

Keywords: Stata, lnmor, ipwlogit, riflogit, marginal odds ratio, noncollapsi-
bility, logistic regression, G-computation, inverse probability weighting, recentered
influence functions
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1 Introduction

Logistic response models form the backbone of much applied quantitative research.
However, recent methodological literature highlights difficulties in interpreting odds ra-
tios, particularly in a multivariate modeling setting (e.g., Allison 1999; Mood 2010;
Karlson et al. 2012; Breen et al. 2018). These difficulties arise from the fact that coef-
ficients from nonlinear probability models such as the logistic response model (i.e., log
odds ratios) depend on covariates in ways that differ from the linear model. In short,
coefficients from nonlinear probability models are affected by so-called noncollapsibil-
ity, which means that conditional coefficients have a different inherent scaling than
unconditional (marginal) coefficients, even in the absence of confounding, and hence
that coefficients cannot be compared across different model specifications because they
correspond to different estimands (e.g., Pang et al. 2016; Daniel et al. 2021; Schuster
et al. 2021). Applied researchers have responded to this situation in different ways, but
a very popular recommendation is to report average marginal effects on the probability
scale implied by the nonlinear probability model or approximated by the linear prob-
ability model (Breen et al. 2018; Williams and Jorgensen 2023). Main arguments for
using marginal effects are that they are not scaled arbitrarily (Cramer 2007) and that
they yield readily interpretable effects on the probability scale, which to many is more
intuitive than (log) odds ratios.

Although average marginal effects (ames) have many desirable properties, they do
not align with research in which relative effects are of interest. This is because the mag-
nitude of an ame depends on the marginal distribution of the dependent variable: the
more uneven the distribution, the smaller the ame tends to be. Odds ratios, in contrast,
quantify relative effect sizes, such that results can be compared across situations charac-
terized by different baseline probabilities. However, as mentioned above, conventionally
used ”conditional” odds ratios are affected by noncollapsibility, a property that limits
their usefulness for comparative purposes. In this paper, we aim to remedy the declining
popularity of odds ratios by introducing marginal odds ratios; that is, estimands that
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are not affected by noncollapsibility and have similar properties as marginal effects on
the probability scale, but which retain the odds ratio interpretation.1

Drawing on existing literature (Zhang 2008; Daniel et al. 2021) we first define the
marginal odds ratio theoretically in terms of potential outcomes and illustrate its rela-
tion to logistic regression (Section 2). In contrast to most existing literature, we do not
only focus on binary treatments; we also cover continuous predictors. We then discuss
different estimation approaches (Section 3) and present corresponding software imple-
mentations (Section 4), again covering both categorical as well as continuous predictors,
and including consistent variance estimation based on influence functions. We conclude
the paper with an example application (Section 5) and some final remarks (Section 6).
An appendix provides a brief comparison of the proposed estimators on simulated data
(Section 8).

2 Marginal odds ratios

2.1 Definition

Following Zhang (2008) and Daniel et al. (2021), we define marginal odds ratios in
terms of potential outcomes (Neyman 1990[1923]; Rubin 1974). Let Yt be the potential
outcome that would realize if treatment T was set to level t by manipulation (i.e.,
without changing anything else). Comparison of Yt for different levels of T informs,
by definition, about the causal effect of T on Y . In this article we are only interested
in binary outcomes Yt ∈ {0, 1} (e.g. failure and success). Pr(Yt = 1) = E[Yt] is the
(marginal) probability that Yt will be equal to 1 (probability of success).

We first consider the case in which T is binary, with T = 0 as a standard treatment
and T = 1 as an alternative treatment. The marginal odds ratio of the alternative
treatment versus the standard treatment is defined as

or =
υ[Pr(Y1 = 1)]

υ[Pr(Y0 = 1)]
= exp{ln υ[Pr(Y1 = 1)]− ln υ[Pr(Y0 = 1)]} (1)

where υ(p) = p/(1− p) (odds) and ln υ(p) = ln(p/(1− p)) (log odds). We may interpret
this as the ratio of the odds of success if everyone would receive the alternative treatment
versus the odds of success if everyone would receive the standard treatment (provided
sutva holds).

The probability of success may not only depend on T , but also on other factors X.
Assume that X has a specific distribution in the population and let Pr(Yt = 1|X =

1. We use the term “marginal odds ratios” because the quantity of interest refers to how a predictor
affects the “marginal” distribution of the outcome. An alternative would be to use the term “un-
conditional odds ratio”, which might lead to less confusion because “marginal effect” is sometimes
also understood in the sense of an effect of a marginal change in a predictor. We adopt the term
“marginal odds ratio” because it is established in the literature (e.g., Stampf et al. 2010; Karlson
et al. 2021). On the difference between average marginal effects and odds ratios, particularly the
“flipped-signs phenomenon” related to interaction effects, also see Bloome and Ang (2022). While
Bloome and Ang (2022) advise against using odds ratios, their critique pertains to conditional odds
ratios, not marginal odds ratios.
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x) = E[Yt|X = x] be the conditional success probability given X = x. The law of
iterated expectations implies that Pr(Yt = 1) = EX[Pr(Yt = 1|X = x)], where EX is
the expectation over the distribution of X. Equation (1) can thus be rewritten as

or =
υ{EX[Pr(Y1 = 1|X = x)]}
υ{EX[Pr(Y0 = 1|X = x)]}

(2)

= exp(ln υ{EX[Pr(Y1 = 1|X = x)]} − ln υ{EX[Pr(Y0 = 1|X = x)]})

We call (2) the “adjusted marginal odds ratio”, although by definition it is identical to
the (unadjusted) marginal odds ratio given in (1). The usefulness of (2) will become
evident once we estimate the marginal or from data. Most importantly, estimation
based on formulation (2) can be used to address confounding bias in observational data.

Now consider the case in which treatment T is continuous. For such a treatment,
the marginal (log) odds ratio can be defined as the derivative of the marginal log odds
by the treatment, that is

lnor(t) = lim
ϵ→0

ln υ[Pr(Yt+ϵ = 1)]− ln υ[Pr(Yt = 1)]

ϵ
(3)

= lim
ϵ→0

ln υ{EX[Pr(Yt+ϵ = 1|X = x)]} − ln υ{EX[Pr(Yt = 1|X = x)]}
ϵ

Likewise, we could define the marginal (log) odds ratio as the difference in marginal log
odds induced by a discrete change in the treatment, say, an increase by one unit (unit
change effect).

In any case, it is evident that the marginal or for a continuous predictor is a function
of t. That is, results will, in general, depend on the level of t at which we evaluate the
marginal or. We may thus want to apply some kind of averaging. Assume that T has
a specific distribution in the population. To obtain an “overall” or “average” marginal
or we can either evaluate the or at the population average of T , that is,

or∗ = or(t = E[T ]) (4)

or integrate or(t) over the distribution of T , that is

or = exp{ET [lnor(t)]} (5)

Yet another possibility is to integrate over T (or the joint distribution of T and X) when
obtaining the population-averaged probabilities on which the marginal or is based, that
is,

lnor′ = lim
ϵ→0

ln υ{ET [Pr(Yt+ϵ = 1)]} − ln υ{ET [Pr(Yt = 1)]}
ϵ

(6)

= lim
ϵ→0

ln υ{ET,X[Pr(Yt+ϵ|X = x)]} − ln υ{ET,X[Pr(Yt|X = x)]}
ϵ

Results from equations (4), (5), and (6) will generally be different. Equation (4) quan-
tifies the marginal or at average treatment; (5) is the average marginal or over the
treatment distribution; (6) corresponds to the marginal or that is obtained if treatment
is slightly increased for each population member, given each member’s existing values
for T and X.
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2.2 Relation to the logistic model

Assume that Pr(Yt = 1) comes about through a logistic model defined as

Pr(Yt = 1) = logit(α+ δt) where logit(z) =
exp(z)

1 + exp(z)
(7)

which implies
ln υ{Pr(Yt = 1)} = α+ δt

It is easy to see that in this case the (exponent of) slope parameter δ has a marginal
or interpretation. If T is binary, we get

or = exp{(α+ δ)− (α)} = exp(δ)

Likewise, if T is continuous, we get

lnor(t) = lim
ϵ→0

{α+ δ(t+ ϵ)} − (α+ δt)

ϵ
= lim

ϵ→0

δϵ

ϵ
= δ

Note that or∗ = or = or′ = or(t) = exp(δ) in case of the simple logistic model,
because or(t) is constant.

Now assume a more complicated data-generating process that also involves covariates
X. The model is given as

Pr(Yt = 1|X = x) = logit(α+ δt+ xβ) (8)

which implies
ln υ{Pr(Yt = 1|X = x)} = α+ δt+ xβ

(where x is a row vector and β is a column vector). In this case, exp(δ) describes the
conditional odds ratio, that is, the odds ratio given a specific value of X. A property
of the model is that the conditional odds ratio is constant (i.e., does not depend on X).
For example, if T is binary, we have

orX =
υ[Pr(Y1 = 1|X = x)]

υ[Pr(Y0 = 1|X = x)]
= exp{(α+ δ + xβ)− (α+ xβ)} = exp(δ)

The marginal odds ratio has a more complicated form. For binary T it is given as

or = exp(ln υ{EX[logit(α+ δ + xβ)]} − ln υ{EX[logit(α+ xβ)]})

which is different from the conditional odds ratio whenever β ̸= 0. This is what is meant
by “noncollapsibility” of nonlinear models. “Noncollapsibility of the or derives from the
fact that when the expected probability of outcome is modeled as a nonlinear function
of the exposure, the marginal effect cannot be expressed as a weighted average of the
conditional effects” (Pang et al. 2016, 1926). As a result of the sigmoid functional form
of the logistic model, the marginal or will be attenuated compared to the conditional
or. Likewise, the conditional or of a model with fewer covariates will be attenuated
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compared to the conditional or of a model with more covariates, and these differences
in scaling mean that comparing coefficients from logistic regressions across models is
problematic.

Stated differently, the models correspond to different estimands: the marginal or
is conceptually different from the conditional or, and the conditional or given X1 is
conceptually different from the conditional or given X2, when X1 and X2 are two
different sets of covariates. In the words of Pang et al. (2016, 1926): “In the absence
of confounding or when confounding is adjusted appropriately, both the marginal or
and conditional or are valid measures. They are unbiased estimators for two different
parameters, and the choice of reporting the marginal or conditional or should depend
on the research question. One should report the marginal or if the average effect at
the population level is of interest, while one should report the conditional or if the
conditional effect at the individual or subgroup level is of interest.”

3 Estimation

For the following discussion assume that we have data from a random sample of size
n, including a binary dependent variable Y , a treatment T , k covariates X, as well as
sampling weights w. That is, the data is given as (yi, ti, x1i, . . . , xki, wi), i = 1, . . . , n
(in a simple random sample, wi = 1 for all i). To keep notation concise, we typically
assume that one element in X is a constant (so that models can be written without
intercept). Treatment variable T can be categorical or continuous.

As detailed above, we are interested in estimating the marginal or, that is, how
a change in T affects the unconditional odds of Y = 1. Controlling for X should not
change this goal (that is, the estimand does not change). The data could come from
a randomized experiment in which treatment status is independent from potential out-
comes, such that consistent estimation of the treatment effect is possible by simple
analysis of Y by T , ignoring X. In such a case, adjusting for X is not necessary for
unbiased results, but it can make the estimation more efficient (smaller standard error).
The data may also originate from an observational study with nonrandom selection
into treatment, such that näıve estimation is biased. In this case we can try to remove
confounding bias by adjusting for covariates X, which will be successful if the condi-
tional independence assumption holds (i.e., if treatment assignment is independent from
potential outcomes given X). Hence, methods for covariate-adjusted estimation of the
marginal or can be useful both in experimental data and in observational data.

Below we present three different estimation strategies. The first strategy, G-
computation, is based on model predictions and closely mirrors the theoretical formulas
above. The second approach is based on inverse probability weighting (ipw). The third
approach employs rif regression.2 Note that we will discuss the estimation of the log

2. A fourth approach may be to regress T onX using linear regression, compute the residuals, and then
regress Y on the residuals using logistic regression. Yet another possibility would be to construct a
doubly-robust estimator by combining ipw and G-computation. We leave it to future research to
explore these additional estimation strategies.
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odds ratio (rather than the odds ratio), because normality is more likely to hold for the
log odds ratio.3

3.1 G-computation

Binary treatment

First consider the case in which the treatment is binary, that is, T ∈ {0, 1}. As outlined
by Zhang (2008), the marginal odds ratio can be estimated by comparing counterfactual
predictions from an outcome model fit to the data (also see Daniel et al. 2021 or Section
2.1 in Stampf et al. 2010). In some literature this approach is called “G-computation,”
a term coined by Robins (1986; also see, e.g., Snowden et al. 2011 or Chatton et al.
2020). In our case, the procedure is to first regress Y on T and X, for example, using
logistic regression, and then use the model fit to generate two predictions of Pr(Y = 1)
for each observation, one with T set to 0 and one with T set to 1 (and X as observed).
The two sets of predictions are then averaged across the sample to obtain counterfactual
estimates of the population-averaged success probability for the two treatment levels.
These estimates can then be plugged into the formula for the marginal or. That is, the
marginal (log) or is estimated as

ln ôr = ln υ(p1)− ln υ(p0) (9)

with ln υ(p) = ln(p/(1− p)), where

pt =
1

W

n∑
i=1

wip̂
t
i and W =

n∑
i=1

wi (10)

The counterfactual predictions p̂ti are obtained as follows. Assume a parametric outcome
model defined as

Pr(Y = 1|T = t,X = x) = g{z(t,x)θ} (11)

where g(z) is a nonlinear transformation, z(t,x) is a (row) vector composed of t and ele-
ments from x (typically including a constant), and θ is a (column) vector of parameters
to be estimated. For example, in case of logistic regression, g(z) = logit(z) = ez/(1+ez);
in case of probit, g(z) = Φ(z), where Φ is the standard normal distribution function.4

In the simplest case, z is defined as z(t,x) = (t, x1, . . . , xk, 1). However, z could, for ex-
ample, only include a selection of elements form x, or it could include products between
elements, possibly including t, to model interactions.

3. The standard error of the odds ratio can easily be computed from the standard error of the log
odds ratio by the delta method, in particular, se(ôr) = ôr × se(ln ôr). Confidence intervals can
be obtained by endpoint transformation, that is: first compute the confidence limits for lnor and
then take the exponent of these limits.

4. The model for generating predictions does not necessarily have to be a logit or probit model. Any
model appropriate for a binary dependent variable will do. Some of the expressions below depend
on the specific model, but the general approach remains the same. We could also use a flexible
nonparametric model, although derivation of standard errors then would be more challenging.
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Given parameter estimate θ̂, predictions from the outcome model are obtained as
p̂i = g{z(ti,xi)θ̂}. For the counterfactual predictions p̂0i and p̂1i we replace ti by 0 or 1,
respectively. That is, the counterfactual predictions are obtained as

p̂0i = g{z(0,xi)θ̂} and p̂1i = g{z(1,xi)θ̂} (12)

Standard errors

We make use of influence functions to derive the standard errors of marginal ors. Once
the influence function of a statistic is known, the standard error of the statistic can
be obtained by taking a mean estimate of the influence function (or a total estimate,
depending on the scaling of the influence function); the standard error of this mean (or
total) provides an estimate of the standard error of the statistic. One of the advantages
of this approach is that the form of the influence function does not depend on the
survey design, and aspects such as clustering or stratification can easily be taken into
account when estimating the mean (or total), using textbook formulas. Furthermore,
in many cases, influence functions are fairly easy to derive even for complex statistics
because they can be pieced together recursively from the influence functions of the single
components that are part of the statistic; see Jann (2020) for an extensive treatment.
In terms of resulting estimates, the influence function approach is equivalent to what is
known as linearization in survey estimation.

For the marginal or of a binary treatment, we can derive the influence function in
the following three steps.

1. At the uppermost level, estimator (9) is defined as a function of two estimates, p0

and p1. Taking the derivatives of (9) by p0 and p1 leads to the following expression
for the influence function:

λi(ln ôr) =
λi(p

1)

p1(1− p1)
− λi(p

0)

p0(1− p0)
(13)

2. Expression (13) depends on the influence functions for p0 and p1. Both will have
the same general form. Probability pt is defined as

pt =
1

W

n∑
i=1

wip̂
t
i with p̂ti = g(ẑti) and ẑti = ztiθ̂ and zti = z(t,xi) (14)

and is thus a function of θ̂. Working through the equations leads to the following
expression:

λi(p
t) = (p̂ti − pt) +

 1

W

n∑
j=1

wj

∂g(ẑtj)

∂ẑtj
ztj

λi(θ̂) (15)

The derivative within the sum depends on the type of model (i.e., on the definition
of g); for example, ∂g(z)/∂z = p(1− p) with p = g(z) in case of logistic regression
and ∂g(z)/∂z = ϕ(z) (standard normal density) in case of probit.
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3. Expression (15) depends on the influence function for θ̂, which will be specific to
the type of outcome model. For logistic regression, as shown by Jann (2020), the
influence function can be written as

λi(θ̂) =

 1

W

n∑
j=1

wjz
′
j p̂j(1− p̂j)zj

−1

z′i(yi − p̂i) (16)

For probit, the expression is more complicated, but see Jann (2020) for a simple
general approach to obtain influence functions for maximum-likelihood models,
including probit.

All necessary components to compute the influence function of the marginal or are
now complete (i.e., plug 16 into 15, and 15 into 13). As indicated, the standard error
of the mean of the influence function provides the standard error of the marginal or.
Confidence intervals and tests can then be computed in the usual way.

Categorical treatment

For a categorical treatment with more than two levels, the procedure is analogous, but
the treatment needs to be included as a factor variable in the outcome model (i.e., a
series of indicator variables for the different levels). For each combination of levels, a
marginal or can then be computed using counterfactual predictions as above. Typically,
one of the levels is chosen as the base levels, to which all other levels are compared.
One such set of contrast is sufficient to describe the whole system, as the remaining
contrasts directly follow as differences between contrasts with respect to the base level.

Continuous treatment

In Section 2, we defined the marginal or of a continuous treatment as the derivative
of the population-averaged success probability at treatment level t. A natural estimate
for the marginal or thus is

ln ôr(t) =
∂ ln υ(pt)

∂t
=

qt

pt(1− pt)
(17)

with

qt =
1

W

n∑
i=1

wiq̂
t
i and q̂ti =

∂p̂ti
∂t

=
∂g(ẑti)

∂ẑti

∂ẑti
∂t

(18)

and with pt as in (14). The influence function of (17) can be obtained as

λi{ln ôr(t)} =
1

pt(1− pt)

[
λi(q

t) +
qt(2pt − 1)

pt(1− pt)
λi(p

t)

]
(19)
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with λi(p
t) as in (15) and where

λi(q
t) = (q̂ti − qt) +

 1

W

n∑
j=1

wj

∂q̂tj

∂θ̂′

λi(θ̂) (20)

with
∂q̂tj

∂θ̂
=

∂g(ẑtj)

∂ẑtj

{
ût
j

∂ẑtj
∂t

ztj +
∂2ẑtj

∂θ̂′∂t

}
(21)

For logistic regression, ût
j = 1− 2p̂tj ; for probit, û

t
j = −ẑtj .

5

In general, or(t) will not be constant across t. We may thus want to report an
overall measure such as or∗ (equation 4), or (equation 5), or or′ (equation 6):

• To estimate or∗ (marginal odds ratio at the mean), simply evaluate (17) with t
set to µ̂T , the mean of T . That is,

ln ôr
∗
= ln ôr(t = µ̂T ) with µ̂T =

1

W

n∑
i=1

witi (22)

The influence function of (22) can be obtained as described above, including a
correction for the fact that µ̂T is an estimate. In particular, addend 1

W

n∑
j=1

wj q̂
t
j

λi(µ̂T ) (23)

needs to be added to the influence function of pt, and addend 1

W

n∑
j=1

wj

∂q̂tj
∂t

λi(µ̂T ) with
∂q̂tj
∂t

=
∂g(ẑtj)

∂ẑtj

{
ût
j

(
∂ẑtj
∂t

)2

+
∂2ẑtj
∂t2

}
(24)

needs to be added to the influence function of qt, where λi(µ̂T ) = ti − µ̂T .

• To estimate or, take the average of the marginal odds ratio across the distribution
of T , that is,

ln ôr =
1

W

n∑
i=1

wi ln ôr(t = ti) (25)

Evaluation of (25) can be computationally burdensome in large datasets. If there
are ties, speed improvements are achieved by evaluating or(t) only at unique

5. The result of ∂ẑ/∂t depends on the definition of z. For example, if z = (t, x1, . . . , xk, 1),

then ∂ẑ/∂t = θ̂1. Likewise, if z includes an interaction between t and x1, that is, z =

(t, t × x1, x1, . . . , xk, 1), then ∂ẑ/∂t = θ̂1 + θ̂2x1. The second derivative ∂2ẑ/∂θ̂′∂t is obtained

by taking partial derivatives of ∂ẑ/∂t by elements of θ̂. In the two examples this leads to (1, 0, . . . )
and (1, x1, 0, . . . ), respectively.
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treatment levels. Likewise, if the treatment has a large number of unique levels in
the data, as one would expect for a truly continuous treatment, an approximation
of or can be obtained by applying (25) based on linearly binned treatment levels.
Let κℓ, ℓ = 1, . . . , L, be a series of cut points with κℓ−1 < κℓ and κ0 = −∞. We
define the treatment levels as

τℓ =
1

Wℓ

n∑
i=1

witi1(κℓ−1 < ti ≤ κℓ) with Wℓ =

n∑
i=1

wi1(κℓ−1 < ti ≤ κℓ) (26)

where 1(x) is the indicator function (equal to 1 if x is true, 0 else). An estimate
of or is then obtained as

ln ôr =

L∑
ℓ=1

ω̂ℓ ln ôr(t = τℓ) with ω̂ℓ = P̂r(κℓ−1 < T ≤ κℓ) =
Wℓ

W
(27)

The influence function of (27) is

λi(ln ôr) =

L∑
ℓ=1

ω̂ℓλi[ln ôr(t = τℓ)] + ln ôr(t = τℓ)λi(ω̂ℓ) (28)

with
λi(ω̂ℓ) = 1(κℓ−1 < ti ≤ κℓ)− ω̂ℓ (29)

In case of linear binning, a regular grid is used for κℓ such that the created inter-
vals span the observed range of T (using half intervals at the bottom and top).
Treatment level τℓ is then the average of T within the relevant interval. As long
as the size of the grid (i.e., L, the number of levels) is not too small, (27) should
provide a fairly accurate approximation of (25). If no binning is applied, the cut
points (and hence the treatment levels) are set to the observed levels of T , and
(27) is exact.

• Finally, for or′, use the same equations as for or(t), but replace t by the observed
treatment value of the relevant observation in all expressions.

Discrete change effects

Rather than obtaining the marginal or of a continuous treatment in terms of derivatives,
we can also compute discrete change effects, of which the approach discussed above for
a binary treatment is a special case. In general, discrete change marginal ors are
computed by comparing averaged counterfactual predictions for two treatment levels.
In particular, define

ln ôr(t) =
1

h

{
ln υ

(
pup(t)

)
− ln υ

(
plo(t)

)}
(30)

where lo(t) and up(t) are the two treatment levels. For non-centered discrete change
effects, lo(t) = t and up(t) = t + e, where e > 0 is the size of the discrete change. For
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centered discrete change effects, lo(t) = t− e/2 and up(t) = t+ e/2. Furthermore, h is
a normalizing constant either set to 1 (no normalization) or set to e. If normalization
is applied, (30) converges (17) as e approaches zero. The influence function of (30) is
analogous to the influence function of (9), divided by h if relevant. Discrete-change
variants of or∗, or, and or′ follow in a similar way as discussed above.

Unified approach using fractional logit

A unified approach to obtain marginal ors for categorical and continuous predictors is
to apply fractional logit to counterfactual predictions across treatment levels. Let τℓ,
ℓ = 1, . . . , L, be the unique (possibly binned) treatment levels. Furthermore, let τℓi
denote the treatment level realized for observation i. Then obtain

pτℓi =
1

W

n∑
j=1

wj p̂
τℓi
j with p̂

τℓi
j = g{z(τℓi ,xj)θ̂} (31)

for all i and regress these averaged predictions on the treatment using a fractional logit
model. Define ti as the treatment covariate vector to be included in the model; typically
ti = (τℓi , 1). The log-likelihood of the fractional logit can then be written as

lnL =
1

n

∑
i=1

wi{pτℓi ln(πi) + (1− pτℓi ) ln(1− πi)} with πi = logit(tiδ) (32)

Taking the derivative of the log-likelihood by δ we obtain the model’s main moment
condition as

hi(δ) = t′i(p
τℓi − πi) (33)

based on which the influence function of δ̂ can be derived as

λi(δ̂) = G−1

t′i(p
τℓi − π̂i) +

L∑
ℓ=1

 1

W

n∑
j=1

wjt
′
j1(ℓ = ℓj)

λi(p
τℓ)

 (34)

with

G =
1

W

n∑
i=1

wit
′
ip

τℓi (1− pτℓi )ti (35)

and λi(p
τℓ) as in (15).

For categorical treatments, results from (32) will be identical to the results from
the more direct estimation approach described earlier (this also holds for the standard
errors). For continuous predictors, fractional logit provides an approximation of lnor,
the average marginal or across the treatment distribution.6

6. The difference between fractional logit and explicit averaging as in (27) should be negligible in
most cases. Technically, fractional logit assumes effect homogeneity across treatment levels and
thus employs a slightly different implicit weighting of levels.
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Interaction effects

Vector zmay include interactions between treatment T and the covariates. The formulas
above will take account of such terms, but they will not be informative about the
interaction effects per se. To explore interaction effects we can estimate the marginal
or while keeping selected covariates at fixed values. For example, assume a model with
z(t,x) = (t, t×x1, x1, . . . , xk, 1) where both T and X1 are binary. We could then apply
the above formulas with x1 in z set to 0 or 1, respectively, to obtain the or by level
of X1 (still using the full sample in all computations). Comparing these results will
illustrate how the marginal or of T depends on X1. Similar exercises are possible if T
and X1 are continuous.

Subpopulation effects

All estimates of marginal ors discussed so far are obtained by averaging over the whole
sample. They thus quantify an odds-ratio equivalent to an Average Treatment Effect
(ate). In case of a binary treatment, to estimate an odds-ratio equivalent of an Average
Treatment Effect on the Treated (atet), one could only include the treated when gen-
erating counterfactual predictions and taking averages. Subpopulations across which
to evaluate the marginal or could also be defined in other ways. In other words, the
outcome model may cover the whole sample, but the implied marginal or may only be
evaluated across a specific subsample. Typically, such an exercise makes most sense if
the outcome model is flexible enough to capture subpopulation-specific structures (e.g.
through interaction terms). Furthermore, note that there is a fundamental difference
between such subpopulation-restricted estimates and estimates that are obtained by
fixing covariates at specific values (as in the preceding section on interaction effects).
The estimand of the former is at the level of the subpopulation, the estimand of the
later is at the level of the population. This means that the former is conditional on the
subpopulation-specific distribution of treatment and covariates, while the later is based
on the overall distribution. Naturally, the two procedures can also be combined; for ex-
ample; we may explore interactions within a subpopulation by fixing selected covariates
at specific values while restricting evaluation to the selected subpopulation.

3.2 Inverse probability weighting

The basic idea of inverse probability weighting (ipw) is that covariate distributions
between treatment levels can be balanced by reweighting observations by the inverse
probability of treatment.7 In this way, for each treatment level, a situation is created in
which the corresponding subsample’s covariate distribution approximates the covariate
distribution in the overall population. We can then apply a simple logistic regression
of Y on T to recover the marginal or, because in the reweighted data the treatment
is independent from the covariates. In practice, the difficulty is that the treatment
probabilities are not known and need to be estimated from the data.

7. See, e.g., Stampf et al. (2010), who also discuss some other propensity-score based approaches.
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Binary treatment

First consider the case of a binary treatment T ∈ {0, 1}. We can, for example, fit a logit
model defined as

Pr(T = 1|X = x) = logit(xγ) (36)

to the observed data (taking account of sampling weights) and obtain observation-
specific propensity scores using model predictions, that is

q̂i = P̂r(T = ti|X = xi) =

{
logit(xiγ̂) if ti = 1

1− logit(xiγ̂) if ti = 0
(37)

We then define inverse-probability weights as

ω̂i = 1/q̂i (38)

and compute the marginal or by fitting a simple logistic regression of Y on T , that is,

Pr(Y = 1|T = t) = logit(α+ δt) (39)

while applying weights wiω̂i. Coefficient δ̂ provides an estimate of the marginal or.

Stabilized weights

The literature sometimes suggests using “stabilized” weights defined as

ω̂s
i = π̂iω̂i = π̂i/q̂i with π̂i = P̂r(T = ti) =

1

W

n∑
j=1

wj1(tj = ti) (40)

(e.g. Naimi et al. 2014), but this does not change the resulting estimate in case of a
binary treatment (nor its standard error; π̂i is constant within treatment group and thus
cancels out). The conceptual difference between ω̂i and ω̂s

i is that for the former the sum
of weights within each group approximates the overall population size; for the latter, the
sum of weights within each group approximates the corresponding subpopulation size.
ω̂i thus mimics a balanced design in which each treatment level has the same overall
probability, whereas ω̂s

i corresponds to a design in which the treatment distribution is
as observed.

Categorical treatment

For an (unordered) categorical treatment with levels τℓ, ℓ = 1, . . . , L, we can employ the
same approach as outlined above, but use a series of logistic regressions, one for each
treatment level against all other treatment levels, to estimate the propensity scores.
That is, we fit

Pr(T = τℓ|X = x) = logit(xγℓ) (41)
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for each ℓ = 1, . . . , L and then obtain the propensity scores as

q̂i = P̂r(T = ti|X = xi) =


logit(xiγ̂1) if ti = τ1

...

logit(xiγ̂L) if ti = τL

(42)

We then fit the outcome model using a logistic regression of Y on a series of indicators
for the different treatment levels, omitting one indicator which represents the base level,
while applying weights wiω̂i = wi/q̂i or wiω̂

s
i = wiπ̂i/q̂i (again, the choice of type of

weights does not matter for the resulting estimate). The slope coefficients of this model
can be interpreted as (log) marginal ors, comparing each treatment level to the base
level.

A series of binary logit models as described above may not represent the structure of
the data very well, yielding poor balancing of covariate distributions across treatment
levels. An improved approach is to model the propensity score using multinomial logistic
regression. That is, estimate a system of equations

Pr(T = τℓ|X = x) =
logit(xγℓ)∑L
j=1 logit(xγj)

, ℓ = 1, . . . , L, (43)

where one of the levels, say τb, is declared as the base level with its coefficient vector γ̂b
set to zero to identify the model. The propensity scores are then obtained as

q̂i =

{
1/Di if ti = τb

exp(xiγℓ)/Di if ti = τℓ, ℓ ̸= b
with Di = 1 +

∑
ℓ ̸=b

exp(xiγ̂ℓ) (44)

Note that the base level in the treatment-assignment model does not necessarily have
to be the same as the base level in the outcome model. That is, the choice of the base
level in the multinomial logit is irrelevant; the results of the outcome model will always
be the same.

Ordered treatment

For a categorical treatment whose levels have an ordered interpretation (e.g., low,
medium, and high treatment intensity) the procedure is similar as above, but one might
want to use a treatment-assignment model that takes account of the qualitative order of
the levels. An obvious candidate is standard ordered (i.e. cumulative) logistic regression,
that is, to model the treatment assignment as

Pr(T > τℓ|X = x) = logit(x̃γ − κℓ), ℓ = 1, . . . , L− 1 (45)

where x̃ is a copy of x without the constant, and compute the propensity scores as

q̂i = P̂r(T = ti|X = xi) = ĉℓi−1
i − ĉℓii (46)
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where ℓi is set such that ti = τℓi and where

ĉℓi =


1 if ℓ = 0

0 if ℓ = L

logit(x̃iγ̂ − κ̂ℓ) else

(47)

The standard ordered logit model relies on the proportional odds assumption and
may be too restrictive to fit the data well. A more flexible approach is to use so-called
generalized ordered logistic regression,8 which relaxes the proportional odds assumption
and can be written as a system of equations given as

Pr(T > τℓ|X = x) = logit(xγℓ), ℓ = 1, . . . , L− 1 (48)

The propensity scores are obtained in the same way as for the standard ordered logit,
with ĉℓi = logit(xiγℓ), 1 ≤ ℓ < L. Simultaneous estimation of all parameters of the gen-
eralized ordered logit can be computationally demanding; an asymptotically equivalent
but computationally more efficient procedure is to estimate the parameters by separate
logistic regressions, one for each equation.

For the outcome model, instead of using dummy-coding for the treatment levels
(which results in ors with respect to a chosen base level), a coding that leads to ors
between adjacent levels (split-coding) might be preferable. These ors, however, can also
be recovered easily from the results obtained via dummy-coding by taking contrasts.

Continuous treatment

For a continuous treatment, we define π = f(t) and q = f(t|X = x) as the marginal
and the conditional density of T = t, respectively, and then reweight the data by wω̂
with ω̂ = 1/q̂, or by wω̂s with ω̂s = π̂/q̂, when applying a logit regression of Y on T .
We prefer stabilized weights ω̂s here because results will generally depend on the choice
of the type of weights in case of a continuous treatment. When using stabilized weights
each treatment level will receive an overall weight equivalent to its proportion in the
population. Use ω̂ instead of ω̂s if you are interested in results that reflect a balanced
design.

The estimation of q = f(t|X = x) is challenging. Several procedures have been
suggested in the literature (see, e.g., Naimi et al. 2014), but many of them make strong
assumptions. Here we focus on a distribution-regression approach (Chernozhukov et al.
2013). The procedure is to first divide the domain of T into a number of (approximate)
equal-probability bins using quantiles as cutoffs. Let T c be such a categorized variant
of T . We then run a cumulative odds model of T c on X using one of the approaches
discussed in the section on ordered treatments above, and recover the propensity scores
q̂ci = P̂r(T c = tci |X = xi) from the fitted model. As above, the weights are then defined

8. Similar to the multinomial logit, the generalized ordered logit maintains a full set of slope coefficients
for each treatment level. The standard ordered logit only contains level-specific intercepts, and a
set of slope coefficients common to all levels. For an overview see Williams (2006).
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as ω̂i = 1/q̂ci or ω̂s
i = π̂c

i /q̂
c
i with π̂c

i = P̂r(T c = tci ). Note that categorized treatment T c

is only used for the computation of the weights. In the outcome model, we still simply
regress Y on T using logistic regression, while applying the calculated weights.

Results from the distribution-regression approach will depend on the number of bins
used to categorize the treatment. If only few bins are created, the treatment assignment
model will not be very flexible and the achieved balance may be poor. In contrast, if
many bins are used, the variance of the weights may get large and technical difficulties
such as crossings in the predicted cumulative probabilities (implying negative propensity
scores) may arise. Determining the optimal number of bins is a bias–variance tradeoff;
the number of bins should grow with the sample size (to reduce bias), but at a slower
rate (to improve efficiency). A simple approach may be to use a crude rule-of-thumb,
such as Sturges’ rule for the number of histogram bins that sets the number of bins to
L = ⌈ln(n)/ ln(2)⌉+ 1, where n is the sample size. More sophisticated approaches will,
for example, also take the complexity of the treatment-assignment model into account
or use cross-validation to determine the optimal number of bins.

Standard errors

Standard errors can again be estimated using influence functions. For a reweighted
statistic, the general procedure is as follows (also see Jann 2021). Let θ be the statistic

of interest and let λ̃i(θ̂) be a preliminary influence function ignoring the fact that the

weights ω̂i have been estimated. That is, λ̃i(θ̂) is the influence function that we get if
we treat wiω̂i as fixed sampling weights. In our case θ is estimated by logistic regression
and λ̃i(θ̂) is the influence function for logistic regression as given above (see equation
16). Furthermore, assume that the weights ω̂ have been constructed in a way such that
they depend on a set of parameters γ̂ from a treatment-assignment model (as in the

cases discussed above). The final influence function for the reweighted statistic θ̂ can
then be obtained as

λi(θ̂) = ω̂iλ̃i(θ̂) +

[
1

W

∑
i=1

wiλ̃i(θ̂)
∂ω̂i

∂γ̂

]
λi(γ̂) (49)

where λi(γ̂) is the influence function of the parameters of the treatment-assignment
model. For maximum-likelihood estimators, λi(γ̂) can be obtained easily as shown in
Jann (2020). Furthermore, Table 1 provides an overview ∂ω̂i/∂γ̂ for the different models
discussed above. For continuous treatments we can use analogous formulas based on
the categorized treatment.9

3.3 Unconditional logistic regression

A simple approximate approach to estimate marginal odds ratios is to apply linear
regression to the recentered influence function (rif) of the marginal log odds. This is in

9. Some refinements could be applied because the categorization of the treatment relies on estimated
quantiles. The effect of these refinements should be negligible.
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Table 1: Derivatives for influence functions of ipw estimators

Treatment-assignment model Derivatives

Binary treatment modeled by
logistic regression

∂ω̂i

∂γ̂
=

{
(q̂i − 1)ω̂ixi if ti = 1

(1− q̂i)ω̂ixi if ti = 0

Categorical treatment modeled by
a series of logistic regressions, one
for each treatment level

∂ω̂i

∂γ̂ℓ
=

{
(q̂i − 1)ω̂ixi if ti = τℓ

0 else

Categorical treatment modeled by
multinomial regression

∂ω̂i

∂γ̂ℓ
=

{
(q̂i − 1)ω̂ixi if ti = τℓ
exp(xiγℓ)

Di
ω̂ixi else

Categorical treatment modeled by
ordered logistic regression

∂ω̂i

∂γ̂
=

ĉℓii (1− ĉℓii )− ĉℓi−1
i (1− ĉℓi−1

i )

q̂i
ω̂ixi

∂ω̂i

∂κ̂ℓ
=


−ĉℓi(1− ĉℓi)

1
q̂i
ω̂i if ti = τℓ

ĉℓi(1− ĉℓi)
1
q̂i
ω̂i if ti = τℓ+1

0 else

Categorical treatment modeled by
generalized ordered logistic
regression (both variants)

∂ω̂i

∂γ̂ℓ
=


ĉℓi(1− ĉℓi)

1
q̂i
ω̂ixi if ti = τℓ

−ĉℓi(1− ĉℓi)
1
q̂i
ω̂ixi if ti = τℓ+1

0 else

line with Firpo et al. (2009), who illustrated the approach for quantile regression (which,
like the logit model, suffers from noncollapsibility). In analogy to the “unconditional
quantile regression” by Firpo et al. (2009) we call this procedure the “unconditional
logistic regression”.

Intuitively, an influence function of a statistic (originally called “influence curve” by
Hampel 1974) quantifies the degree to which the statistic changes if a small amount of
data mass is added at a specific point in the distribution that underlies the statistic. If
the distribution depends on covariates, then changing the covariate values will change
the distribution, which then will lead to changes in the statistic. As discussed by
Firpo et al. (2009), regressing the influence function on covariates can thus be used to
approximate the partial effects of the covariates on the statistic. Results will only be
approximate in most cases because the influence function is valid in the limit, that is, it
provides a linear approximation to how a statistic changes if the underlying distribution
is modified. Furthermore, because the influence function is centered around zero (i.e.,
has an expectation of zero), Firpo et al. (2009) suggest to use the rif in such regressions.
The rif is a shifted variant of an influence function that is centered around the value of
the statistic rather than around zero. This ensures that the intercept of the regression
has a meaningful interpretation.
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If the considered statistic in a rif regression is unconditional (i.e. marginal), then
also the regression coefficients have an unconditional interpretation. That is, the coef-
ficients reflect the partial effects of the covariates on the unconditional statistic. For
our purposes, we thus use the marginal log odds as the target statistic. In this case,
the exponents of the regression coefficients can be interpreted as (possibly adjusted)
marginal odds ratios (because the exponent of a difference in log odds is equivalent to
an odds ratio).

The rif of the marginal log odds can be derived as follows. Let π = Pr(Y = 1),
such that the marginal log odds are given as

α = ln υ(π) = ln(π/(1− π)) which implies π =
exp(α)

1 + exp(α)
(50)

Based on moment equation

E[h(y;α)] = 0 with h(y;α) = y − exp(α)

1 + exp(α)
= y − π (51)

the influence function of α can be derived as

λ(y;α) =
1

−E[∂h/∂α]
h(y;α) =

y − π

π(1− π)
(52)

(also see Jann 2020). To obtain the (empirical) rif we replace π by its sample estimate
(i.e. the sample mean of Y ) and add the sample log odds to the equation, that is

rifi =
yi − π̂

π̂(1− π̂)
+ ln υ(π̂) (53)

To obtain the marginal odds ratio with respect to treatment T , we then regress the
rif on T using least-squares estimation. To obtain the adjusted marginal odds ratio,
we regress rif on T and covariates X. Robust standard errors from such a regression
are consistent and no additional adjustments are needed. This is due to the fact that
the moment conditions of least-squares coefficients have the same basic form as the
moment condition of the mean and that the formulas behind robust standard errors are
equivalent to the formulas one would use when obtaining the standard errors through
influence functions.

4 Commands

Below we present three new commands implementing the estimation approaches dis-
cussed above. We focus on the main features of the commands and leave the details
(e.g., on minor options and stored results) to the online documentation.

4.1 G-computation

G-computation is implemented by command lnmor, a post-estimation utility that can
be applied after logit or probit to obtain marginal ors. lnmor is also allowed after
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logit or probit models to which svy or mi estimate has been applied. Stata 15 or newer
is required.10 The syntax is

lnmor termlist
[
, options

]
where termlist is

term
[
term ...

]
and term may be a simple varname, a factor variable specification such as
i.varname, or an interaction specification of a continuous variable with itself, such
as c.varname##c.varname. Each term must refer to a distinct variable and all spec-
ified variables must appear among the covariates of the model after which lnmor is
applied. Options are as follows.

dx[(spec)] requests derivative-based results for continuous terms (results for factor-
variables and interaction terms will not be affected). By default, lnmor reports
results obtained by fractional logit ([R] fracreg). spec may be one of the following.

average report the average derivative across the distribution of the variable;
this is the default if dx is specified without argument

atmean report the derivative at the mean of the variable
observed report a derivative based on a marginal shift in observed values
numlist report derivative at each level
levels report derivative at each observed level; not allowed if termlist con-

tains multiple terms affected by dx()

delta[(#)] requests that dx() computes discrete change effects rather than derivatives.
delta without argument is equivalent to delta(1) (unit change effect). delta()

implies dx().

Discrete change effects are not defined if # is 0. In this case, lnmor will report (log)
odds rather than (log) odds ratios. That is, you can specify delta(0) to obtain
levels rather than effects.

centered requests that discrete change effects are computed using predictions at t+#/2
and t−#/2 rather than t+# and t. centered is only relevant if delta() has been
specified.

normalize divides discrete change effects by #. normalize is only relevant if delta()
has been specified.

at(spec) reports results with covariates fixed at specific values. The syntax of spec is

varname = numlist
[
varname = numlist ...

]
Computations will be repeated for each pattern of combinations of the specified

10. The lnmor command also requires moremata to be installed on the system (Jann 2005; type ssc

install moremata).
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covariate values. You can also type at(varlist) to use the levels found in the data for
each variable instead of specifying custom values. In any case, the variables specified
in at() must be different from the variables specified in termlist . Furthermore, only
variables that appear as covariates in the original model are allowed.

vce(vcetype) specifies the variance estimation method. The default is to compute robust
standard errors based on influence functions (taking account of clustering if the
original model includes clustering). Use option vce() to request replication-based
standard errors; vcetype may be bootstrap or jackknife; see [R] vce option. If
replication-based standard errors are requested, lnmor will reestimate the original
model within replications. Option vce() is not allowed after svy or mi estimate.

or reports the results transformed to odds ratios (rather than log odds ratios). This
option affects how results are displayed, not how they are estimated.

other options are further options related to details of estimation as well as displaying
and storing results; see the online documentation.

4.2 Inverse probability weighting

Inverse probability weighting is implemented by command ipwlogit. The syntax is

ipwlogit depvar tvar
[
indepvars

] [
if

] [
in

] [
weight

] [
, options

]
where depvar equal to nonzero and nonmissing (typically depvar equal to one) indicates
a positive outcome and depvar equal to zero indicates a negative outcome. indepvars
may include factor variables; pweights, fweights, and iweights are allowed. Stata 14
or newer is required.

Treatment tvar can be categorical or continuous. A categorical treatment must be
specified using factor variable notation, that is, as i.varname, where varname is the
name of the treatment variable. The ipws will then be based on the observed levels of
the variable. A continuous treatment is specified as varname without factor variable
operator. In this case, the ipws will be based on a coarsened variable that divides the
treatment into a series of equal probability bins (unless option discrete is specified; see
below). A continuous treatment may also be specified, e.g., as c.varname##c.varname
to model a nonlinear effect. Options are as follows.

psmethod(method) selects the propensity score estimation method. Supported methods
are as follows.

logit for each treatment level, fit a logistic regression of the level against
all other levels (using command [R] logit)

mlogit fit a multinomial logistic regression across all levels (using command
[R] mlogit)

ologit fit an ordered logistic regression across all levels (using command
[R] ologit)

gologit fit a generalized ordered logistic regression across all levels; this re-
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quires command gologit2 by Williams (2006) to be installed on the
system (type ssc install gologit2)

cologit fit a series of cumulative odds models across treatment levels (using
command [R] logit); this is asymptotically equivalent to gologit2,
but imposes less computational burden

The default method depends on the type of the treatment variable. For a categorical
treatment with two levels (dichotomous treatment), the default is logit; for a cate-
gorical treatment with more than two levels, the default is mlogit; for a continuous
or discrete treatment, cologit is the default.

truncate(#), with # in [0, 0.5], applies truncation to the inverse probability weights.
Weights smaller than quantile# of the overall distribution of weights will be replaced
by the value of quantile # and weights larger than quantile 1 −# will be replaced
by the value of quantile 1 − #. For example, type truncate(0.01) to truncate
the weights to the 1st and 99th percentile. Truncation will always be applied on
the basis of stabilized weights; truncated non-stabilized weights will be obtained by
rescaling the truncated stabilized weights.

bins(#) sets the number of quantile bins used to categorize a continuous treatment.
The resulting number of bins may be less than # if there is heaping in the distribu-
tion. The default is to determine the number of bins as ⌈ln(n)/ ln(2)⌉+ 1, where n
is the number of obervations (Sturges’ rule for the number of histogram bins).

discrete declares the treatment variable as discrete. In this case, the variable will not
be categorized based on quantiles. Use this option for a quantitative treatment with
relatively few distinct levels.

asbalanced scales the inverse probability weights in a way such that they correspond
to a balanced design in which each treatment level has the same marginal probabil-
ity. By default, ipwlogit uses so-called stabilized weights that reflect the observed
distribution.

vce(vcetype) specifies the type of standard error reported. vcetype may be robust (ro-
bust standard errors), cluster clustvar (cluster-robust standard errors), bootstrap
or jackknife; for bootstrap and jackknife see [R] vce option. The default is
vce(robust).

or reports the results transformed to odds ratios (rather than log odds ratios). This
option affects how results are displayed, not how they are estimated.

other options are further options related to details of estimation as well as displaying
and storing results; see the online documentation.

4.3 Unconditional logistic regression

The rif regression approach is implemented by command riflogit. The syntax is

riflogit depvar
[
indepvars

] [
if

] [
in

] [
weight

] [
, options

]
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where depvar equal to nonzero and nonmissing (typically depvar equal to one) indicates
a positive outcome and depvar equal to zero indicates a negative outcome. indepvars
may include factor variables; pweights, fweights, and iweights are allowed. Prefix
commands svy and mi estimate are supported. Stata 11 or newer is required. Options
are as follows.

vce(vcetype) specifies the type of standard error reported. vcetype may be robust (ro-
bust standard errors), cluster clustvar (cluster-robust standard errors), bootstrap
or jackknife; for bootstrap and jackknife see [R] vce option. The default is
vce(robust).

or reports the results transformed to odds ratios (rather than log odds ratios). This
option affects how results are displayed, not how they are estimated.

other options are further options related to details of estimation and displaying results;
see the online documentation.

5 Example application

The gender gap in STEM training

In Switzerland, like in many other countries, young men much more often than young
women aspire to become a professional in the field of stem (Science, Technology, Engi-
neering, and Math). One reason for the difference may be that boys specialize more in
math throughout their school career than girls, for example, due to gender stereotypes,
such that a gender gap in math skills emerges over the school years. Such a gap may
then lead to gender differences in occupational aspirations and choices of study fields.
Based on such reasoning one would expect the gender stem gap to decrease once math
skills are controlled for. That is, at least part of the total effect of gender may be medi-
ated by math skills. Mechanisms that suppress the gap are also possible. For example,
boys may have lower academic motivation than girls, which would reduce their likeli-
hood of becoming a stem professional because it reduces the likelihood of becoming a
professional at all. In such a case, we would expect the gender stem gap to increase
once we control for an indicator of low academic motivation such as grade repetition.

To disentangle the mechanisms we might be tempted to do a mediation analysis by
running different logistic regressions, with and without controls, and comparing results
across models. Unfortunately, however, such comparisons may be misleading due to the
noncollapsibility property of logit coefficients. A solution to the problem is to look at
adjusted marginal odds ratios.

For purpose of illustration, we use a data excerpt from the second cohort of the
TREE study, a Swiss multi-cohort panel study on the transition from education to
employment (TREE 2021). The data look as follows:

. use stem, clear
(Excerpt from TREE cohort 2)

. summarize
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Variable Obs Mean Std. dev. Min Max

stem 6,809 .262153 .4398377 0 1
male 6,809 .450727 .4976028 0 1

mathscore 6,809 .244739 1.343228 -5.36 5.214
repeat 6,809 .1631664 .3695446 0 1
books 6,809 4.354531 1.526026 1 7

wt 6,809 11.54357 13.13314 .5645969 80.80351
psu 6,809 446.1088 235.8681 1 810

The dependent variable is stem, an indicator for whether a student is on an educa-
tional track that will eventually lead to a stem profession (measured two years after
leaving compulsory school; using a relatively wide definition of stem that also includes
some female dominated occupational fields). male is an indicator for the gender of
the student, mathscore is the test score from a mathematics assessment at the end of
compulsory school, repeat is an indicator of whether the student ever repeated a grade
during compulsory school, and books is a measure of cultural capital (number of books
at home) that is expected to have a positive effect on academic achievement.11 Further-
more, wt contains sampling weights and psu contains the ids of the primary sampling
units.12

There is a strong association between stem and male. The gender difference in the
probability of being in training for a stem profession is about 11 percentage points and
the (unadjusted) marginal odds ratio amounts to 1.94. That is, the odds of being in
stem training are almost twice as high for men than for women.

. mean stem [pw=wt], over(male) cluster(psu)

Mean estimation Number of obs = 6,809

(Std. err. adjusted for 800 clusters in psu)

Robust
Mean std. err. [95% conf. interval]

c.stem@male
0 .163234 .0093646 .1448519 .1816161
1 .2748687 .0145161 .2463745 .3033629

. lincom _b[c.stem@1.male] - _b[c.stem@0.male]

( 1) - c.stem@0bn.male + c.stem@1.male = 0

Mean Coefficient Std. err. t P>|t| [95% conf. interval]

(1) .1116347 .0142959 7.81 0.000 .0835728 .1396966

. logit stem i.male [pw=wt], cluster(psu) nolog or

Logistic regression Number of obs = 6,809

11. Variable books is a categorical measure with values from 1 “None” to 7 “More then 500 books”.
For simplicity, we treat the variable as quantitative in our analysis.

12. The sample design also includes stratification, but for simplicity we omit the strata in our analysis
(the effect of stratification is negligible in our case).
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Wald chi2(1) = 67.37
Prob > chi2 = 0.0000

Log pseudolikelihood = -40949.278 Pseudo R2 = 0.0172

(Std. err. adjusted for 800 clusters in psu)

Robust
stem Odds ratio std. err. z P>|z| [95% conf. interval]

1.male 1.943131 .1572663 8.21 0.000 1.658099 2.27716
_cons .1950773 .0133746 -23.84 0.000 .1705485 .2231338

Note: _cons estimates baseline odds.

We now control for mathscore, repeat, and books. The three controls do have
the anticipated effects (positive effect of mathscore, negative effect of repeat, positive
effect of books), but their addition to the model does not decrease the effect of gender.
In fact, the odds ratio of gender even slightly increases to 1.96:

. logit stem i.male mathscore i.repeat books [pw=wt], cluster(psu) nolog or

Logistic regression Number of obs = 6,809
Wald chi2(4) = 596.03
Prob > chi2 = 0.0000

Log pseudolikelihood = -31905.554 Pseudo R2 = 0.2343

(Std. err. adjusted for 800 clusters in psu)

Robust
stem Odds ratio std. err. z P>|z| [95% conf. interval]

1.male 1.959295 .1675426 7.87 0.000 1.65696 2.316794
mathscore 2.606164 .1252437 19.93 0.000 2.371897 2.86357
1.repeat .6563627 .0965248 -2.86 0.004 .4920011 .8756321

books 1.087051 .0341241 2.66 0.008 1.022185 1.156034
_cons .1058314 .0166897 -14.24 0.000 .0776926 .1441616

Note: _cons estimates baseline odds.

From these results we would conclude that the gender stem gap does not change
when controlling for math skills and academic motivation, either because the gender
effect is not mediated by these variables or because there are offsetting mechanisms.
However, such a conclusion would be wrong, as indicated by an analysis of the adjusted
marginal odds ratio using post-estimation command lnmor:

. lnmor i.male, or

Enumerating predictions: male..done

Marginal odds ratio Number of obs = 6,809
Command = logit

(Std. err. adjusted for 800 clusters in psu)

Robust
stem Odds Ratio std. err. t P>|t| [95% conf. interval]

1.male 1.677032 .1103015 7.86 0.000 1.473911 1.908145
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We see that controlling for mathscore, repeat, and books does reduce the marginal
or of gender to a level of about 1.68.

Note that lnmor can compute marginal ors also for the other variables in the model.
Simply list all covariates for which you want to obtain the marginal or:

. lnmor i.male mathscore i.repeat books, or
(mathscore has 491 levels; using 82 binned levels)

Enumerating predictions: male..mathscore......................................
............................................repeat..books.......done

Marginal odds ratio Number of obs = 6,809
Command = logit

(Std. err. adjusted for 800 clusters in psu)

Robust
stem Odds Ratio std. err. t P>|t| [95% conf. interval]

1.male 1.677032 .1103015 7.86 0.000 1.473911 1.908145
mathscore 2.544257 .1227974 19.35 0.000 2.314279 2.797088
1.repeat .7244256 .0839026 -2.78 0.006 .5771099 .9093458

books 1.065542 .025807 2.62 0.009 1.01607 1.117423

A test for confounding or mediation

A test for whether the unadjusted and adjusted estimates of the marginal or are differ-
ent is not directly included in the output of lnmor, but such a test can be constructed
based on the influence functions from two calls to lnmor. Use option rif() to store the
(recentered) influence functions (see the online documentation of lnmor). The procedure
goes as follows.

Step 1: Obtain the rif of the marginal or based on the full model including the
covariates.

. logit stem i.male mathscore i.repeat books [pw=wt], cluster(psu)

(output omitted )

. lnmor i.male, nodots noheader notable rif(RIFadj*)

Variable Storage Display Value
name type format label Variable label

RIFadj1 double %10.0g RIF of 0b.male
RIFadj2 double %10.0g RIF of 1.male

Step 2: Obtain the rif of the marginal or based on the reduced model excluding the
covariates.

. logit stem i.male [pw=wt] if e(sample), cluster(psu)

(output omitted )

. lnmor i.male, nodots noheader notable rif(RIF*)

Variable Storage Display Value
name type format label Variable label
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RIF1 double %10.0g RIF of 0b.male
RIF2 double %10.0g RIF of 1.male

Qualifier “if e(sample)” makes sure that observations with missing values in the co-
variates are excluded from the reduced model.

Step 3: Perform the difference test.

. total RIFadj2 RIF2 [pw=wt], cluster(psu)

Total estimation Number of obs = 6,809

(Std. err. adjusted for 800 clusters in psu)

Robust
Total std. err. [95% conf. interval]

RIFadj2 .5170253 .0657719 .3879192 .6461313
RIF2 .6643005 .0809345 .5054311 .8231699

. lincom RIFadj2 - RIF2

( 1) RIFadj2 - RIF2 = 0

Total Coefficient Std. err. t P>|t| [95% conf. interval]

(1) -.1472752 .0420574 -3.50 0.000 -.2298313 -.0647192

. drop RIF*

The difference in the log odds ratio is about 0.15 and appears to be highly significant,
as indicated by a t value of 3.5. That is, adding the covariates significantly reduces the
remaining gender effect.

Interactions and nonlinear effects

We might be concerned that our original model is not flexible enough to fit the data
sufficiently well. Possibly, some interaction terms or polynomials should be included in
the model. Increasing the complexity of the specification does not change the definition
of the marginal or. That is, the marginal or of a predictor can always be obtained in
the same way, even if the predictor is involved in interactions or if a nonlinear effect
has been modeled. For example, here is the marginal or of gender from a model that
includes interaction terms between all variables and a nonlinear effect of mathscore:

. logit stem i.male##c.mathscore##c.mathscore##i.repeat##c.books [pw=wt], ///
> cluster(psu)

(output omitted )

. lnmor i.male, nodots or

Marginal odds ratio Number of obs = 6,809
Command = logit

(Std. err. adjusted for 800 clusters in psu)

Robust
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stem Odds Ratio std. err. t P>|t| [95% conf. interval]

1.male 1.676628 .1103018 7.86 0.000 1.47351 1.907746

There is not much change in the gender stem gap compared to the simpler model.
However, since the model includes interactions it may be interesting to evaluate effect
heterogeneity. The at() option can be used for this purpose; it computes results under
different scenarios with covariates set to specific values. For example, here is how the
gender effect differs by mathscore:

. lnmor i.male, nodots or at(mathscore = -2(2)2)

Marginal odds ratio Number of obs = 6,809
Command = logit

Evaluated at:
1: mathscore = -2
2: mathscore = 0
3: mathscore = 2

(Std. err. adjusted for 800 clusters in psu)

Robust
stem Odds Ratio std. err. t P>|t| [95% conf. interval]

1
1.male 1.697829 .6740845 1.33 0.183 .7788088 3.701323

2
1.male 1.890954 .2009018 6.00 0.000 1.535003 2.329448

3
1.male 1.991302 .3565062 3.85 0.000 1.401245 2.829831

It seems that the gender effect tends to increase with math score. Note, however,
that these differences in effect sizes are too small to be statistically significant, as is
confirmed by the following test:

. lnmor i.male, at(mathscore = -2(2)2) post

(output omitted )

. test _b[1:1.male] = _b[2:1.male] = _b[3:1.male]

( 1) [1]1.male - [2]1.male = 0
( 2) [1]1.male - [3]1.male = 0

F( 2, 799) = 0.06
Prob > F = 0.9393

In the above model, a nonlinear effect has been included for mathscore. If we are
interested evaluating the corresponding effect pattern, we can use option dx() to obtain
level-specific marginal ors of mathscore:

. logit stem i.male##c.mathscore##c.mathscore##i.repeat##c.books [pw=wt], ///
> cluster(psu)

(output omitted )

. lnmor mathscore, nodots or dx(-3(1)3)
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Marginal odds ratio Number of obs = 6,809
Command = logit
Type of dx() = levels

(Std. err. adjusted for 800 clusters in psu)

Robust
stem Odds Ratio std. err. t P>|t| [95% conf. interval]

mathscore@l1 2.746111 .5964997 4.65 0.000 1.792845 4.206233
mathscore@l2 2.944801 .4688244 6.78 0.000 2.154446 4.025097
mathscore@l3 2.935113 .3196357 9.89 0.000 2.370215 3.634644
mathscore@l4 2.811596 .1889376 15.38 0.000 2.464143 3.208042
mathscore@l5 2.609491 .157727 15.87 0.000 2.317545 2.938215
mathscore@l6 2.358956 .2203644 9.19 0.000 1.963737 2.833717
mathscore@l7 1.878049 .242352 4.88 0.000 1.457798 2.419449

Terms affected by dx(): mathscore
Levels of dx(): -3 -2 -1 0 1 2 3

The pattern suggests that the effect of mathscore decreases somewhat if the score
is high, but still remains positive.

Comparison to ipwlogit and riflogit

The above analyses, at least some of them, could also be performed using ipwlogit

or riflogit. We prefer lnmor because it directly quantifies the marginal or that is
implied by the chosen model and because it is fully flexible with respect to how the
right-hand side of the model is specified. However, for the record, here are the marginal
ors for male estimated by ipwlogit or riflogit.

Unadjusted marginal or by ipwlogit:

. ipwlogit stem i.male [pw=wt], or cluster(psu) nolog
(estimating balancing weights ... done)

Marginal logistic regression Number of obs = 6,809
Wald chi2(1) = 67.37
Prob > chi2 = 0.0000
Pseudo R2 = 0.0172
Treatment type = factor
Number of levels = 2
PS method = logit

(Std. err. adjusted for 800 clusters in psu)

Robust
stem Odds ratio std. err. z P>|z| [95% conf. interval]

1.male 1.943131 .1572663 8.21 0.000 1.658099 2.27716
_cons .1950773 .0133746 -23.84 0.000 .1705485 .2231338

Distribution of IPWs
level N mean sum min max cv

0 3740 1 36847.15 1 1 0
1 3069 1 41753.04 1 1 0
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Adjusted marginal or by ipwlogit:

. ipwlogit stem i.male mathscore i.repeat books [pw=wt], or cluster(psu) nolog
(estimating balancing weights ... done)

Marginal logistic regression Number of obs = 6,809
Wald chi2(1) = 70.25
Prob > chi2 = 0.0000
Pseudo R2 = 0.0128
Treatment type = factor
Number of levels = 2
PS method = logit

(Std. err. adjusted for 800 clusters in psu)

Robust
stem Odds ratio std. err. z P>|z| [95% conf. interval]

1.male 1.769612 .1205055 8.38 0.000 1.548508 2.022285
_cons .2038352 .013625 -23.79 0.000 .1788061 .2323679

(adjusted for mathscore i.repeat books)

Distribution of IPWs
level N mean sum min max cv

0 3740 .9988502 36804.78 .7358384 1.549773 .1029689
1 3069 1.000906 41790.88 .7368664 1.551103 .1009686

Unadjusted marginal or by riflogit:

. riflogit stem i.male [pw=wt], or cluster(psu)

Unconditional logistic regression Number of obs = 6,809
F(1, 799) = 60.97
Prob > F = 0.0000
R-squared = 0.0179
Adj R-squared = 0.0178
Root MSE = 2.3828

(Std. err. adjusted for 800 clusters in psu)

Robust
stem Odds ratio std. err. t P>|t| [95% conf. interval]

1.male 1.90644 .1575382 7.81 0.000 1.62098 2.242171
_cons .2031708 .0109977 -29.44 0.000 .1826904 .2259473

Adjusted marginal or by riflogit:

. riflogit stem i.male mathscore i.repeat books [pw=wt], or cluster(psu)

Unconditional logistic regression Number of obs = 6,809
F(4, 799) = 207.19
Prob > F = 0.0000
R-squared = 0.2145
Adj R-squared = 0.2140
Root MSE = 2.1316

(Std. err. adjusted for 800 clusters in psu)

Robust
stem Odds ratio std. err. t P>|t| [95% conf. interval]
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1.male 1.731805 .1189147 8.00 0.000 1.51343 1.981689
mathscore 2.019566 .0603115 23.54 0.000 1.904582 2.141493
1.repeat .7736294 .0657626 -3.02 0.003 .6547365 .9141119

books 1.059187 .0257164 2.37 0.018 1.009891 1.110889
_cons .1944999 .0214248 -14.86 0.000 .1566804 .2414483

Results are qualitatively similar to the results from lnmor, that is, the adjusted
marginal or is lower than the unadjusted marginal or, although the reduction is some-
what less pronounced than with lnmor.

6 Conclusions

This article defines the marginal odds ratio as an estimand, reviews different estima-
tion techniques, and describes the software implementation of these techniques. The
main advantage of marginal odds ratio over conventionally used conditional odds ratios
(typically obtained from logistic response models) is that it is unaffected by noncol-
lapsibility: it’s magnitude does not change if we adjust for a covariate orthogonal to
the treatment variable of interest. Marginal odds ratios can thus be compared across
different covariate adjustment sets and will be relevant to both experimental research
(in which covariates are added to increase efficiency) and observational research (where
confounding is ubiquitous).
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8 Appendix: Simulation results

The purpose of the following simulation is to evaluate whether the discussed estimation
approaches yield consistent estimates of the marginal or and whether the computed
standard errors are consistent.

We generate data where binary outcome Y depends on treatment T and control
variable X through a logistic model. X has a standard normal distribution and the
effects of T and X on Y (the conditional log odds ratios) are set to 1 in all simulations
(the intercept is set to 0). Treatment T can either be binary or continuous. In the binary
case, T is generated through a logistic model with X as predictor. In the continuous
case, T is generated as a linear function of X plus a standard normal error. We look at
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two scenarios, a no-confounding scenario in which the effect of X on T is equal to zero,
and a confounding scenario in which the effect is set to 0.5 (the intercept is always 0).
We report results from 10’000 runs using a sample size of n = 1000.

Figure 1 shows violin plots (Jann 2022) of the distribution of estimates for the binary
treatment by estimation method. The dashed line marks the conditional effect (equal
to 1); the solid line marks the marginal log odds ratio, which we obtain as the average
effect from the unadjusted logit model in the non-confounding scenario (the simulation
is set up such that the true marginal odds ratio in the confounding scenario is the same
as in the non-confounding scenario). The value of the marginal or is about 0.84. In the
graph, solid circles display the averages of estimates across simulations; the medians are
displayed as hollow circles (not visible in this figure since covered by the solid circles
for the means). The curves display kernel density estimates of the distributions, the
horizontal spikes are box-plot whiskers, and the white space between the whiskers is
equal to the inter-quartile range.

logit: conditional

logit: unadjusted

lnmor

ipwlogit: default

ipwlogit: truncated

riflogit

.2 .4 .6 .8 1 1.2 1.4 1.6 1.8 .2 .4 .6 .8 1 1.2 1.4 1.6 1.8

without confounding with confounding

ln(OR)

Figure 1: Distribution of effect estimates for binary treatment

We see, as expected, that the conditional logit model provides unbiased estimates of
the conditional treatment effect in both the non-confounding as well as the confounding
scenario (a log conditional or of 1). Furthermore, we see that in the non-confounding
scenario (left panel) all evaluated estimation techniques, lnmor, ipwlogit (without and
with truncation at the 1st and 99th percentile), and riflogit provide estimates that
are consistent with the effect estimated by the unadjusted logit. More importantly, the
techniques also successfully uncover the marginal odds ratio in the confounding scenario,
in which case the unadjusted logit is severely biased (right panel).

Figure 2 displays the simulation results for the continuous treatment. For lnmor we
now report results for three different estimates, the default estimate based on fractional
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logit, the average derivative across the treatment distribution, and the derivative-at-
observed-values estimate. We see that the “default” and “averaged” methods of lnmor
provide unbiased estimates of the marginal or in both the non-confounding and the
confounding scenario. The same is true for ipwlogit in the non-confounding scenario,
but ipwlogit does not seem to be fully successful in the confounding scenario. Com-
pared to unadjusted logit, ipwlogit substantially reduces confounding, but a small bias
seems to remain. Also note that the ipwlogit estimate has inflated variance (wider
distribution) in the confounding scenario. The instability of ipwlogit is due to the fact
that the ipws can get very large if there is poor overlap (i.e., if the distribution of X
strongly differs by treatment level), which is likely to happen if confounding is as strong
as in the chosen setup. Applying truncation to the weights helps reducing the variance,
but increases bias.

logit: conditional

logit: unadjusted

lnmor: default

lnmor: averaged

lnmor: observed

ipwlogit: default

ipwlogit: truncated

riflogit

.4 .6 .8 1 1.2 1.4 1.6 .4 .6 .8 1 1.2 1.4 1.6

without confounding with confounding

ln(OR)

Figure 2: Distribution of effect estimates for continuous treatment

The derivative-at-observed-values estimate by lnmor does not recover the “average”
marginal or, but this was not expected, as the estimand is a different one. Interestingly,
however, riflogit also does not recover the “average” marginal or. From the results in
Figure 2 we see that riflogit corresponds to the same estimand as lnmor with option
dx(observed). That is, for continuous treatments, results from riflogit appear to
have a derivative-at-observed-values interpretation.

Figures 3 and 4 show the distributions of standard errors for the different estima-
tors. Vertical spikes on these plots depict the observed standard deviations of estimates
across simulations. In the case of a binary treatment (Figure 3), we see that standard
errors are consistent and well-behaved for all methods. Furthermore, the left panel (non-
confounding scenario) illustrates the efficiency gain achieved by the adjusted marginal
or over the unadjusted marginal or (both are consistent, as shown above, but unad-
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justed logit has a larger standard deviation than the estimates from lnmor, ipwlogit,
and riflogit).

logit: conditional

logit: unadjusted

lnmor

ipwlogit: default

ipwlogit: truncated

riflogit

.11 .12 .13 .14 .15 .16 .17 .11 .12 .13 .14 .15 .16 .17

without confounding with confounding

Standard error

Figure 3: Distribution of standard errors for binary treatment

logit: conditional

logit: unadjusted

lnmor: default

lnmor: averaged

lnmor: observed

ipwlogit: default

ipwlogit: truncated

riflogit

.04 .06 .08 .1 .12 .04 .06 .08 .1 .12

without confounding with confounding

Standard error

Figure 4: Distribution of standard errors for continuous treatment

In the continuous case (Figure 4), standard errors are again consistent in the non-
confounding scenario for all estimators. However, we see that the distribution of stan-
dard errors from ipwlogt is skewed, with some strong outliers (the density curves have
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been truncated on the right for purpose of plotting). Applying truncation leads to a
less skewed distribution (median and mean are closer together as without truncation),
but does not completely remove the outliers. Furthermore, standard error estimates are
very unstable for ipwlogt in the confounding scenario. The distribution is now consid-
erably skewed. Again, truncation helps, but does not completely remove the problem.
For the other estimators, standard errors are consistent and well-behaved also in the
confounding scenario.
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