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Abstract (250 words) 
In network meta-analysis (NMA), we synthesize all relevant evidence about health outcomes 

with competing treatments. The evidence may come from randomized clinical trials (RCT) or 

non-randomized studies (NRS) as individual participant data (IPD) or as aggregate data (AD). 

We present a suite of Bayesian NMA and network meta-regression (NMR) models allowing 

for cross-design and cross-format synthesis. The models integrate a three-level hierarchical 

model for synthesizing IPD and AD into four approaches. The four approaches account for 

differences in the design and risk of bias (RoB) in the RCT and NRS evidence. These four 

approaches variously ignoring differences in RoB, using NRS to construct penalized treatment 

effect priors and bias-adjustment models that control the contribution of information from high 

RoB studies in two different ways. We illustrate the methods in a network of three 

pharmacological interventions and placebo for patients with relapsing-remitting multiple 

sclerosis. The estimated relative treatment effects do not change much when we accounted for 

differences in design and RoB. Conducting network meta-regression showed that intervention 

efficacy decreases with increasing participant age. We also re-analysed a network of 431 RCT 

comparing 21 antidepressants, and we did not observe material changes in intervention efficacy 

when adjusting for studies’ high RoB. We re-analysed both case studies accounting for 

different study RoB. In summary, the described suite of NMA/NMR models enables inclusion 

of all relevant evidence while incorporating information on the within-study bias in both 

observational and experimental data and enabling estimation of individualized treatment 

effects through the inclusion of participant characteristics.  

 

Key words: real-world evidence, observational studies, randomised controlled trials, risk of 

bias 
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1 Introduction 

Network meta-analysis (NMA) is a widely used tool to synthesise the available evidence that 

may vary in design and format (1–3). Evidence may come either from a randomized clinical 

trial (RCT) or a non-randomized study (NRS); as either individual participant data (IPD) or 

aggregate data (AD). As heterogeneity is a common attribute of evidence synthesis, many 

published comparative effectiveness reviews account for covariates that modify the treatment 

effect in a network meta-regression (NMR) (4,5). The effect of study-level covariates can be 

modelled using only AD, while IPD is needed to adjust for patient-level covariates to avoid 

aggregation bias (6) and confounding when NRS are included. The inclusion of these 

participant characteristics also enables estimating individualized treatment effects.    

Matching-Adjusted Indirect Comparison (6–8)(7) and simulated treatment comparison 

methods (8) have been used to combine evidence from IPD and AD using reweighting 

techniques and regression models, respectively, to adjust for effect modifiers.  However, this 

adjustment needs to be done separately for each treatment comparison and requires IPD for at 

least one of each treatment comparison.  The performance of these methods has been 

investigated in two simulation studies. Phillippo et al. found that matching-adjusted indirect 

comparison performs poorly when its underlying assumptions are violated (9). Remiro-Azócar 

et al. showed that the current use of simulated treatment comparison method yields often biased 

estimates (10). Jansen proposed combining IPD and AD in an NMA by integrating the 

underlying IPD distribution of the AD studies (11). The method was applied initially to binary 

outcomes and extended to other data types (12). The three-level hierarchical model extends the 

standard NMR model combining IPD and AD by introducing a new level differentiating 

between the two formats (11,13–15). 

While most published NMAs only synthesize RCT evidence, there is growing interest 

incorporating non-randomized or real-world evidence in these analyses (16,17). The inclusion 

of evidence from NRS has many potential advantages, such as better reflected clinical practice 

realities; the data in follow-up studies are collected over relatively long time periods; and 

finally, NRS are essential when RCTs are less feasible (e.g., in rare conditions). While RCT 

evidence is considered to be of lower risk of bias when compared with NRS, a Cochrane review 

found little evidence that RCTs and NRSs provide different estimates of treatment effect (18). 

Also, many empirical studies have identified different types of bias possibly present in many 

RCTs. For example, Schulz et al. (19) found that RCTs with inadequate allocation concealment 
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or lack of blinding tended to exaggerate the estimated treatment effect and provide biased 

results. Similarly, Chalmers et al. (20) showed major differences between treatment and control 

effects in unblinded trials, as well as trials lacking proper randomisation when compared with 

double-blinded studies. Wood et al. (21) found that the treatment effect estimates of subjective 

outcomes (outcomes are dependent on judgment from an assessor or patient-reported) were 

exaggerated for studies with poor allocation concealment or lack of blinding.  

Several methods have been proposed for combining various designs in NMA contexts. 

Three approaches have been proposed to synthesize RCT and NRS evidence (22,23): the first 

combines studies of different design ignoring their differences (we call this the naïve 

approach); an alternative is to use NRS evidence to construct penalized treatment effect priors; 

and a third approach is to add a new level to reflect differences in study designs using a three-

level hierarchical model. This last approach requires the network to include several studies on 

each design which is not the case for most NMAs (23). Dias et al. (24) presented an NMA 

model that adjusts for the within-study risk of bias (RoB) of RCTs by adding a bias indicator. 

The bias indicator was assigned a binary value of 0 for low RoB studies; 1 for high RoB studies; 

and a uniform distribution for studies with unclear RoB. Verde (25) proposed to model the 

unadjusted and adjusted relative treatment effect simultaneously using a bimodal normal 

distribution. The model was developed for pairwise meta-analysis.  

We extend the two RoB adjustment methods described above by accounting for the 

uncertainty in each RoB judgment in Dias et al.’s model and by drawing from Verde’s approach 

into NMA (24,25). Then we build a Bayesian cross-NMA/NMR model by integrating the 

approaches that combine RCT and NRS evidence into the three-level hierarchical model, which 

combines IPD and AD. This model enables estimating treatment effects for specific subgroups 

of patients through the inclusion of participant characteristics. Bias-adjusted models can be 

used to explore the impact of the different levels of bias in RCTs. We will illustrate this by 

modelling the risk of bias in a network of RCTs with AD comparing various antidepressants. 

This work has been done within the HTx Horizon 2020 project. HTx is supported by the 

European Union, lasting for 5 years from January 2019. The main aim of HTx is to create a 

framework for the Next Generation Health Technology Assessment (HTA) to support patient-

centered, societally oriented, real-time decision-making on access to and reimbursement for 

health technologies throughout Europe. 
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2 Examples 

We analysed two networks of interventions: one of pharmacological agents in relapsing-

remitting multiple sclerosis (RRMS) and another of antidepressant treatments (Figure 1). In 

both examples, RoB judgements were formulated using the Cochrane RoB tool 1 (26).  

 

Relapsing-Remitting Multiple Sclerosis (RRMS) drugs network: The agents to manage 

RRMS were compared in systematic reviews of RCTs and NMAs (27,28). We contribute to 

the methodological literature by analysing the IPD and AD from five RCTs (29–33) and the 

Swiss Multiple Sclerosis Cohort (SMSC) (34).  

We defined the inclusion criteria for patients from the SMSC to be consistent with the 

RCTs’ criteria. We only included people from the SMSC with RRMS treated with any of the 

three active agents shown in Table 1. Compared with available RCTs, individuals in the SMSC 

are followed for longer. To avoid immortal time bias, we specified the length and the start of 

follow-up for each individual (35,36). Since two years was the typical duration of the RCTs 

we included, we defined cycles of length of two years from when a patient initiated a treatment 

in SMSC; we recorded their outcome during these two years of follow-up.  

To investigate the effectiveness of the treatments in subgroups of people, we explored 

whether age at the time of treatment initiation modifies the treatment effect. Individuals with  

RRMS have flare-ups of relapses or symptoms; between these flare-ups, they are free of 

symptoms (37). Our outcome of interest is relapse at two years of follow-up. We use the odds 

ratio (OR) to compare treatments. When OR of treatment A vs B (𝑂𝑂𝑅𝑅𝐴𝐴𝐴𝐴 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑠𝑠𝐴𝐴/𝑜𝑜𝑜𝑜𝑜𝑜𝑠𝑠𝐴𝐴) is 

less than 1, treatment A is more effective than treatment B.  

Figure 1a, Table 1 and Appendix Table 1-3 summarize the data available, their format and the 

RoB in each study. 

 

Antidepressants: Our dataset includes AD from 431 RCTs (263 at moderate RoB and 168 at 

low RoB) comparing 21 antidepressants and placebo (38). The outcome of interest is response 

to treatment defined as 50% reported reduction in depression symptoms. In the original article, 

the authors performed a sensitivity analysis by including only low RoB studies in their analysis 

(38). We re-analysed their dataset by controlling the impact of information from studies at 

different levels of RoB. (The dataset is available at 

https://data.mendeley.com/datasets/83rthbp8ys/2.) 
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3 Methods  

We review existing NMR models to combine different data formats—IPD or AD—in this 

section. We then extend these models by combining the evidence from RCT and NRS in four 

different ways. Table 2 provides an overview of these four models and Table 3 summarizes the 

notation used. All models we later introduce are implemented in a new R package called 

crossnma available on CRAN (https://CRAN.R-project.org/package=crossnma). The R code 

for the analysis of both examples and the antidepressant dataset can be found at the following 

URL: https://github.com/htx-r/crossnma-theoretical-paper-analysis.  

3.1 Synthesizing cross-format data: individual participant data (IPD) and 

aggregate data (AD)  

To combine IPD and AD data into the three-level hierarchical model of network meta-

regression, we divided the model into three parts; in the first two parts, the model is set for IPD 

and AD separately. Next, we present how we combined the evidence from both parts. We 

describe all models assuming binary outcomes; however, they can be adapted easily to other 

outcome types, such as time-to-event data, as described by Saramago et al. (39). The NMA 

models are simply the NMR models without covariate terms.  

Part I: Network meta-regression (NMR) model for IPD studies  

Assuming 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 is a binary outcome of participant 𝑖𝑖 in study 𝑗𝑗 under treatment arm 𝑘𝑘, we place 

a Bernoulli distribution for 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 with a probability of an event to occur 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖. This probability is 

then linked to the control/treatment effect via a logistic transformation. The study-specific 

baseline effect 𝑢𝑢𝑖𝑖𝑗𝑗  is the log-odds in the reference treatment 𝑏𝑏 in that study. The treatment 

effect 𝛿𝛿𝑖𝑖𝑗𝑗𝑖𝑖  represents the log odds ratio of treatment 𝑘𝑘 relative to the reference treatment 𝑏𝑏. 

Both effects 𝛿𝛿𝑖𝑖𝑗𝑗𝑖𝑖 and 𝑢𝑢𝑖𝑖𝑗𝑗 are defined when the participant and mean covariates equal zero. 

To estimate subgroup-specific treatment effects, we consider the covariate effect by 

adding the following three parameters (i) a regression coefficient,  𝛽𝛽0𝑖𝑖, which captures the 

prognostic effect of the covariate in study 𝑗𝑗; (ii) a between-study regression coefficient,  𝛽𝛽1,𝑖𝑖𝑗𝑗𝑖𝑖
𝐴𝐴 , 

which quantifies the interaction between the relative treatment effect and the mean covariate 

value across studies; and (iii) a within-study regression coefficient,  𝛽𝛽1,𝑖𝑖𝑗𝑗𝑖𝑖
𝑊𝑊 , which models the 

treatment-covariate interaction effect at the individual level. The two coefficients 𝛽𝛽0𝑖𝑖  and 

𝛽𝛽1,𝑖𝑖𝑗𝑗𝑖𝑖
𝑊𝑊  are estimated using the participant-level covariate 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖, while 𝛽𝛽1,𝑖𝑖𝑗𝑗𝑖𝑖

𝐴𝐴  requires only the 
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study mean covariate ( �̅�𝑥𝑖𝑖) that is often reported in the publication. The term 𝛽𝛽1,𝑖𝑖𝑗𝑗𝑖𝑖
𝐴𝐴 − 𝛽𝛽1,𝑖𝑖𝑗𝑗𝑖𝑖

𝑊𝑊  

quantifies the discrepancy among the between- and the within-covariate estimates or the 

aggregation bias (40). In the following, we summarize the likelihood and the parametrization 

of the model in IPD studies: 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑜𝑜𝑢𝑢𝐵𝐵𝐵𝐵𝑖𝑖(𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖) 

Logit�𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖� = �
𝑢𝑢𝑖𝑖𝑗𝑗 +  𝛽𝛽0𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖                            if 𝑘𝑘 = 𝑏𝑏
𝑢𝑢𝑖𝑖𝑗𝑗  +  𝛿𝛿𝑖𝑖𝑗𝑗𝑖𝑖 + 𝛽𝛽0𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 +        if 𝑘𝑘 ≠ 𝑏𝑏
𝛽𝛽1,𝑖𝑖𝑗𝑗𝑖𝑖
𝑊𝑊 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 + (𝛽𝛽1,𝑖𝑖𝑗𝑗𝑖𝑖

𝐴𝐴 − 𝛽𝛽1,𝑖𝑖𝑗𝑗𝑖𝑖
𝑊𝑊 ) �̅�𝑥𝑖𝑖.              

 

Where 𝑗𝑗 =  1, … ,𝐵𝐵𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼, and 𝐵𝐵𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼 is the total number of IPD studies. 

Part II: NMR model for AD studies  

We model the published information from each AD study next. For each treatment 𝑘𝑘 in study 

𝑗𝑗, we place a binomial distribution for the corresponding number of events 𝐵𝐵𝑖𝑖𝑖𝑖 with sample size 

𝐵𝐵𝑖𝑖𝑖𝑖  and probabilities of the event to occur 𝑝𝑝.𝑖𝑖𝑖𝑖.  

𝐵𝐵𝑖𝑖𝑖𝑖~𝐵𝐵𝑖𝑖𝐵𝐵(𝑝𝑝.𝑖𝑖𝑖𝑖,  𝐵𝐵𝑖𝑖𝑖𝑖) 

𝐿𝐿𝑜𝑜𝐿𝐿𝑖𝑖𝐿𝐿�𝑝𝑝.𝑖𝑖𝑖𝑖� = �
𝑢𝑢𝑖𝑖𝑗𝑗                                      if 𝑘𝑘 = 𝑏𝑏
𝑢𝑢𝑖𝑖𝑗𝑗  +  𝛿𝛿𝑖𝑖𝑗𝑗𝑖𝑖 + 𝛽𝛽1,𝑖𝑖𝑗𝑗𝑖𝑖

𝐴𝐴  �̅�𝑥𝑖𝑖      if 𝑘𝑘 ≠ 𝑏𝑏. 

We incorporate the study-level covariate effect by adding only 𝛽𝛽1,𝑖𝑖𝑗𝑗𝑖𝑖
𝐴𝐴  �̅�𝑥𝑖𝑖 .  Here, 𝑗𝑗 =  1 +

𝐵𝐵𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼 , … ,𝐵𝐵𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼 + 𝐵𝐵𝑠𝑠𝐴𝐴𝐼𝐼 where 𝐵𝐵𝑠𝑠𝐴𝐴𝐼𝐼 is the total number of AD studies.  

 

Part III: Combine the evidence from IPD and AD 

We combine the relative treatment effects and the between-study regression coefficients from 

IPD and AD parts via an exchangeable model 

𝛿𝛿𝑖𝑖𝑗𝑗𝑖𝑖 ~ 𝑁𝑁(𝑜𝑜𝐴𝐴𝑖𝑖 − 𝑜𝑜𝐴𝐴𝑗𝑗  , 𝜏𝜏2 ), 𝛽𝛽1,𝑖𝑖𝑗𝑗𝑖𝑖
𝐴𝐴 ~𝑁𝑁�𝐵𝐵1,𝐴𝐴𝑖𝑖

𝐴𝐴 − 𝐵𝐵1,𝐴𝐴𝑗𝑗
𝐴𝐴 , 𝜏𝜏𝐴𝐴2�,   

where 𝑗𝑗 =  1 , … ,𝐵𝐵𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼 + 𝐵𝐵𝑠𝑠𝐴𝐴𝐼𝐼.  
 

The within-study regression estimates from only IPD studies (𝑗𝑗 =  1 , … ,𝐵𝐵𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼) are 

synthesized as 

𝛽𝛽1,𝑖𝑖𝑗𝑗𝑖𝑖
𝑊𝑊 ~𝑁𝑁�𝐵𝐵1,𝐴𝐴𝑖𝑖

𝑊𝑊 − 𝐵𝐵1,𝐴𝐴𝑗𝑗
𝑊𝑊 , 𝜏𝜏𝑊𝑊2 �. 

Here, 𝐴𝐴  represents the reference treatment in the whole network; 

therefore, 𝑜𝑜𝐴𝐴𝐴𝐴,𝐵𝐵1,𝐴𝐴𝐴𝐴
𝑊𝑊 ,𝐵𝐵1,𝐴𝐴𝐴𝐴

𝐴𝐴 = 0. 

Alternatively, a common-effect model can be assumed 
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𝛿𝛿𝑖𝑖𝑗𝑗𝑖𝑖 = 𝑜𝑜𝐴𝐴𝑖𝑖 − 𝑜𝑜𝐴𝐴𝑗𝑗 , 𝛽𝛽1,𝑖𝑖𝑗𝑗𝑖𝑖
𝐴𝐴 = 𝐵𝐵1,𝐴𝐴𝑖𝑖

𝐴𝐴 − 𝐵𝐵1,𝐴𝐴𝑗𝑗
𝐴𝐴 , 𝛽𝛽1,𝑖𝑖𝑗𝑗𝑖𝑖

𝑊𝑊 = 𝐵𝐵1,𝐴𝐴𝑖𝑖
𝑊𝑊 − 𝐵𝐵2,𝐴𝐴𝑗𝑗

𝑊𝑊 . 

We summarize the model assumptions in Table 4.  

We assumed minimally informative priors for 𝑢𝑢𝑖𝑖𝑗𝑗 ,𝛽𝛽0𝑖𝑖   ~ N(0, 102) and also for the basic 

parameters 𝐵𝐵1,𝐴𝐴𝑖𝑖
𝑊𝑊 ,𝐵𝐵1,𝐴𝐴𝑖𝑖

𝐴𝐴 ,𝑜𝑜𝐴𝐴𝑖𝑖~ N(0, 102) . For all heterogeneity parameters, we assigned a 

uniform distribution 𝜏𝜏, 𝜏𝜏𝐴𝐴, 𝜏𝜏𝑊𝑊~𝑈𝑈𝐵𝐵𝑖𝑖𝑈𝑈(0,2) which allows for difference of log-odds ratios of 2 

(or 7.4 of odds ratio) across trials in the treatment and the covariate effect. This change is 

adequately large on the log scale; hence, the given prior can be considered sufficiently vague. 

In all models we present with random treatment effects, we accounted for correlations 

induced by multi-arm studies using a multivariate distribution as in the standard NMA methods 

(2). In Appendix 2, we describe how we accounted for multi-arm studies in bias-adjusted model 

2.  

3.2 Synthesizing cross-design data: Randomized trials and observational data  

The model we described in Section 3.1 can be applied to RCT or NRS studies, separately. Next, 

we describe four different approaches to combine evidence from RCTs and NRSs into the 

model from Section 3.1. 

3.2.1 Unadjusted network meta-regression 

Using the simplest approach, we integrate the NRS evidence into the RCT model without 

differentiation between the two designs. Technically, this means we only need to expand the 

index of study 𝑗𝑗  to involve both study designs. For IPD, it becomes 𝑗𝑗 = 1, … ,𝐵𝐵𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼,𝑅𝑅𝑅𝑅𝑅𝑅 +

𝐵𝐵𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼,𝑁𝑁𝑅𝑅𝑁𝑁  and in AD part, 𝑗𝑗 = 𝐵𝐵𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼,𝑅𝑅𝑅𝑅𝑅𝑅 + 𝐵𝐵𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼,𝑁𝑁𝑅𝑅𝑁𝑁 + 1 ,…, 𝐵𝐵𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼,𝑅𝑅𝑅𝑅𝑅𝑅 + 𝐵𝐵𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼,𝑁𝑁𝑅𝑅𝑁𝑁 +

𝐵𝐵𝑠𝑠𝐴𝐴𝐼𝐼,𝑅𝑅𝑅𝑅𝑅𝑅 + 𝐵𝐵𝑠𝑠𝐴𝐴𝐼𝐼,𝑁𝑁𝑅𝑅𝑁𝑁.  
 

3.2.2 Using non-randomized studies (NRS) to construct priors for the treatment effects 

Using NRS evidence to construct priors for the treatment effects in the RCT model is a two-

step approach. In the first step, the (network) meta-regression—with only NRS data—estimates 

the relative treatment effects with posterior distribution of mean �̃�𝑜𝐴𝐴𝑖𝑖𝑁𝑁𝑅𝑅𝑁𝑁 and variance 𝑉𝑉𝐴𝐴𝑖𝑖𝑁𝑁𝑅𝑅𝑁𝑁. In 

the second step, the posteriors of NRS results—accounting for possible confounders—are then 

used as priors for the corresponding basic parameters in the RCT model; 

𝑜𝑜𝐴𝐴𝑖𝑖𝑅𝑅𝑅𝑅𝑅𝑅~𝑁𝑁(�̃�𝑜𝐴𝐴𝑖𝑖𝑁𝑁𝑅𝑅𝑁𝑁,𝑉𝑉𝐴𝐴𝑖𝑖𝑁𝑁𝑅𝑅𝑁𝑁). Treatment effects not observed in NRS are given vague priors (see part 

III of Section 3.1). Another possibility when constructing the prior is to use the estimated 

between-NRS heterogeneity (�̃�𝜏𝑁𝑁𝑅𝑅𝑁𝑁2 ) instead of the posterior variance 𝑉𝑉𝐴𝐴𝑖𝑖𝑁𝑁𝑅𝑅𝑁𝑁.   
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Instead of performing the analysis in two steps, the RCT and NRS synthesis can be conducted 

simultaneously and seamlessly incorporate the information from NRS in the RCT model.  

We can control the potential dominance of NRS evidence (eg, because of the large 

sample size) on the RCT model by either shifting the NRS means with a bias term 𝜍𝜍 or by 

dividing the variance in the prior distribution with a common inflation factor 𝑤𝑤, 0 < 𝑤𝑤 < 1; 

𝑜𝑜𝐴𝐴𝑖𝑖~𝑁𝑁(�̃�𝑜𝐴𝐴𝑖𝑖𝑁𝑁𝑅𝑅𝑁𝑁 + 𝜍𝜍,𝑉𝑉𝐴𝐴𝑖𝑖𝑁𝑁𝑅𝑅𝑁𝑁/𝑤𝑤). When 𝑤𝑤 = 1, NRS evidence is used at face value and when 𝑤𝑤 ≈

0, NRS evidence is ignored.  

3.2.3 Bias-adjusted model 1 

We incorporate judgments about study risk of bias in bias-adjusted model 1 and model 2. The 

indicator 𝑅𝑅𝑖𝑖 takes binary values 0 (no bias) or 1 (bias) according to a Bernoulli distribution 

with probability of risk of bias 𝜋𝜋𝑖𝑖  that relates to the study design characteristics. These 

characteristics are used to summarized the study risk of bias into low, high or unclear. In bias-

adjusted model 1, we extend the method introduced by Dias et al. (24) by adding a treatment-

specific bias term 𝛾𝛾2,𝑖𝑖𝑗𝑗𝑖𝑖𝑅𝑅𝑖𝑖 to the relative treatment effect for both the AD and IPD parts of the 

model (41). A multiplicative model can also be employed, where treatment effects are 

multiplied by 𝛾𝛾1,𝑖𝑖𝑗𝑗𝑖𝑖
𝑅𝑅𝑗𝑗 . These bias terms penalize the high RoB studies for potential 

overestimation or underestimation by adjusting their relative treatment effects. Next, we extend 

the model from Section 3.1 to adjust for bias.  

Part I: NMR model for IPD studies  

We model the IPD studies from both designs simultaneously; we differentiate between the 

designs by including the study-level bias terms. We can add either multiplicative 𝛾𝛾1,𝑖𝑖𝑗𝑗𝑖𝑖 bias 

effects, additive 𝛾𝛾2,𝑖𝑖𝑗𝑗𝑖𝑖  bias effects, or both (in this case, 𝛿𝛿𝑖𝑖𝑗𝑗𝑖𝑖  should be dropped from the 

additive part) as  

logit�𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖� =

⎩
⎪
⎨

⎪
⎧

𝑢𝑢𝑖𝑖𝑗𝑗 +  𝛽𝛽0𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖                     if 𝑘𝑘 = 𝑏𝑏

𝑢𝑢𝑖𝑖𝑗𝑗  + 𝛿𝛿𝑖𝑖𝑗𝑗𝑖𝑖𝛾𝛾1,𝑖𝑖𝑗𝑗𝑖𝑖
𝑅𝑅𝑗𝑗�������

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚

+   𝛿𝛿𝑖𝑖𝑗𝑗𝑖𝑖 + 𝛾𝛾2,𝑖𝑖𝑗𝑗𝑖𝑖𝑅𝑅𝑖𝑖�����������
𝑚𝑚𝑎𝑎𝑎𝑎𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚

+     if 𝑘𝑘 ≠ 𝑏𝑏

𝛽𝛽0𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽𝛽1,𝑖𝑖𝑗𝑗𝑖𝑖
𝑊𝑊 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 + �𝛽𝛽1,𝑖𝑖𝑗𝑗𝑖𝑖

𝐴𝐴 − 𝛽𝛽1,𝑖𝑖𝑗𝑗𝑖𝑖
𝑊𝑊 �  �̅�𝑥𝑖𝑖.             

                                      (1) 

where 𝑗𝑗 = 1, … ,𝐵𝐵𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼,𝑅𝑅𝑅𝑅𝑅𝑅 + 𝐵𝐵𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼,𝑁𝑁𝑅𝑅𝑁𝑁. 

The bias indicator  𝑅𝑅𝑖𝑖 follows a Bernoulli distribution with a bias probability 𝜋𝜋𝑖𝑖 = 𝑃𝑃(𝑅𝑅𝑖𝑖 = 1) 

𝑅𝑅𝑖𝑖 = �1, if study 𝑗𝑗 has high risk of bias
0, otherwise  

𝑅𝑅𝑖𝑖~Bernoulli�𝜋𝜋𝑖𝑖�. 
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Then based on the risk of bias for each study, a different beta distribution is placed for 𝜋𝜋𝑖𝑖. 

𝜋𝜋𝑖𝑖~𝐵𝐵𝐵𝐵𝐿𝐿𝐵𝐵(𝐵𝐵1,𝐵𝐵2). 

The hyperparameters 𝐵𝐵1 and 𝐵𝐵2 should be chosen in a way that reflects the risk of bias for each 

study. The degree of skewness in beta distribution can be controlled by the ratio 𝐵𝐵1/𝐵𝐵2 . When 

𝐵𝐵1/𝐵𝐵2 equals 1 (or 𝐵𝐵1 = 𝐵𝐵2), there is no skewness in the beta distribution (the distribution is 

reduced to a uniform distribution), which is appropriate for studies with unclear risk of bias. 

When 𝐵𝐵1  is much larger than 𝐵𝐵2 , the mean of probability of bias (expected value of 𝜋𝜋𝑖𝑖 =

𝐵𝐵1/(𝐵𝐵1 + 𝐵𝐵2)) is closer to 1 as the study will have a high bias probability, which leads to a 

‘major’ bias adjustment.  

Alternatively, we can use the study characteristics 𝒛𝒛𝒋𝒋 = (𝑧𝑧1,𝑖𝑖, 𝑧𝑧2,𝑖𝑖, … , 𝑧𝑧𝑚𝑚,𝑖𝑖)  (eg, the 

concealment of the study) to predict 𝜋𝜋𝑖𝑖 through a logistic transformation as follows 

𝐵𝐵𝑜𝑜𝐿𝐿𝑖𝑖𝐿𝐿�𝜋𝜋𝑖𝑖� = 𝐵𝐵 + 𝒇𝒇𝑻𝑻𝒛𝒛𝒋𝒋. 

where 𝒇𝒇𝑻𝑻 = (𝑈𝑈1, … ,𝑈𝑈𝑚𝑚) is a vector of covariate effect on the odds ratio of bias and 𝐵𝐵 is the 

overall odds of bias. The superscript T transposes the vector. A minimally informative prior is 

located in the regression coefficients 𝐵𝐵,𝒇𝒇𝑻𝑻~𝑁𝑁(0,102). 

We alternatively describe the logistic model with additive bias effect in equation (1) by 

the following parametrisation 

logit�𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖� = �

𝑢𝑢𝑖𝑖𝑗𝑗 +  𝛽𝛽0𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖                     if 𝑘𝑘 = 𝑏𝑏
𝑢𝑢𝑖𝑖𝑗𝑗  + �1 − 𝑅𝑅𝑖𝑖�𝛿𝛿𝑖𝑖𝑗𝑗𝑖𝑖 + 𝑅𝑅𝑖𝑖𝛿𝛿𝑖𝑖𝑗𝑗𝑖𝑖𝑗𝑗𝑖𝑖𝑚𝑚𝑏𝑏  +    if 𝑘𝑘 ≠ 𝑏𝑏

𝛽𝛽0𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽𝛽1,𝑖𝑖𝑗𝑗𝑖𝑖
𝑊𝑊 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 + �𝛽𝛽1,𝑖𝑖𝑗𝑗𝑖𝑖

𝐴𝐴 − 𝛽𝛽1,𝑖𝑖𝑗𝑗𝑖𝑖
𝑊𝑊 �  �̅�𝑥𝑖𝑖.             

 

where 𝛿𝛿𝑖𝑖𝑗𝑗𝑖𝑖𝑗𝑗𝑖𝑖𝑚𝑚𝑏𝑏 = 𝛿𝛿𝑖𝑖𝑗𝑗𝑖𝑖 + 𝛾𝛾𝑖𝑖𝑗𝑗𝑖𝑖.  

 
Part II: NMR model for AD studies  

Similarly, we add the two bias terms to model the summary data.  

𝐿𝐿𝑜𝑜𝐿𝐿𝑖𝑖𝐿𝐿�𝑝𝑝.𝑖𝑖𝑖𝑖� = �

𝑢𝑢𝑖𝑖𝑗𝑗                                      if 𝑘𝑘 = 𝑏𝑏

𝑢𝑢𝑖𝑖𝑗𝑗  + 𝛿𝛿𝑖𝑖𝑗𝑗𝑖𝑖𝛾𝛾1,𝑖𝑖𝑗𝑗𝑖𝑖
𝑅𝑅𝑗𝑗�������

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚

+   𝛿𝛿𝑖𝑖𝑗𝑗𝑖𝑖 + 𝛾𝛾2,𝑖𝑖𝑗𝑗𝑖𝑖𝑅𝑅𝑖𝑖�����������
𝑚𝑚𝑎𝑎𝑎𝑎𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚

+ 𝛽𝛽1,𝑖𝑖𝑗𝑗𝑖𝑖
𝐴𝐴  �̅�𝑥𝑖𝑖      if 𝑘𝑘 ≠ 𝑏𝑏

 

where 𝑗𝑗 = 𝐵𝐵𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼,𝑅𝑅𝑅𝑅𝑅𝑅 + 𝐵𝐵𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼,𝑁𝑁𝑅𝑅𝑁𝑁 + 1,…, 𝐵𝐵𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼,𝑅𝑅𝑅𝑅𝑅𝑅 + 𝐵𝐵𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼,𝑁𝑁𝑅𝑅𝑁𝑁 + 𝐵𝐵𝑠𝑠𝐴𝐴𝐼𝐼,𝑅𝑅𝑅𝑅𝑅𝑅 + 𝐵𝐵𝑠𝑠𝐴𝐴𝐼𝐼,𝑁𝑁𝑅𝑅𝑁𝑁. 

Again, when multiplicative and additive parts are both considered in the model, the term 𝛿𝛿𝑖𝑖𝑗𝑗𝑖𝑖 

needs to be removed from the additive term. 

Other parametrisation of the logistic model with additive bias effect in equation (3) is  

𝐿𝐿𝑜𝑜𝐿𝐿𝑖𝑖𝐿𝐿�𝑝𝑝.𝑖𝑖𝑖𝑖� = �
𝑢𝑢𝑖𝑖𝑗𝑗                                      if 𝑘𝑘 = 𝑏𝑏

𝑢𝑢𝑖𝑖𝑗𝑗  +  �1 − 𝑅𝑅𝑖𝑖�𝛿𝛿𝑖𝑖𝑗𝑗𝑖𝑖 + 𝑅𝑅𝑖𝑖𝛿𝛿𝑖𝑖𝑗𝑗𝑖𝑖𝑗𝑗𝑖𝑖𝑚𝑚𝑏𝑏 + 𝛽𝛽1,𝑖𝑖𝑗𝑗𝑖𝑖
𝐴𝐴  �̅�𝑥𝑖𝑖      if 𝑘𝑘 ≠ 𝑏𝑏.

 

(3) 

(4) 

(2) 
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Part III: Combine the evidence from IPD and AD 

In addition to the covariates’ effects and the treatment effects, here we also combine the 

multiplicative and the additive treatment-specific bias effects across studies by assuming they 

are either exchangeable (𝛾𝛾1,𝑖𝑖𝑗𝑗𝑖𝑖~𝛮𝛮�𝐿𝐿1,𝑗𝑗𝑖𝑖, 𝜏𝜏1,𝛾𝛾
2 �,  𝛾𝛾2,𝑖𝑖𝑗𝑗𝑖𝑖~𝛮𝛮(𝐿𝐿2,𝑗𝑗𝑖𝑖, 𝜏𝜏2,𝛾𝛾

2 ) ) or common (𝛾𝛾1,𝑖𝑖𝑗𝑗𝑖𝑖 =

𝐿𝐿1,𝑗𝑗𝑖𝑖  and 𝛾𝛾2,𝑖𝑖𝑗𝑗𝑖𝑖 = 𝐿𝐿2,𝑗𝑗𝑖𝑖 ). We set priors for the between-study standard deviation again as 

𝜏𝜏1,𝛾𝛾, 𝜏𝜏2,𝛾𝛾~Unif(0,2). 

For the other parameterisation in equations (2) and (4), the bias-adjusted relative 

treatment effect 𝛿𝛿𝑖𝑖𝑗𝑗𝑖𝑖𝑗𝑗𝑖𝑖𝑚𝑚𝑏𝑏 can be assumed exchangeable across studies  

𝛿𝛿𝑖𝑖𝑗𝑗𝑖𝑖𝑗𝑗𝑖𝑖𝑚𝑚𝑏𝑏~𝛮𝛮 �𝐿𝐿𝑗𝑗𝑖𝑖 + 𝑜𝑜𝐴𝐴𝑖𝑖 − 𝑜𝑜𝐴𝐴𝑗𝑗 ,
𝜏𝜏2

𝑞𝑞𝑖𝑖
� 

or common as 

𝛿𝛿𝑖𝑖𝑗𝑗𝑖𝑖𝑗𝑗𝑖𝑖𝑚𝑚𝑏𝑏 = 𝐿𝐿𝑗𝑗𝑖𝑖+𝑜𝑜𝐴𝐴𝑖𝑖 − 𝑜𝑜𝐴𝐴𝑗𝑗. 

In this case, instead of assigning prior to the between-study heterogeneity in bias effect 𝜏𝜏𝛾𝛾, we 

model the RoB weight 𝑞𝑞𝑖𝑖 = 𝜏𝜏2/(𝜏𝜏2 + 𝜏𝜏𝛾𝛾2)  for each study. The quantity represents the 

proportion of the between-study heterogeneity that is not explained by accounting for risk of 

bias. These weights take values between 0 and 1, 0 < 𝑞𝑞𝑖𝑖 < 1, and they are either given fixed 

values (as Spiegelhalter and Best proposed (42)) or assigned a prior to let the data estimate 

them, 𝑞𝑞𝑖𝑖~𝐵𝐵𝐵𝐵𝐿𝐿𝐵𝐵(𝑣𝑣, 1)(as Verde assumed (25)). The values of 𝑣𝑣 determine the extent studies at 

high risk of bias will be down-weighted on average. Setting 𝑣𝑣 = 1 gives 𝐸𝐸�𝑞𝑞𝑖𝑖� = 𝑣𝑣/(𝑣𝑣 +

1) = 0.5, which means that high risk of bias studies will be penalized by 50% on average. 

Dias et al. (24) proposed to model the mean bias effect (𝐿𝐿1,𝑗𝑗𝑖𝑖 , 𝐿𝐿2,𝑗𝑗𝑖𝑖 ) based on the 

compared treatments. One approach is to assume a common mean bias for studies that compare 

active treatments with an inactive treatment (placebo, standard, or no treatment)   

𝐿𝐿𝑚𝑚,𝑗𝑗𝑖𝑖 = �𝐿𝐿𝑚𝑚                                             if 𝑏𝑏 is  inactive treatment   
0                                     if 𝑏𝑏 and 𝑘𝑘 are active treatments  

where 𝑚𝑚 = {1,2}.  

In this case, the mean bias effect cancels out contrasts for comparing two active treatments. 

When exchangeable bias parameters are used, active vs active comparisons have an expected 

bias effect of zero with uncertainty the common bias-heterogeneity parameters 𝜏𝜏1,𝛾𝛾
2 , 𝜏𝜏2,𝛾𝛾

2  for 

multiplicative and additive, respectively.  
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Instead of assuming zero bias in active vs active comparison, we could assume a 

common and fixed bias effect 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  :   

𝐿𝐿𝑚𝑚,𝑗𝑗𝑖𝑖 = �
𝐿𝐿𝑚𝑚                                             if 𝑏𝑏 is inactive treatment   

(−1)𝑎𝑎𝑖𝑖𝑑𝑑𝑏𝑏𝑏𝑏 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚                                   if 𝑏𝑏 and 𝑘𝑘 are active treatments 

The direction of bias (𝑜𝑜𝑖𝑖𝐵𝐵𝑗𝑗𝑖𝑖) varies by the comparison type and should be defined in the data. 

The bias in active vs inactive comparisons will favour the active treatment. However, the 

direction of bias is less clear in studies that compare active treatments with each other. The 

direction of bias could be linked to other types of bias, such as ‘optimism bias’–a bias favouring 

the newest treatment. In this case, the direction of bias in each active vs active comparison is 

set to be either 0, meaning that bias favours 𝑏𝑏 over 𝑘𝑘; or 1, meaning that 𝑘𝑘 is favoured to 𝑏𝑏.  

We could also follow a data-driven approach and assign the bias direction a Bernoulli 

distribution 𝑜𝑜𝑖𝑖𝐵𝐵~Bernoulli(𝑝𝑝𝑎𝑎𝑖𝑖𝑑𝑑)  where the probability of 𝑏𝑏 to be favoured over 𝑘𝑘,  𝑝𝑝𝑎𝑎𝑖𝑖𝑑𝑑 , is 

given a beta distribution  𝑝𝑝𝑎𝑎𝑖𝑖𝑑𝑑~𝐵𝐵𝐵𝐵𝐿𝐿𝐵𝐵(𝐵𝐵3,𝐵𝐵4 ).  The shape of this beta distribution is 

characterized by 𝐵𝐵3 and 𝐵𝐵4. When 𝐵𝐵3 is set a value less than 𝐵𝐵4, the study is more likely to be 

favouring 𝑏𝑏 over 𝑘𝑘.  

3.2.4 Bias-adjusted model 2 

Extending the model initially introduced by Verde (25), bias-adjusted model 2 parametrises 

the relative treatment effect using a bimodal normal distribution that involves the bias 

parameters (25). We define the bias-adjusted relative treatment effect 𝜃𝜃𝑖𝑖𝑗𝑗𝑖𝑖 as follows in both 

parts of the NMR.  

Part I: NMR model for IPD studies 

Logit�𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖� = �
𝑢𝑢𝑖𝑖𝑗𝑗 +  𝛽𝛽0𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖                                 if 𝑘𝑘 = 𝑏𝑏
𝑢𝑢𝑖𝑖𝑗𝑗  +  𝜃𝜃𝑖𝑖𝑗𝑗𝑖𝑖 + 𝛽𝛽0𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 +             if 𝑘𝑘 ≠ 𝑏𝑏
𝛽𝛽1,𝑖𝑖𝑗𝑗𝑖𝑖
𝑊𝑊 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 + �𝛽𝛽1,𝑖𝑖𝑗𝑗𝑖𝑖

𝐴𝐴 − 𝛽𝛽1,𝑖𝑖𝑗𝑗𝑖𝑖
𝑊𝑊 �  �̅�𝑥𝑖𝑖.             

 

 

Part II: NMR model for AD studies 

We also add the bias adjustment term to AD part 

𝐿𝐿𝑜𝑜𝐿𝐿𝑖𝑖𝐿𝐿�𝑝𝑝.𝑖𝑖𝑖𝑖� = �
𝑢𝑢𝑖𝑖𝑗𝑗                                      if 𝑘𝑘 = 𝑏𝑏
𝑢𝑢𝑖𝑖𝑗𝑗  +  𝜃𝜃𝑖𝑖𝑗𝑗𝑖𝑖 + 𝛽𝛽1,𝑖𝑖𝑗𝑗𝑖𝑖

𝐴𝐴  �̅�𝑥𝑖𝑖     if 𝑘𝑘 ≠ 𝑏𝑏. 

Part III: Combine the evidence from IPD and AD 
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The coefficients from the covariates effect and treatment effects are combined as in the 

previous models. We additionally combine the bias-adjusted relative treatment effect 𝜃𝜃𝑖𝑖𝑗𝑗𝑖𝑖  

via exchangeable model with a mixture of two normal distributions 

𝜃𝜃𝑖𝑖𝑗𝑗𝑖𝑖~�1 − 𝜋𝜋𝑖𝑖�𝑁𝑁(𝑜𝑜𝐴𝐴𝑖𝑖 − 𝑜𝑜𝐴𝐴𝑗𝑗 , 𝜏𝜏2) + 𝜋𝜋𝑖𝑖𝑁𝑁(𝑜𝑜𝐴𝐴𝑖𝑖 − 𝑜𝑜𝐴𝐴𝑗𝑗 + 𝛾𝛾𝑖𝑖𝑗𝑗𝑖𝑖, 𝜏𝜏2 + 𝜏𝜏𝛾𝛾2). 

Assuming a common-effect model we can alternatively summarize these relative effects  

𝜃𝜃𝑖𝑖𝑗𝑗𝑖𝑖 = �1 − 𝜋𝜋𝑖𝑖�(𝑜𝑜𝐴𝐴𝑖𝑖 − 𝑜𝑜𝐴𝐴𝑗𝑗) + 𝜋𝜋𝑖𝑖�𝑜𝑜𝐴𝐴𝑖𝑖 − 𝑜𝑜𝐴𝐴𝑗𝑗 + 𝛾𝛾𝑖𝑖𝑗𝑗𝑖𝑖� = 𝑜𝑜𝐴𝐴𝑖𝑖 − 𝑜𝑜𝐴𝐴𝑗𝑗 +  𝜋𝜋𝑖𝑖𝛾𝛾𝑖𝑖𝑗𝑗𝑖𝑖. 

This model adjusts the relative treatment effect by a bias effect that is proportional to the bias 

probability in each study. The bias parameters 𝛾𝛾𝑖𝑖𝑗𝑗𝑖𝑖  across studies are assigned either the 

exchangeable- or common-effect model and then the mean bias effects 𝐿𝐿𝑗𝑗𝑖𝑖 are also combined 

across comparisons.  

Following what we describe in Section 3.2.3, the between-study standard deviation 𝜏𝜏𝛾𝛾 can 

also be modelled in two different ways. We set a prior either for 𝜏𝜏𝛾𝛾~Unif(0,2)  or for 

𝑞𝑞𝑖𝑖~𝐵𝐵𝐵𝐵𝐿𝐿𝐵𝐵(𝑣𝑣, 1) where 𝑞𝑞𝑖𝑖 = 𝜏𝜏2/(𝜏𝜏2 + 𝜏𝜏𝛾𝛾2) represents the RoB weight for each study. However, 

choosing the prior for 𝑞𝑞𝑖𝑖  could be more meaningful in practice as 𝑣𝑣 represents the discounting 

in study weight. All other syntheses are performed as outlined for bias-adjusted model 1 in 

Section 3.2.3. 

4 Implementation of the models and results 

We implemented the models in a Bayesian setting using Just Another Gibbs Sampler (43) 

software through R (44). For all models, we ran two chains each for 100 000 iterations, 

discarded the first 40 000 samples, and thinned by 1. We examined the convergence of chains 

on each parameter by either visually inspecting the trace plots or checking the Gelman-Rubin 

statistic, 𝑅𝑅� , which measures the agreement between the within- and between-chains of MCMC; 

it should be approximately 1 when the chain converges properly. We evaluated model 

performance using the deviance information criterion (DIC), with the preferable model the one 

with the lowest DIC values (45). From here onwards, point estimates refer to posterior medians.  

Of note, the study-specific ORs in Figure 2 were calculated within a frequentist framework, 

and the lines represent confidence intervals. We analyzed IPD studies with the glm() function 

in R and AD studies with the metabin() function (from meta package). 
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4.1 Immunomodulatory agents in RRMS 

We conducted NMA and NMR assuming a common treatment effect across studies (the small 

number of studies did not allow efficient estimation of heterogeneity). We included age as a 

covariate in the NMR model which was centred around mean age 38 to improve convergence. 

We also assumed a common age effect across studies. For the IPD part of the models, we set 

the within- and between-study age effects equal: 𝛽𝛽1,𝑖𝑖𝑗𝑗𝑖𝑖
𝑊𝑊 = 𝛽𝛽1,𝑖𝑖𝑗𝑗𝑖𝑖

𝐴𝐴 . The little variation in mean 

participant age across the included studies (see Table 1) renders the estimation of 𝛽𝛽1,𝑖𝑖𝑗𝑗𝑖𝑖
𝐴𝐴 . In 

bias-adjusted models 1 and 2, we assigned two different informative prior distributions for the 

bias probability 𝜋𝜋𝑖𝑖 : a 𝐵𝐵𝐵𝐵𝐿𝐿𝐵𝐵(100,1)  for high RoB studies and 𝐵𝐵𝐵𝐵𝐿𝐿𝐵𝐵(1,100)  for low RoB 

studies (see Appendix Figure 2 and Table 1). We assumed additive bias effects and combined 

them across studies into a common parameter. The direction of bias was assumed to favour the 

active treatment rather placebo in RCTs and any other treatment over glatiramer acetate in the 

SMSC since it is the oldest treatment. We set placebo as a network reference for all analyses 

except when using NRS information as a prior; in that case, natalizumab was used as the 

reference treatment.  

We first analysed the data using the SMSC data to construct priors for the treatment 

effects. The posterior distributions of the logORs were 𝑜𝑜𝐼𝐼𝐹𝐹 𝑚𝑚𝑏𝑏 𝑁𝑁~𝑁𝑁(−0.01, 0.2)  (dimethyl 

fumarate vs natalizumab) and 𝑜𝑜𝐺𝐺𝐴𝐴 𝑚𝑚𝑏𝑏 𝑁𝑁~𝑁𝑁(1.56, 0.33)  (glatiramer acetate vs natalizumab). 

The basic parameter of placebo vs natalizumab (not observed in the cohort) was assigned an 

approximately uninformative prior (𝑜𝑜𝐼𝐼 𝑚𝑚𝑏𝑏 𝑁𝑁~𝑁𝑁(0, 102)). In Appendix Figure 1, we present the 

results when these posteriors were used as (discounted) priors in the NMA of the RCT data 

assuming different values of 𝑤𝑤. Only the estimated effect of glatiramer acetate vs natalizumab 

changed slightly when incorporating the non-randomized evidence because the SMSC has a 

much smaller sample size (𝐵𝐵 =206) than all RCTs together (𝐵𝐵 =3 891). 

Figure 2 and Appendix Tables 4–7 show the NMA ORs and the corresponding 95% 

credible intervals (CrI) using no adjustment and bias-adjusted models 1 and 2. The adjustment 

for the different bias effects did not materially change the estimated ORs. The small change 

we observed for glatiramer acetate in bias-adjusted models can be attributed to the high risk of 

bias in Bornstein and Johnson studies (32,33).  

For bias-adjusted model 1, the bias effect 𝐵𝐵𝑥𝑥𝑝𝑝(𝐿𝐿) was estimated 0.705 (95% CrI: 0.198–

1.459). The OR of the active treatments when compared with placebo in high RoB studies are 

on average 0.705 times the OR in low RoB studies, yet the uncertainty is very large. In the 
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bias-adjusted model 2,  𝐵𝐵𝑥𝑥𝑝𝑝(𝐿𝐿) was more precisely estimated at 0.323 (95% CrI: 0.126–0.821). 

This means that on average high RoB studies tend to overestimate the efficacy of the active 

treatments. We investigated the convergence of the model parameters in Appendix Figure 4 

and Appendix Table 8. The bias parameter 𝐿𝐿 estimated from the bias-adjusted model 1 has a 

slightly poor convergence when compared with other parameters. 

We incorporated the effect of age in bias-adjusted model 1; Figure 3 presents the NMR 

ORs of active vs placebo for various age values. The estimated age coefficient 𝐵𝐵𝑥𝑥𝑝𝑝(𝐵𝐵) was 

0.984 (95% CrI: 0.264–1.935) suggesting that for an increase in age by one year the ORs of 

each treatment vs placebo decreases by 1-0.984.  

Table 6 summarizes the DIC values for the unadjusted analysis and the bias-adjusted 

models 1 and 2. Because bias-adjusted model 2 has a lowest DIC (DIC for IPD model=90365 

and for AD model =158), it is preferred over other models. The model that uses NRS evidence 

as a prior has DIC for IPD model 87144 and for AD model 142. This model was excluded from 

the comparison because it only uses RCT data. 

 

4.2 Antidepressants for major depression 

We conducted an NMA assuming a random treatment effect across studies. For bias-

adjusted models 1 and 2, we used additive bias effects and combined them across studies 

assuming random-effects. The bias probability 𝜋𝜋𝑖𝑖 of moderate and low RoB studies was given 

prior distributions 𝐵𝐵𝐵𝐵𝐿𝐿𝐵𝐵(20,1) and 𝐵𝐵𝐵𝐵𝐿𝐿𝐵𝐵(1,20), respectively (see Appendix Figure 3). When 

we set the direction of bias in studies comparing an active drug to placebo, we assumed mean 

bias 𝐿𝐿𝐼𝐼, and the antidepressant was assumed the favoured treatment; then in active vs active 

comparisons, we assumed bias 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚, and the sponsored treatment was assumed the favoured 

treatment. In other cases, the mean bias was set to zero. We performed a sensitivity analysis to 

investigate the robustness of the results with less informative prior distributions for the bias 

probability 𝜋𝜋𝑖𝑖  in both bias models 𝐵𝐵𝐵𝐵𝐿𝐿𝐵𝐵(10,1)  and 𝐵𝐵𝐵𝐵𝐿𝐿𝐵𝐵(1,10)  for studies at moderate and 

low RoB, respectively.  

 

Table 5 shows the estimates of bias effect parameters using the bias-adjusted models 1 

and 2. The results suggest that moderate RoB studies do not provide different estimates of the 

effectiveness of the active interventions versus placebo, whereas the effects of sponsored 

treatments are overestimated on average. In bias-adjusted model 1, the OR of the active 
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treatment (sponsored) against active (not sponsored) in low RoB studies are on average 1.186 

times the OR in high RoB studies. We also fitted the bias-adjusted models 1 and 2 by re-

parametrising the heterogeneity 𝜏𝜏𝛾𝛾 using the weights 𝑞𝑞𝑖𝑖 .We set 𝑞𝑞𝑖𝑖 = 1 for studies at low RoB 

and 𝑞𝑞𝑖𝑖~𝐵𝐵𝐵𝐵𝐿𝐿𝐵𝐵(1/3,1) for moderate RoB studies which reduces their weight on average by 25% 

or 𝑞𝑞𝑖𝑖~𝐵𝐵𝐵𝐵𝐿𝐿𝐵𝐵(4,1)) for 80% weight reduction. The results do not materially change.  

As expected, the bias indicator (𝑅𝑅𝑖𝑖) was estimated to be 1 on average for studies with 

moderate RoB and 0 for studies with low RoB. Also, the convergence of bias parameters was 

good in the antidepressants example because of the large number of studies (see Appendix 

Figure 5 and Appendix Figure 6). 

Figure 4 presents the resulting OR and 95% CrI for the adjusted and unadjusted models. 

Controlling for the information from the moderate RoB studies scarcely changed the effects of 

active drugs vs placebo. Using less informative priors for the bias probability and for between-

study heterogeneity in the bias effect did not materially change these conclusions (Appendix 

Figure 7 and Appendix Figure 8). The estimate of between-study heterogeneity in treatment 

effect was 0.210 (95% CrI: 0.169–0.251) in unadjusted model, which decreased when bias-

adjusted model 1 was applied to 0.176 (95% CrI: 0.089–0.236) and the estimate in bias-

adjusted model 2 was 0.213 (95% CrI: 0.147–0.291). The differences in the estimates of 

between-study heterogeneity are minor and their CrI overlap to a large extent. 

We compared the bias-adjusted models 1 and 2 and unadjusted model by calculating 

the DIC; their values are reported in Table 6. The bias-adjusted model 1 performs better than 

the unadjusted and bias-adjusted models 2.  

5 Discussion 

We introduced a suite of Bayesian NMA and NMR models to synthesize evidence that 

comes from different study designs and in different data formats. We extended the three-level 

hierarchical model for combining IPD and AD with four models incorporating RCT and NRS 

evidence. The first model ignores differences in design and RoB between studies; the second 

uses NRS to construct discounted treatment effect priors; and two models adjust for the risk of 

bias in each study. The bias effect can be multiplied or added to the relative treatment effect. 

The multiplicative bias is more likely to describe better cases of selective outcome reporting. 

In such cases, results from studies with small true effects are magnified considerably to “cross 

the significance line” while results from studies with large true effects are exaggerated only a 

bit or not at all. 
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We implemented the four NMA/NMR models in a dataset comparing treatments for RRMS 

patients. The estimated treatment effects were consistent, irrespective of the model used. When 

age was included as a covariate, the efficacy of active treatments relative to placebo decreased 

with increasing age. In other words, all active treatments become less effective for older 

patients, which aligns with previous findings (46,47). We also illustrated the bias-adjusted 

models in a network of AD from RCTs on antidepressants. The results from sponsored drug 

arms in head-to-head studies tended to be larger than those in non-sponsored arms. In the 

original analysis, Cipriani et al. (38) did not detect any impact of sponsoring in the estimated 

efficacy of the antidepressants.  Note, however, that our bias-adjusted models estimate the 

interaction between risk of bias and sponsoring and hence it is possible that sponsoring plays 

a role in modifying the treatment effect only in studies with moderate risk of bias. 

Our methods tackle the bias issue at the quantitative synthesis stage. However, there are two 

issues to consider when such analyses are conducted. First, empirical evidence has shown that 

the treatment effects are often exaggerated in high risk of bias studies (48). In these cases, one 

can employ diagnostics to evaluate the impact of such large study results (49–51) and then fit 

models that decrease the impact of those studies either by employing non-normal random effect 

distributions (52) or by shrinking the relative treatment effects towards equivalence (53,54). 

Second, the bias (for NRS, in particular) should also be mitigated at study design and when 

interpreting results. In their comprehensive framework, Sarri et al. (55) proposed seven steps 

outlining how to combine RCT and NRS data in NMA. They proposed different considerations 

for interpreting findings, suggesting a way that reflects the differences in evidence type. Their 

framework suggests a certain critical assessment of NRS, which can be used in our bias-

adjusted models.  

Some limitations of our proposed models need to be acknowledged. First, the bias-

adjusted models require several studies at different levels of RoB. In the absence of many 

studies, strong assumptions can be imposed on bias parameters via informative priors. Our first 

example of RRMS only included six studies; we assigned highly informative beta distributions 

to the bias probability. We used less informative priors in the case of antidepressants’ network 

because many studies were available. Second, the results of the analysis can be sensitive to the 

prior assumptions in model parameters. For this reason, sensitivity analyses should be 

conducted to investigate the robustness of the estimates, using different priors if possible. 

Sensitivity to prior distributions is particularly important for the probability of bias and the 

covariate effect parameters. In our examples, we found that bias-adjusted model 2 was more 

sensitive to the prior assigned to the bias probability when compared with bias-adjusted model. 
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Third, choosing down-weighting parameters for the model that uses the NRS data to construct 

prior information is not straightforward. However, Efthimiou et al. (23) outlined different 

considerations to guide this choice.  

Finally, the estimated treatment effect can be influenced by the sample size of the study 

when reporting bias is suspected or for other reasons associated with small study effects. 

Hence, a study can overestimate the treatment effect for reasons related to its sample size and/or 

a high RoB. In a hierarchical random-effects models study-specific estimates from small 

studies tend to be pulled towards the overall mean, and hence overestimation of treatment 

effects in small studies tends to be less of a problem (53). However, we recommend that the 

presence of small-study effects are routinely checked before conducting any synthesis. If there 

is no strong evidence of small-study effects, bias-adjusted models 1 or 2 can be applied.  

To implement the proposed models, there are further worthy considerations. These 

include performing a comprehensive systematic review to identify relevant RCTs and NRSs 

(following the framework introduced by Sarri et al. (55)). In our RRMS example, we included 

RCTs identified in a previous systematic review with available IPD (27,28) and observational 

data from the SMSC. For clinically-relevant results after analysis, more data needs to be 

included to apply our methods to an extended network of all drugs used to treat patients with 

RRMS, such as presented by Jenkins et al. (56). In their review, Jenkins et al. showed how 

including NRS data in the synthesis model increased the between-study heterogeneity and 

therefore the uncertainty around the effect estimates. By accounting for potential effect 

modifiers and differences in RoB, other studies can investigate whether our models explain 

large between-study heterogeneity.  

Combining individual and aggregate data has two key advantages when compared with 

analysing aggregate data solely. First, aggregate data studies contribute only to estimating 

interactions between mean values of effect modifiers and treatment, yet individual data studies 

account for interactions at the individual patient-level, thus avoiding ecological bias. Second, 

individual data adjust for prognostic factors and covariates that predict the outcome and the 

course of the disease regardless of the assigned treatment (46). Adjusting for prognostic factors 

is desirable (57) in order to improve the interpretation and the external validity of the findings 

(58); enhance the precision of the estimated treatment effects (59); and correct potential 

imbalance in baselines after randomisation (60).  

Incorporating NRS evidence into NMA models that traditionally only include RCTs is 

increasingly important in several clinical research settings, such as when conducting RCTs are 

less feasible for rare conditions. A recent scoping review of methods that combine RCT and 
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NRS in NMA (61) reveals that unadjusted synthesis is the most popular approach, probably for 

its ease of use. The unadjusted analysis, however, can be considered as an initial step but not 

the primary analysis, as it ignores the differences in design and RoB. Accounting for within-

study bias in both observational and experimental data, our suite of models offers a viable 

alternative. Our approach also allows estimating individualized treatment effects through the 

inclusion of participant characteristics. 
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HIGHLIGHTS 
 
What is already known? 

The evidence in network meta-analysis (NMA) typically comes from randomized clinical trials 

(RCT) where aggregate data (AD) are extracted from published reports. Retrieving individual 

participant data (IPD) allows considering participant covariates to explain some of the 

heterogeneity/inconsistency in the network and identify effect modifiers. Additionally, 

evidence from non-randomized studies (NRS) reflects the reality in clinical practice and 

bridges the efficacy-effectiveness gap.  

What is new? 

This paper describes a Bayesian suite for evidence synthesis which extends and integrates four 

different approaches that combine RCT and NRS evidence into a three-level hierarchical model 

for the synthesis of IPD and AD. We call this suite a cross-NMA/NMR model since it enables 

cross-design and cross-format synthesis. 

Potential impact for Research Synthesis Methods readers outside the authors’ field. 

By describing and demonstrating the cross-NMA/NMR suite of models, we hope to facilitate 

the inclusion of all relevant evidence that comes from multiple sources. Synthesis of all sources 

of evidence and formats of data, will increase power and relevance of NMA results. 

 

 

 

Data Availability Statement 

The models we introduce in this paper are implemented in a new R package called crossnma, 

available on CRAN (https://CRAN.R-project.org/package=crossnma). The R code for the 

analysis of both examples and the antidepressant dataset can be found at the following 

URL: https://github.com/htx-r/crossnma-theoretical-paper-analysis.  
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Tables 
 
Table 1 Study characteristics and assigned priors for bias probability of the network of 
treatments for the relapsing-remitting multiple sclerosis in Figure 1a. 

IPD; Individual Participant Data, AD; Aggregate Data, RCT; Randomized Clinical Trial,  

NRS; Non-Randomised Study  

Study Treatments Number of 
patients with 
at least one 
relapse in 
two years 

Sample 
size 

Design 
& data 
formal 

Risk of 
bias 

(RoB) 

Mean 
age 

Distribution of 
bias 

probability 𝜋𝜋𝑖𝑖  

AFFIRM 
(29) 

Natalizumab, 
Placebo 359 939 RCT 

IPD low 36 Beta(1,100) 

CONFIRM 
(30) 

Dimethyl 
fumarate, 

Glatiramer 
acetate, Placebo 

451 1417 RCT 
IPD low 37 Beta(1,100) 

DEFINE (31) 
Dimethyl 
fumarate, 
Placebo 

394 1234 RCT 
IPD low 39 Beta(1, 100) 

Swiss 
Multiple 
Sclerosis 

Cohort (34) 

Dimethyl 
fumarate, 

Glatiramer 
acetate, 

Natalizumab 

44 206 NRS 
IPD high 46 Beta(100,1) 

Bornstein  
(32) 

Glatiramer 
acetate, Placebo 30 50 RCT 

AD high 34 Beta(100,1) 

Johnson (33) Glatiramer 
acetate, Placebo 186 251 RCT 

AD high 30 Beta(100,1) 
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Table 2 Overview of the presented models allowing for cross-design and cross-format 
synthesis in network meta-regression 

 

Unadjusted analysis Using NRS to form a 
prior distribution 

Bias-adjusted model 1 Bias-adjusted model 2 

A
cc

ou
nt

in
g 

fo
r R

oB
 o

f R
C

T 
an

d 
N

R
S 

RoB is not considered. The NRS evidence is 
shifted and/or down-
weighted using the 
parameters 𝜍𝜍 and 𝑤𝑤, 
respectively. The 
RoB in the RCT is 
not considered.  

For high RoB studies 
(NRS or RCT), the 
model 
shifts/multiplies the 
relative treatment 
effects by 𝛾𝛾𝑖𝑖𝑗𝑗𝑖𝑖 and/or 
downweighs the study 
contribution when the 
estimates are 
combined. The 
method differentiates 
NRS evidence from 
RCT by setting 
relatively greater bias 
probability (𝜋𝜋𝑖𝑖) for 
NRS compared to 
RCT.  

The model adjusts the 
relative treatment 
effects by 𝛾𝛾𝑖𝑖𝑗𝑗𝑖𝑖 where 
the adjustment is 
proportional to the bias 
probability of the study. 
It allows also to 
downweigh the study 
contribution through  
𝜏𝜏𝛾𝛾1  or 𝑞𝑞𝑖𝑖2. The bias 
probability (𝜋𝜋𝑖𝑖) can be 
assumed greater for 
NRS compared to RCT. 

K
ey

 m
od

el
 p

ar
am

et
er

s 

Relative treatment effect 
𝛿𝛿𝑖𝑖𝑗𝑗𝑖𝑖. 
Covariate effect 𝛽𝛽0𝑖𝑖. 
Within-study covariate-
treatment interaction 
(𝛽𝛽1,𝑖𝑖𝑗𝑗𝑖𝑖

𝑊𝑊 ). 
Between-study covariate-
treatment interaction 
(𝛽𝛽1,𝑖𝑖𝑗𝑗𝑖𝑖

𝐴𝐴 ). 
 

Same as unadjusted 
analysis. 

Same as unadjusted 
analysis.  
Bias effect; 
multiplicative (𝛾𝛾1,𝑖𝑖𝑗𝑗𝑖𝑖) 
and/or additive 𝛾𝛾2,𝑖𝑖𝑗𝑗𝑖𝑖. 
Bias indicator 𝑅𝑅𝑖𝑖 . 
Bias probability 𝜋𝜋𝑖𝑖. 
 

The covariate 
parameters; 𝛽𝛽0𝑖𝑖, 𝛽𝛽1,𝑖𝑖𝑗𝑗𝑖𝑖

𝑊𝑊  
and 𝛽𝛽1,𝑖𝑖𝑗𝑗𝑖𝑖

𝐴𝐴 . 
Bias-adjusted relative 
treatment effect  𝜃𝜃𝑖𝑖𝑗𝑗𝑖𝑖 
Bias effect 𝛾𝛾𝑖𝑖𝑗𝑗𝑖𝑖 (only 
additive) 
Bias probability 𝜋𝜋𝑖𝑖 
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Fe
at

ur
es

, a
dv

an
ta

ge
s, 

an
d 

ch
al

le
ng

es
 

Easy to implement using 
standard statistical software. 
Mostly used in practice. 
Recommended only as an 
initial analysis.  

Choosing a value for 
𝜍𝜍 (mean bias shift) 
and the inflation 
factor 𝑤𝑤 can be 
challenging in 
practice. Should be 
used with a range of 
parameter values.  

Can be used to model 
multiplicative bias 
effects.  
Compared to bias-
adjusted model 2, an 
extra parameter,  𝑅𝑅𝑖𝑖 , 
needs to be 
estimated.  
We recommend 
running a sensitivity 
analysis by choosing 
different values for 
𝐵𝐵1, 𝐵𝐵2 
(hyperparameters of 
the prior beta 
distribution assigned 
to  𝜋𝜋𝑖𝑖). 

It allows for more 
uncertainty about our 
risk of bias judgment.  
It has slightly a better 
convergence for the 
bias effect parameters 
compared to bias-
adjusted model 1. 
A sensitivity analysis 
for 𝐵𝐵1, 𝐵𝐵2 is 
recommended. 
The bias-adjusted 
model 2 is more 
sensitive to the prior 
assigned to 𝜋𝜋𝑖𝑖 
compared to bias-
adjusted model 1, 
particularly when there 
are a few studies to 
synthesize.  

RoB, Risk of Bias in the study; RCT, Randomised Clinical Trials; NRS, Non-Randomised Studies 
1𝜏𝜏𝛾𝛾 is the between-study heterogeneity in bias effect 
2𝑞𝑞𝑖𝑖 = 𝜏𝜏2/(𝜏𝜏2 + 𝜏𝜏𝛾𝛾2) and represents the proportion of the between-study heterogeneity that is not explained by 
accounting for risk of bias 
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Table 3 Notation for the synthesis models 

Notation Description 

𝑖𝑖 = 1, . . . ,𝐵𝐵𝑝𝑝𝑖𝑖 participant id 

𝑗𝑗 = 1, . . . ,𝐵𝐵𝑠𝑠 study id 

𝑘𝑘 = 1, . . . ,𝐾𝐾 treatment index 

𝐵𝐵𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼 ,𝐵𝐵𝑠𝑠𝐴𝐴𝐼𝐼,𝐵𝐵𝑠𝑠𝑅𝑅𝑅𝑅𝑅𝑅 ,𝐵𝐵𝑠𝑠𝑁𝑁𝑅𝑅𝑁𝑁 
𝐵𝐵𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼,𝑅𝑅𝑅𝑅𝑅𝑅 ,𝐵𝐵𝑠𝑠𝐴𝐴𝐼𝐼,𝑅𝑅𝑅𝑅𝑅𝑅  
𝐵𝐵𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼,𝑁𝑁𝑅𝑅𝑁𝑁,𝐵𝐵𝑠𝑠𝐴𝐴𝐼𝐼,𝑁𝑁𝑅𝑅𝑁𝑁 

the number of studies. The index refers to the 
design or format of the study or both 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 binary outcome (0/1) 

𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖 probability of the event to occur 

𝐵𝐵𝑖𝑖𝑖𝑖 the number of events per arm 

𝐵𝐵𝑖𝑖𝑖𝑖 the sample size per arm 

𝑏𝑏 the study-specific reference 

𝑢𝑢𝑖𝑖𝑗𝑗 The treatment effect of the study-specific 
reference 𝑏𝑏 when 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 = �̅�𝑥𝑖𝑖 = 0 

𝛿𝛿𝑖𝑖𝑗𝑗𝑖𝑖 log(OR) of treatment k relative to 𝑏𝑏 

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 the covariate 

�̅�𝑥𝑖𝑖 the mean covariate for study j 

𝑜𝑜𝐴𝐴𝑖𝑖 
the basic parameters where 
𝑜𝑜𝐴𝐴𝐴𝐴=0 when A set as the reference in the 
network 

𝑧𝑧𝑖𝑖 
study characteristics to estimate the bias 
probability 𝜋𝜋𝑖𝑖 
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 Table 4 Assumptions about the model parameters 

  

Parameter Assumptions 

Relative treatment effect (𝛿𝛿𝑖𝑖𝑗𝑗𝑖𝑖) 
Random-effects: 𝛿𝛿𝑖𝑖𝑗𝑗𝑖𝑖~𝑁𝑁(𝑜𝑜𝐴𝐴𝑖𝑖 − 𝑜𝑜𝐴𝐴𝑗𝑗 , 𝜏𝜏2) 

Common-effect: 𝛿𝛿𝑖𝑖𝑗𝑗𝑖𝑖 = 𝑜𝑜𝐴𝐴𝑖𝑖 − 𝑜𝑜𝐴𝐴𝑗𝑗 

Covariate effect (𝛽𝛽0𝑖𝑖) 
Independent effects: 𝛽𝛽0𝑖𝑖~𝑁𝑁(0, 102) 

Random-effects: 𝛽𝛽0𝑖𝑖~𝑁𝑁(𝐵𝐵0, 𝜏𝜏02) 

Within-study covariate-
treatment interaction (𝛽𝛽1,𝑖𝑖𝑗𝑗𝑖𝑖

𝑊𝑊 ) 

Random-effects: 𝛽𝛽1,𝑖𝑖𝑗𝑗𝑖𝑖
𝑊𝑊 ~𝑁𝑁(𝐵𝐵1,𝐴𝐴𝑖𝑖 

𝑊𝑊 −  𝐵𝐵1,𝐴𝐴𝑗𝑗
𝑊𝑊 , 𝜏𝜏𝑊𝑊2  ) 

Common-effect: 𝛽𝛽1,𝑖𝑖𝑗𝑗𝑖𝑖
𝑊𝑊 = 𝐵𝐵1,𝐴𝐴𝑖𝑖 

𝑊𝑊 −  𝐵𝐵1,𝐴𝐴𝑗𝑗
𝑊𝑊  

Between-study covariate-
treatment interaction (𝛽𝛽1,𝑖𝑖𝑗𝑗𝑖𝑖

𝐴𝐴 ) 

Random-effects: 𝛽𝛽1,𝑖𝑖𝑗𝑗𝑖𝑖
𝐴𝐴 ~𝑁𝑁(𝐵𝐵1,𝐴𝐴𝑖𝑖 

𝐴𝐴 −  𝐵𝐵1,𝐴𝐴𝑗𝑗
𝐴𝐴 , 𝜏𝜏𝐴𝐴2  ) 

Common-effect: 𝛽𝛽1,𝑖𝑖𝑗𝑗𝑖𝑖
𝐴𝐴 = 𝐵𝐵1,𝐴𝐴𝑖𝑖 

𝐴𝐴 −  𝐵𝐵1,𝐴𝐴𝑗𝑗
𝐴𝐴  

Bias effect (𝛾𝛾𝑚𝑚,𝑖𝑖𝑗𝑗𝑖𝑖) 
𝑚𝑚 = {1,2} 

Random-effects: 𝛾𝛾𝑚𝑚,𝑖𝑖𝑗𝑗𝑖𝑖~𝛮𝛮(𝐿𝐿𝑚𝑚,𝑗𝑗𝑖𝑖, 𝜏𝜏𝑚𝑚,𝛾𝛾
2 ) 

Common-effect: 𝛾𝛾𝑚𝑚,𝑖𝑖𝑗𝑗𝑖𝑖 = 𝐿𝐿𝑚𝑚,𝑗𝑗𝑖𝑖 

Mean bias effect (𝐿𝐿𝑚𝑚,𝑗𝑗𝑖𝑖) 

𝐿𝐿𝑚𝑚,𝑗𝑗𝑖𝑖 = �𝐿𝐿𝑚𝑚                        if 𝑏𝑏 is  inactive treatment   
0                if 𝑏𝑏 and 𝑘𝑘 are active treatments  

𝐿𝐿𝑚𝑚,𝑗𝑗𝑖𝑖

= �
𝐿𝐿𝑚𝑚                        if 𝑏𝑏 is  inactive treatment   

(−1)𝑎𝑎𝑖𝑖𝑑𝑑𝑏𝑏𝑏𝑏𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚                 if 𝑏𝑏 and 𝑘𝑘 are active treatment  

Bias indicator 𝑅𝑅𝑖𝑖~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑜𝑜𝑢𝑢𝐵𝐵𝐵𝐵𝑖𝑖(𝜋𝜋𝑖𝑖) 

Bias probability (𝜋𝜋𝑖𝑖) 
𝜋𝜋𝑖𝑖~𝐵𝐵𝐵𝐵𝐿𝐿𝐵𝐵(𝐵𝐵1,𝐵𝐵2) 

𝐵𝐵𝑜𝑜𝐿𝐿𝑖𝑖𝐿𝐿�𝜋𝜋𝑖𝑖� = 𝐵𝐵 + 𝐟𝐟𝐓𝐓𝒛𝒛𝒋𝒋 
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Table 5 The mean estimates and 95% credible intervals from bias-adjusted models 1 and 2 for the 
antidepressants network shown in Figure 1b.  

𝐿𝐿𝑚𝑚, the additive bias effect on log odds ratio for active-placebo comparisons; 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 , the additive bias effect on 
log odds ratio for active-active comparisons (sponsored treatment assumed to be favoured); RoB, risk of bias in 
the study; CrI, credible interval.  
 

 Bias-adjusted model 1  Bias-adjusted model 2 
Model assuming a prior 𝜏𝜏𝛾𝛾~Unif(0,2) for the heterogeneity in bias effects 

Primary analysis: Bias probability distribution (low RoB: 𝝅𝝅𝒋𝒋~Beta(1,20), moderate RoB: 𝝅𝝅𝒋𝒋~Beta(20,1)) 
Mean bias effect: exp(𝐿𝐿𝑚𝑚)  1.090 (0.975, 1.249) 1.035 (0.939, 1.143) 
Mean bias effect: exp(𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚)  1.186 (1.054, 1.335) 1.182 (1.054, 1.335) 
Heterogeneity in bias effect: 𝜏𝜏𝛾𝛾 (95% CrI) 0.130 (0.005, 0.261) 0.185 (0.128, 0.251) 
Sensitivity analysis: Bias probability distribution (low RoB; 𝝅𝝅𝒋𝒋~Beta(1,10), moderate RoB; 𝝅𝝅𝒋𝒋~Beta(10,1)) 
Mean bias effect: exp(𝐿𝐿𝑚𝑚)  1.163 (0.966, 1.421) 1.035 (0.878, 1.224) 
Mean bias effect: exp(𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚)  1.257 (1.095, 1.478) 1.271 (1.094, 1.600) 
Heterogeneity in bias effect: 𝜏𝜏𝛾𝛾  0.206 (0.078, 0.318) 0.210 (0.127, 0.354) 

Model that re-parametrises the heterogeneity using weights 𝑞𝑞𝑖𝑖~𝐵𝐵𝐵𝐵𝐿𝐿𝐵𝐵(𝑣𝑣, 1) where 𝑞𝑞𝑖𝑖 = 𝜏𝜏2/(𝜏𝜏2 + 𝜏𝜏𝛾𝛾2) 
 
Low RoB studies: no down-weighting; Moderate RoB studies: down-weight by 𝟐𝟐𝟐𝟐% 
Mean bias effect: exp(𝐿𝐿𝑚𝑚)  0.985 (0.786, 1.475) 0.817 (0.549, 1.112) 
Mean bias effect: exp(𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚)  1.222 (1.073, 1.476) 1.427 (1.173, 1.942) 
Low RoB studies: no down-weighting; Moderate RoB studies: down-weighting by 80% 
Mean bias effect: exp(𝐿𝐿𝑚𝑚)  1.012 (0.860, 1.167) 1.008 (0.851, 1.153) 
Mean bias effect: exp(𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚)  1.203 (1.067, 1.383) 1.231 (1.081, 1.470) 

 
Table 6 Deviance information criterion of the network meta-analysis models (NMA) fitted to 
the network of treatments for the relapsing-remitting multiple sclerosis (RRMS) in Figure 1a 
and for the NMA models fitted to the antidepressants network in Figure 1b. 

IPD; Individual Participant Data, AD; Aggregate Data, 

 
  

 RRMS example Antidepressant 
example 

 IPD model AD model AD model 

Unadjusted analysis 90492 187 2667 

Bias-adjusted model 1 90508 248 2648 

Bias-adjusted model 2 90365 158 2664 
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Figures captions 
 
Figure 1 Network plots of (a) treatments for patients with relapsing-remitting multiple sclerosis compared in randomised 
controlled trials (solid, grey edges) and in the Swiss Multiple Sclerosis Cohort (dashed, black edges). The outcome is relapse 
in two years (b) antidepressants and placebo compared in randomised clinical trials. The outcome is response to treatment. 
The thickness of the edges is proportional to the number of trials comparing each pair of treatments.  

Figure 2 Relapse odds ratios with 95% credible intervals of all comparisons of treatments among patients with relapsing-
remitting multiple sclerosis.  The estimates are computed by conducting unadjusted analysis and bias-adjusted analysis 1 and 
2 in a Bayesian framework of the data in the network of Figure 1a. The study-specific estimates have been computed in 
frequentist framework and hence the lines represent confidence intervals. To compute these estimate, we used glm() function 
to analyze IPD studies and metabin() function (from meta package) to analyze AD studies. 

 
Figure 3 The relationship between patient age (in years) and the estimated odds ratio with 95% credible intervals (the shaded 
areas) for active treatments vs placebo among patients with relapsing-remitting multiple sclerosis estimated with network 
meta-regression with bias-adjusted model 1.  

Figure 4 Response odds ratio with 95% credible interval for each antidepressant vs placebo estimated from unadjusted 
analysis and bias-adjusted models 1 and 2 using the data presented in the network of Figure 1b. A random-effects network 
meta-analysis model is assumed to estimate treatment and bias effects.  
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