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1. Introduction

Beta distributions play an important role in statistics and probability theory (Gupta and Nadarajah, 2004), and they
ccur in various scientific fields (Skorski, 2021). A frequent obstacle in problems involving beta distributions is the lack of
nalytic expressions for their distribution function, the normalized incomplete beta function. Therefore one often resorts
o inequalities and approximations, as, for example, in the proofs of Dimitriadis et al. (2022, Theorem 4.1) and Dümbgen
nd Wellner (2023, Lemma S.8).
This paper provides some new inequalities for the beta distribution Beta(a, b) with parameters a, b > 0, its distribution

function Ba,b, survival function B̄a,b = 1 − Ba,b and density function βa,b on [0, 1]. The latter is given by

βa,b(x) := B(a, b)−1xa−1(1 − x)b−1, x ∈ (0, 1),

where B(a, b) :=
∫ 1
0 xa−1(1− x)b−1 dx = Γ (a)Γ (b)/Γ (a+b), and Γ (·) denotes the gamma function. In Section 2, we refine

the lower and upper bounds for Ba,b and B̄a,b by Segura (2016) which are particularly accurate in the tails of Beta(a, b).
As a by-product we obtain refinements of bounds for the gamma distribution and survival functions by Segura (2014). In
Section 3 we present new exponential inequalities which are stronger than previously known inequalities of Dümbgen
(1998), Marchal and Arbel (2017) and Skorski (2021). Most proofs are deferred to Section 4. The arXiv version of this article,
available at https://arxiv.org/abs/2202.06718, additionally provides Gaussian tail inequalities, discusses the approximation
of the symmetric distribution βa,a by Gaussian densities with mean 1/2 in the spirit of Dümbgen et al. (2021), and contains
the proof of Corollary 9.
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. Sharp tail inequalities

In what follows, let p := a/(a + b), the mean of Beta(a, b). In a general setting including noncentral beta distribu-
tions, Segura (2016, inequalities (27), (29), (30)) uses extensions of l’Hopital’s rule to derive inequalities for Ba,b and B̄a,b.
For symmetry reasons, we only consider Ba,b, because B̄a,b(x) = Bb,a(1 − x). We rephrase Segura’s inequalities in terms of
the ratio

Qa,b(x) :=
Ba,b(x)

xa/[aB(a, b)]
.

This is motivated by the fact that βa,b(x) = B(a, b)−1xa−1(1 + O(x)) and thus Ba,b(x) = xa/[aB(a, b)](1 + O(x)) as x → 0.
The goal is to find bounds for Qa,b(x) tending to 1 as x → 0. Now, for x ∈ (0, 1),

(1 − x)b(1 + ca,bx) ≤ Qa,b(x) ≤
(1 − x)b

(1 − x/p)+
, (1)

where ca,b := (a+ b)/(a+ 1). Numerical examples reveal that these inequalities are rather accurate unless x is close to or
larger than p. Our first contribution is an improvement of Segura’s bounds. In particular, the upper bound remains valid
if x/p is replaced with the strictly smaller term max{ca,b, 1}x. The results are stated in terms of the following auxiliary
unctions:

q(1)a,b(x) :=

(
1 −

ax
a + 1

)b−1
,

q(2)a,b(x) :=
a(1 − x)b−1

+ 1
a + 1

−
a(b − 1)(b − 2)x2(1 − x)(b−3)+

2(a + 1)(a + 2)
,

q(3)a,b(x) :=
(1 − x)b

(1 − ca,bx)+
.

Theorem 1. For x ∈ (0, 1),

(1 − x)b(1 + ca,bx) < Q L
a,b(x) ≤ Qa,b(x) ≤ Q U

a,b(x) ≤
(1 − x)b

(1 − max{ca,b, 1}x)+
,

here

Q L
a,b(x) :=

{
q(1)a,b(x) if b ̸∈ (1, 2),

q(2)a,b(x) if b ∈ [1, 2],

Q U
a,b(x) :=

⎧⎪⎪⎨⎪⎪⎩
q(2)a,b(x) if b ≤ 1,

q(1)a,b(x) if b ∈ [1, 2],

min
{
q(2)a,b(x), q

(3)
a,b(x)

}
if b > 2.

Fig. 1 illustrates the bounds for Ba,b resulting from (1) and Theorem 1 in case of (a, b) = (4, 8), (2, 0.5).

Remark 2. The new inequalities for Qa,b are equalities in the case of b ∈ {1, 2}, because q(1)a,1(x) = q(2)a,1(x) = Qa,1(x) = 1
and q(1)a,2(x) = q(2)a,2(x) = Qa,2(x) = 1−ax/(a+1). Moreover, the upper bound is exact for b = 3, because q(2)a,3(x) = Qa,3(x) =

1 − 2ax/(a + 1) + ax2/(a + 2).

Remark 3. Note that the ratio Qa,b as well as the bounds Q L
a,b,Q

U
a,b are equal to 1 − da,bx + O(x2) as x → 0, where

da,b = (b − 1)a/(a + 1). The lower bound in (1) has the same property, but the upper bound does not.

Gamma distributions. There is a rich literature about inequalities for gamma distribution and survival functions, see, for
instance, Qi and Mei (1999), Neuman (2013), Segura (2016) and Pinelis (2020). We just illustrate that our bounds in
Theorem 1 yield a connection to that literature. It is well-known that for a random variable Xa,b ∼ Beta(a, b), the rescaled
variable bXa,b converges in distribution to a gamma random variable with shape parameter a and scale parameter 1 as
b → ∞. Denoting the corresponding distribution and survival function with Ga and Ḡa = 1 − Ga, respectively, we have
Ga(x) = limb→∞ Ba,b(x/b), and one can deduce from Theorem 1 the following bounds.
2



A. Henzi and L. Dümbgen Statistics and Probability Letters 195 (2023) 109783

(
t

C

Fig. 1. Inequalities for Ba,b when (a, b) = (4, 8) (left panel) and (a, b) = (2, 0.5) (right panel). The green line shows Ba,b , the blue lines are Segura
2016) bounds resulting from (1), and the black lines are the bounds via Theorem 1. The vertical line indicates the mean p. (For interpretation of
he references to color in this figure legend, the reader is referred to the web version of this article.)

orollary 4. For a, x > 0,

xae−ax/(a+1)

aΓ (a)
≤ Ga(x) ≤

xa

aΓ (a)
· min

⎧⎪⎪⎨⎪⎪⎩
ae−x

+ 1
a + 1

−
ax2e−x

2(a + 1)(a + 2)
e−x

(1 − x/(a + 1))+

⎫⎪⎪⎬⎪⎪⎭ ,

(x + 1[a̸∈(1,2)])a−1e−x

Γ (a)
≤ Ḡa(x) ≤

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(x + 1[a>1])a−1e−x

Γ (a)
if a ≤ 2,

xae−x

Γ (a)(x − a + 1)+
if a > 2,

e−x(x2/2 + x + 1) if a = 3.

The lower bound for Ga(x) is already known from Neuman (2013, Theorem 4.1), and the upper bounds for Ga(x) are a
combination of Segura (2014, Theorem 10, part 3) and a slight improvement of Neuman (2013, Theorem 4.1). The lower
bounds for Ḡa(x) are equalities if a ∈ {1, 2}, and the upper bounds if a ∈ {1, 2, 3}. Our lower bound for Ḡa(x) extends
the lower bound of Segura (2014, Theorem 10, part 4) to a < 1, and it is stronger than the latter for a > 2. Our upper
bound for Ḡa(x) extends the upper bound of Segura (2014, Theorem 10, part 6) to a < 1, and it is stronger than the latter
if 1 < a ≤ 2.

3. Exponential inequalities

Although the upper bounds in Theorem 1 are numerically rather accurate in the tails, they can diverge to ∞ at x = p
as a, b → ∞. Moreover, it is sometimes desirable to have bounds for log Ba,b(x) and log B̄a,b(x) in terms of simple, maybe
rational, functions of x. Numerous exponential tail inequalities for Ba,b and B̄a,b have been derived already. We start with
one particular result of Dümbgen (1998, Proposition 2.1). For x ∈ [0, 1] let

K (p, x) := p log
(p
x

)
+ (1 − p) log

(1 − p
1 − x

)
∈ [0, ∞].

This function K (p, ·) is strictly convex with minimum K (p, p) = 0. For x ∈ [0, 1],

xa(1 − x)b

pa(1 − p)b
= exp

(
−(a + b)K (p, x)

)
≥

{
Ba,b(x) if x ≤ p,
B̄a,b(x) if x ≥ p.

(2)

In case of a ≥ 1 or b ≥ 1, these inequalities can be improved as follows.
3
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Fig. 2. Exponential tail inequalities for Beta(a, b) when (a, b) = (4, 8). The green line shows B̄a,b , the black line is its upper bound from Theorem 5,
and the blue line is its upper bound from (2). One also sees the distribution function Ba,b and its bounds as dotted lines. The additional red line is
he upper bound (3) from Remark 7. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
f this article.)

heorem 5. Suppose that a ≥ 1. Then for pr := (a − 1)/(a + b − 1) < p and x ∈ [pr , 1],

B̄a,b(x)

⎧⎪⎪⎨⎪⎪⎩
≤

xa−1(1 − x)b

pa−1
r (1 − pr )b

= exp
(
−(a + b − 1)K (pr , x)

)
,

≥
xa−1(1 − x)b

bB(a, b)
.

Suppose that b ≥ 1. Then for pℓ := a/(a + b − 1) > p and x ∈ [0, pℓ],

Ba,b(x)

⎧⎪⎪⎨⎪⎪⎩
≤

xa(1 − x)b−1

paℓ(1 − pℓ)b−1 = exp
(
−(a + b − 1)K (pℓ, x)

)
,

≥
xa(1 − x)b−1

aB(a, b)
.

The lower bound for Ba,b(x) is less accurate than the lower bound from Theorem 1 if b > 2. The upper bounds are
ypically more accurate if x is close to p.

emark 6. At first glance, the upper bounds in Theorem 5 seem to be weaker than the ones in (2), at least in the tail
egions, because the factor a + b − 1 is strictly smaller than a + b. But elementary algebra reveals that in case of a ≥ 1,

(a + b − 1)K (pr , x) − (a + b)K (p, x)

= log
( x
p

)
+ (a + b − 1) log

(
1 +

1
a + b − 1

)
− (a − 1) log

(
1 +

1
a − 1

)
> 0 for x ∈ [p, 1),

ecause h(y) := y log(1 + 1/y) (with h(0) := 0) is strictly increasing in y ≥ 0. Analogously, if b ≥ 1, then

(a + b − 1)K (pℓ, x) − (a + b)K (p, x)

= log
( 1 − x
1 − p

)
+ (a + b − 1) log

(
1 +

1
a + b − 1

)
− (b − 1) log

(
1 +

1
b − 1

)
> 0 for x ∈ (0, p].

hus the bounds in Theorem 5 are strictly smaller than the bounds in (2). This is illustrated in Fig. 2 for (a, b) = (4, 8).

Remark 7. The upper bound for B̄a,b in Theorem 5 can be improved substantially if 1 ≤ a ≤ b. Indeed, the proof of
Theorem 5 shows that for arbitrary 0 < xo ≤ x ≤ 1,

B̄a,b(x) ≤
B̄a,b(xo)

a−1 xa−1(1 − x)b.

xo (1 − xo)b

4
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pecifically, it is well-known that Median(Beta(a, b)) ≤ p, see Groeneveld and Meeden (1977), so B̄a,b(p) ≤ 1/2 and for
x ∈ [p, 1],

B̄a,b(x) ≤
xa−1(1 − x)b

2pa−1(1 − p)b
. (3)

The latter bound is strictly smaller than the upper bound of Theorem 5 (restricted to x ∈ [p, 1]), provided that
2pa−1(1 − p)b > pa−1

r (1 − pr )b, and this is equivalent to h(a − 1) > h(a + b − 1) − log(2) with the increasing function
h(y) = y log(1 + 1/y), y > 0. Since h(a + b − 1) < limy→∞ h(y) = 1, a sufficient condition is that h(a − 1) ≥ 1 − log(2),
hich is fulfilled for a ≥ 1.152.

The inequalities in Theorem 5 imply Bernstein and Hoeffding type exponential inequalities. It follows from Dümbgen
nd Wellner (2023, Lemma S.12) and the well-known inequality z(1 − z) ≤ 1/4 for z ∈ R, that

K (q, x) ≥
(x − q)2

2(2x/3 + q/3)(1 − 2x/3 − q/3)
≥ 2(x − q)2 (4)

or q, x ∈ [0, 1], where K (0, x) := − log(1 − x) and K (1, x) := − log(x). This leads to the following inequalities:

Corollary 8. If a ≥ 1, then for x ∈ [pr , 1],

B̄a,b(x) ≤ exp
(
−

(a + b − 1)(x − pr )2

2(2x/3 + pr/3)(1 − 2x/3 − pr/3)

)
≤ exp

(
−2(a + b − 1)(x − pr )2

)
.

f b ≥ 1, then for x ∈ [0, pℓ],

Ba,b(x) ≤ exp
(
−(a + b − 1)

(x − pℓ)2

2(2x/3 + pℓ/3)(1 − 2x/3 − pℓ/3)

)
≤ exp

(
−2(a + b − 1)(x − pℓ)2

)
.

Further tail and concentration inequalities for the Beta distribution have been derived by Marchal and Arbel (2017)
and Skorski (2021). Marchal and Arbel (2017) prove that Beta(a, b) is subgaussian with a variance parameter that is the
solution of an equation involving hypergeometric functions. An upper bound for the variance parameter is (4(a+b+1))−1,
which implies the inequalities

exp
(
−2(a + b + 1)(x − p)2

)
≥

{
Ba,b(x) if x ≤ p,
B̄a,b(x) if x ≥ p.

These bounds are weaker than the one-sided bounds in Corollary 8. Indeed, for the right tails, the difference

(a + b − 1)(x − pr )2 − (a + b + 1)(x − p)2

is strictly concave in x with value b2/[(a + b)2(a + b − 1)] > 0 for x ∈ {p, 1}. Analogously, for the left tails, the difference

(a + b − 1)(x − pℓ)2 − (a + b + 1)(x − p)2

is strictly concave in x with value a2/[(a + b)2(a + b − 1)] > 0 for x ∈ {0, p}. Skorski (2021) derives a Bernstein type
inequality. With the parameters

v2
:=

p(1 − p)
a + b + 1

, c := max
(

|1 − 2p|
a + b + 2

,

√
p(1 − p)
a + b + 2

)
,

e shows that for X ∼ Beta(a, b) and ε ≥ 0,

P(±(X − p) ≥ ε) ≤ exp
(
−

ε2

2(v2 + cε)

)
.

The next result shows that our bounds imply a stronger version of these inequalities if a, b ≥ 1.

orollary 9. Let a, b ≥ 1. Then for x ∈ [p, 1],

B̄a,b(x) ≤ exp
(
−

(a + b + 1)(x − p)2

2p(1 − p) + (4/3)(1 − 2p)(x − p)

)
,

and for x ∈ [0, p],

Ba,b(x) ≤ exp
(
−

(a + b + 1)(x − p)2 )
.

2p(1 − p) + (4/3)(2p − 1)(p − x)
5
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With the notation of Skorski (2021), our upper bounds read

P(±(X − p) ≥ ε) ≤ exp
(
−

ε2

2(v2 ± c̃ε)

)
ith v2 as before and c̃ = (2/3)(1 − 2p)/(a + b + 1). In particular,

|c̃| =
2(a + b + 2)
3(a + b + 1)

|1 − 2p|
a + b + 2

≤
2(a + b + 2)
3(a + b + 1)

c.

ince a, b ≥ 1, the factor 2(a + b + 2)/[3(a + b + 1)] is at most 8/9 and converges to 2/3 as a + b → ∞.

. Proofs

roof of Theorem 1. Note that

Qa,b(x) =
a
xa

∫ x

0
ua−1(1 − u)b−1 du = a

∫ 1

0
wa−1(1 − xw)b−1 dw.

Since d2(1− xw)b−1/dw2
= (b−1)(b−2)x2(1− xw)b−3, the function w ↦→ (1− xw)b−1 is convex if b ̸∈ (1, 2) and concave

if b ∈ [1, 2]. Since a
∫ 1
0 wa−1 dw = 1, it follows from Jensen’s inequality that(

a
∫ 1

0
wa−1(1 − xw) dw

)b−1

= q(1)a,b(x)

is a lower bound for Qa,b if b ̸∈ (1, 2) and an upper bound if b ∈ [1, 2]. To compare Qa,b with q(2)a,b, we use a well-known
formula for linear interpolation of the function w ↦→ (1 − xw)b−1 with second derivative (b − 1)(b − 2)x2(1 − xw)b−3 on
[0, 1], namely,

(1 − xw)b−1
= 1 − w + w(1 − x)b−1

− w(1 − w)(b − 1)(b − 2)x2(1 − xw̃)b−3/2

for some w̃ = w̃(x, w) ∈ (0, 1). Note that

(b − 1)(b − 2)(1 − xw̃)b−3

⎧⎨⎩
≥ (b − 1)(b − 2) if b ≤ 1,
≤ (b − 1)(b − 2) if b ∈ [1, 2],
≥ (b − 1)(b − 2)(1 − x)(b−3)+ if b ≥ 2.

Hence, with hb(w) := 1 − w + w(1 − x)b−1
− w(1 − w)(b − 1)(b − 2)x2(1 − x)(b−3)+/2 we may conclude that

a
∫ 1

0
wa−1hb(w) dw = q(2)a,b(x)

is an upper bound for Qa,b(x) if b ̸∈ (1, 2) and a lower bound if b ∈ [1, 2].
Concerning alternative bounds for Qa,b, let Q : [0, xo] → (0, ∞] be a continuous function for some xo ∈ (0, 1]. Viewing

Q as a bound of Qa,b, H(x) = xaQ (x)/[aB(a, b)] is a bound for Ba,b(x). If Q is differentiable on (0, xo), then elementary
calculus reveals that

H ′(x) = βa,b(x)J(x) with J(x) :=
Q (x) + Q ′(x)x/a

(1 − x)b−1 .

If we can show that J ≥ 1 (or J ≤ 1) on (0, xo), we may conclude that Qa,b ≤ Q (or Qa,b ≥ Q ) on [0, xo]. For instance,
let Q (x) := (1 − x)b(1 + cx) for some c > 0 and x ∈ [0, 1]. Then one can show that J ≤ 1 on [0, 1], provided that
c ≥ ca,b = (a + b)/(a + 1). This yields the lower bound for Qa,b in (1). Now, let Q (x) := (1 − x)b/(1 − cx) for some c > 0
and 0 ≤ x ≤ xo := min{c−1, 1}. For 0 < x < xo,

J(x) = 1 +
x

a(1 − cx)

(
c(a + 1) − (a + b) + (c − 1)

cx
1 − cx

)
.

If c < 1, then the infimum of c(a+1)− (a+b)+ (c−1)cx/(1− cx) over all x ∈ (0, xo) equals ca− (a+b) < 0. If c ≥ 1, that
nfimum equals c(a+ 1)− (a+ b) ≥ 0, provided that c ≥ (a+ b)/(a+ 1). Consequently, J ≥ 1 on (0, xo) if c ≥ max{cℓ, 1},
nd this yields the upper bound in (1) as well as the upper bound q(3)a,b(x) for Qa,b(x) in case of b ≥ 1.
It remains to verify the additional inequalities for Q L

a,b,Q
U
a,b. Concerning the lower bound for Q L

a,b, the inequality
(1)
a,b(x) > (1 − x)b(1 + ca,bx) is equivalent to(

1 − x/(a + 1 − ax)
)−b

> 1 + bx/(a + 1) − a(a + b)x2/(a + 1)2.
6
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ndeed, by convexity of (1 − ·)−b, the left-hand side is larger than 1 + bx/(a + 1 − ax) > 1 + bx/(a + 1). Now let b ≥ 1.
or b ∈ [1, 2], q(2)a,b(x) ≥ (a(1− x)b−1

+ 1)/(a+ 1), and the latter term is strictly larger than (1− x)b(1+ ca,bx) if and only if

(1 − x)−(b−1) > 1 + (b − 1)x − (a + b)x2.

Indeed, since b − 1 ≥ 0, the left-hand side is not smaller than 1 + (b − 1)x.
Concerning the upper bound for Q U

a,b, if b ≤ 1, then ca,b ≤ 1 and (1− x)b−1
≥ 1, so q(2)a,b(x) ≤ (a(1− x)b−1

+1)/(a+1) ≤

(1 − x)b−1
= (1 − x)b/(1 − max{ca,b, 1}x)+. If 1 < b ≤ 2, then ca,b > 1, and the inequality q(1)a,b(x) < (1 − x)b/(1 − ca,bx)+

is equivalent to

(1 − (b − 1)y)+(1 + y)b−1 < 1

with y := (a+1)−1x/(1−x) ∈ (0, ∞). By concavity of (1+·)b−1, (1+y)b−1
≤ 1+(b−1)y, whence (1−(b−1)y)+(1+y)b−1

≤

(1 − (b − 1)2y2)+ < 1.

Proof of Corollary 4. Recall Stirling’s approximation Γ (c) =
√
2πcc−1/2e−c(1+o(1)) as c → ∞. This implies the following

symptotic expansions as b → ∞:

1
B(a, b)

=
Γ (a + b)
Γ (a)Γ (b)

=
ba(1 + a/b)a+b−1/2e−a(1 + o(1))

Γ (a)
=

ba(1 + o(1))
Γ (a)

.

onsequently,

Ga(x) = lim
b→∞

Ba,b(x/b) = lim
b→∞

(x/b)a

aB(a, b)
Qa,b(x/b) =

xa

aΓ (a)
lim
b→∞

Qa,b(x/b).

Bounding Qa,b(x/b) in terms of q(ℓ)a,b(x/b), 1 ≤ ℓ ≤ 3, as in Theorem 1, the asserted bounds for Ga(x) follow immediately
from the following limits:

q(1)a,b(x/b) =

(
1 −

ax
(a + 1)b

)b−1
→ e−ax/(a+1),

q(2)a,b(x/b) =
a(1 − x/b)b−1

+ 1
a + 1

−
a(b − 1)(b − 2)x2(1 − x/b)(b−3)+

2b2(a + 1)(a + 2)

→
ae−x

+ 1
a + 1

−
ax2e−x

2(a + 1)(a + 2)
,

q(3)a,b(x/b) =
(1 − x/b)b(

1 − [(a + b)/b]x/(a + 1)
)+

→
e−x

(1 − x/(a + 1))+
.

As to Ḡa(x), we write Ḡa(x) = limb→∞ B̄a,b(x/b) = limb→∞ Bb,a(1 − x/b) and

Bb,a(1 − x/b) =
(1 − x/b)b

bB(a, b)
Qb,a(1 − x/b) =

e−xba−1(1 + o(1))
Γ (a)

Qb,a(1 − x/b),

so Ḡa(x) is e−x/Γ (a) times limb→∞ ba−1Qb,a(1 − x/b). Bounding Qb,1(1 − x/b) in terms of q(ℓ)b,1(1 − x/b), 1 ≤ ℓ ≤ 3, as in
Theorem 1, the asserted bounds for Ḡa(x) follow immediately from the following limits:

ba−1q(1)b,a(1 − x/b) = ba−1
( x + 1
b + 1

)a−1

→ (x + 1)a−1,

ba−1q(2)b,a(1 − x/b) =
bxa−1

+ ba−1

b + 1
−

ba(a − 1)(a − 2)(1 − x/b)2(x/b)(a−3)+

2(b + 1)(b + 2)

→

⎧⎪⎪⎨⎪⎪⎩
xa−1 if a < 2,
x + 1 if a = 2,
∞ if a > 2, a ̸= 3,
x2 + 2x + 2 if a = 3,

ba−1q(3)b,a(1 − x/b) = xa
/( (a + b)x − b(a − 1)

b + 1

)+

→
xa

(x − a + 1)+
.

roof of Theorem 5. Since Ba,b(·) = B̄b,a(1 − ·) and K (q, x) = K (1 − q, 1 − x) for q ∈ (0, 1) and x ∈ [0, 1], it suffices to
prove the result for B̄ (x), x ∈ [p , 1].
a,b r

7
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In case of a = 1, the asserted bounds are sharp, because B(a, b) = 1/b, pr = 0 and B̄a,b(x) = (1 − x)b. In case of a > 1,
the ratio

Q (x) :=
B̄a,b(x)

xa−1(1 − x)b
=

B(a, b)−1

1 − x

∫ 1

x

(u
x

)a−1(1 − u
1 − x

)b−1

du

is strictly decreasing in x ∈ (0, 1). Indeed, with w(u) := (1 − u)/(1 − x) ∈ (0, 1) for u ∈ (x, 1), we have dw(u)/du =

−1/(1 − x), and u = 1 − (1 − x)w(u), so

Q (x) = B(a, b)−1
∫ 1

0

(
w +

1 − w

x

)a−1
wb−1 dw,

which is strictly decreasing in x ∈ (0, 1) with limit Q (1) = 1/[bB(a, b)]. Consequently, we obtain that Q (1) ≤ Q (x) ≤ Q (xo)
for 0 < xo ≤ x ≤ 1. Multiplying these inequalities with xa−1(1 − x)b and setting xo = pr yields the asserted bounds for
B̄a,b(x).
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