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Auditory stimulation and deep learning
predict awakening from coma after cardiac
arrest
Florence M. Aellen,1,2 Sigurd L. Alnes,1,2 Fabian Loosli,1 Andrea O. Rossetti,3

Frédéric Zubler,4 Marzia De Lucia5 and Athina Tzovara1,2,6,7

Assessing the integrity of neural functions in coma after cardiac arrest remains an open challenge. Prognostication of
coma outcome relies mainly on visual expert scoring of physiological signals, which is prone to subjectivity and
leaves a considerable number of patients in a ‘grey zone’, with uncertain prognosis. Quantitative analysis of EEG re-
sponses to auditory stimuli can provide a window into neural functions in coma and information about patients’
chances of awakening. However, responses to standardized auditory stimulation are far from being used in a clinical
routine due to heterogeneous and cumbersome protocols. Here, we hypothesize that convolutional neural networks
can assist in extracting interpretable patterns of EEG responses to auditory stimuli during the first day of coma that
are predictive of patients’ chances of awakening and survival at 3 months. We used convolutional neural networks
(CNNs) to model single-trial EEG responses to auditory stimuli in the first day of coma, under standardized sedation
and targeted temperature management, in a multicentre and multiprotocol patient cohort and predict outcome at 3
months. The use of CNNs resulted in a positive predictive power for predicting awakening of 0.83±0.04 and 0.81± 0.06
and an area under the curve in predicting outcome of 0.69±0.05 and 0.70±0.05, for patients undergoing therapeutic
hypothermia and normothermia, respectively. These results also persisted in a subset of patients that were in a clin-
ical ‘grey zone’. The network’s confidence in predicting outcomewas based on interpretable features: it strongly cor-
related to the neural synchrony and complexity of EEG responses and was modulated by independent clinical
evaluations, such as the EEG reactivity, background burst-suppression or motor responses. Our results highlight
the strong potential of interpretable deep learning algorithms in combination with auditory stimulation to improve
prognostication of coma outcome.
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Introduction
Most survivors of cardiac arrest are initially in a coma. Outcome
prognostication has become an integral part of post-resuscitation
care.1,2 Currently used outcome prediction techniques mainly rely
on expertmultimodal assessments of clinical variables and physio-
logical signals1 like EEG, which is routinely used to evaluate the in-
tegrity of neural functions at the patients’ bedside. EEG evaluations
consist of visual assessments, which can be time-consuming and
prone to subjectivity.3 In addition, current clinical markers for out-
come prognostication are unable to provide a clear prognosis for a
considerable proportion of patients, classifying them as indeter-
minate, or part of a ‘grey zone’,2 and highlighting a clear need for
developing novel markers of outcome.

A putativemarker for assessing the integrity of neural functions
in coma patients are EEG responses to auditory stimulation.4–7

Auditory event-related potentials (ERPs) have been previously
linked to chances of awakening from coma,4–7 but standardized
ERPs, assessed in a quantitative way, are not routinely used for out-
come prognosis.8 Typically, auditory ERPs are evaluated by aver-
aging hundreds of EEG responses to the same standardized
auditory stimuli and by extracting aggregate characteristics, such
as the presence or absence of characteristic ERP deflections, like
the N100,9,10 their amplitude or latency9 or differential responses
to sequences of standard and deviant sounds.9,11–13 These ap-
proaches have the disadvantage that the features used to predict
coma outcome are selected a priori at an average ERP level, over-
looking the richness of EEG responses and neglecting potentially
important characteristics, thus likely leading to unreliable
prognosis.

More recent attempts to explore the prognostic value of auditory
stimulation consist of modelling single-trial EEG responses to
sounds, with the use of machine learning techniques to extract
patient-specific EEG patterns that quantify auditory discrimin-
ation.14,15 These studies have shown that the progression of auditory
discrimination from first to second day of coma is informative of pa-
tients’ chances of awakening.15–17 Moreover, the neural synchrony
across voltage measurements of auditory EEG responses in the first
day of coma is also predictive of awakening, further corroborating
the early prognostic value of auditory ERPs.18 However, despite clear
links between auditory processing in coma and patients’ outcome,
shown overmultiple studies and approaches, standardized auditory
stimulation is not currently used in the clinical routine as a prognos-
tic marker. A major limitation for this discrepancy is that existing
studies reportfindings either in small patient cohortswithhighly cu-
rated features (i.e. average EEG responses over predefined time win-
dowsand specific electrodes) and limitedpredictive power6,7,9,12,13 or
require two EEG recordings over two consecutive days.14–17 In order
to fully exploit the multidimensional ERP features and their

relevance to coma outcome, there is a critical need to assess EEG re-
sponses to auditory stimulation in a more robust and straightfor-
ward way.

In recent years, advances in the field of machine learning have
given rise to powerful tools for modelling brain signals.19,20

Convolutional neural networks (CNNs) are particularly promising
in extracting in a data-driven way rich features of EEG data, and
have been shown to outperform traditional techniques.19–22

Despite their huge potential, the use of CNNs in acute neuro-critical
prognostication remains limited. One challenge in using CNNs in
medical applications is that it is difficult to trace which features of
the EEG data are relevant for the decisions that CNNs are making.22

The very few studies that have used CNNs to predict outcome from
coma rely on the samecontinuousEEG recordings of resting state ac-
tivity that are used in the clinics via visual evaluations,23–26 and have
shown a remarkable precision in discriminating patients who later
survive from those who do not. It remains unknown whether
CNNs can be applied on EEG responses to standardized auditory
stimuli to assist in outcome prognosis and to provide additional in-
sights for those patients for whom existing clinical assessments do
not result in a conclusive prognostication.

Here, we made the hypothesis that CNNs would be able to ex-
tract patterns of EEG responses to standardized auditory stimuli
that relate to patients’ chances of awakening from coma and sur-
vival at 3 months. We additionally hypothesized that the outcome
prediction of CNNswould be complementary to currently used clin-
ical variables for prognostication and would have the potential to
improve prognosis for patients with indeterminate prognosis.
Last, we performed exploratory analyses to identify which features
of the EEG data are relevant for the outcome prediction provided by
the CNNs. We extracted measures of confidence of the network’s
decisions and linked those to (i) clinical variables currently used
for outcome prognosis27; and (ii) features of EEG responses to
sounds that quantify neural synchrony, which have been recently
shown to be informative of patients’ outcome.1,18,27 To this aim,
we analysed EEG responses to auditory stimulation during the first
day of coma, recorded in amulticentre andmultiprotocol cohort of
coma patients following cardiac arrest at four different hospitals.28

Materials and methods
Patients and procedure

We recorded data from a cohort of 145 comatose patients following
cardiac arrest (33 females, 63.3± 1.2 years old,mean±SE), admitted
to the intensive care units of theUniversityHospitals Lausanne (121
patients), Bern (18 patients), Sion (four patients) and Fribourg (two
patients) between December 2009 and April 2017. Patients have
been previously described.16–18 Informed written consent was
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obtained prior to EEG recordings froma familymember, legal repre-
sentative or treating clinician not involved in this study. The ethical
committees of the Cantons of Bern, Fribourg, Valais and Vaud,
Switzerland approved the experimental protocol.

Upon admission to the hospital, patientswere in an acute coma,
i.e. a score of <6 on the Glasgow Coma Scale (GCS) and treated with
targeted temperature management for 24 h; 79 patients were trea-
ted with targeted temperature management at 33°C (therapeutic
hypothermia; HT) and 55 patients at 36°C (normothermia; NT).
Controlled temperature treatment was based on ice packs or intra-
venous ice-cold fluids together with a feedback-controlled cooling
device (Arctic Sun System, Medivance or Thermogard XP; ZOLL
Medical), for 24 h after cardiac arrest and was subsequently re-
moved. Propofol (2–3 mg/kg/h), midazolam (0.1 mg/kg/h) and fen-
tanyl (1.5 lg/kg/h) were administered for analgesia and sedation,
with vecuronium, rocuronium or atracurium for controlling
shivering.

Decisions towithdraw clinical carewere based on amultidiscip-
linary approach.1 Namely, carewaswithdrawn if two ormore of the
following criteria were present at 72 h or more, after sedation
weaning29,30: unreactive background EEG; epileptiform EEG and/or
myoclonous that was resistant to treatment; incomplete return of
brainstem reflexes; bilateral absence of N20 in somatosensory
evoked potentials; the concomitant presence of major hypoxic/is-
chaemic lesions in structural MRI and neuron-specific enolase
levels more than twice above 75 μg/l were additionally consid-
ered.31 Importantly, all clinical decisionswere blinded to the output
of the neural networks.

Patients’ outcome was defined at 3 months after cardiac arrest
via a semistructured phone interview via the Cerebral
Performance Category32 (CPC). A CPC of 1 indicates full recovery;
of 2 return of consciousness withmoderate disability; a CPC of 3 re-
turn of consciousness with severe disability; while a CPC of 4 coma
or persistent vegetative state; and a CPC of 5 death. For our analyses
we considered patients with CPC 1–3 at 3 months after coma onset
as ’survivors’ (n= 79). Patients with a CPC of 5 were considered as
patients with poor outcome (’non-survivors’, n=55). In our cohort,
no patient was classifiedwith a CPC of 4, possibly due to the clinical
practices in the participating hospitals, where the decision to with-
draw life-sustaining treatment for patients who fail to regain con-
sciousness is regularly reassessed even after the acute phase.

In accordance with previous investigations focusing on predic-
tion of outcome in coma patients following cardiac arrest,17 we
did not analyse patients who regained consciousness during their
stay at the hospital but later died, for example because of other co-
morbidities. This resulted in the exclusion of 11 patients, resulting
in a cohort of 134 patients in total.

Auditory stimulation protocol

EEG recordingswere conducted at the patients’ bedside,within 24 h
after cardiac arrest while all patients were in a comatose state.
Patients were presented with a series of pure tones as previously
described.15–17 Tones consisted of 16-bit stereo sounds, sampled
at 44.1 kHz, with a 10 ms linear amplitude envelope applied at
stimulus onset and offset to avoid clicks. Between each sound,
there was a 700 ms interstimulus interval. Standard sounds were
presented in 70% of the trials and had a pitch of 1000 Hz and dur-
ation of 100 ms. Deviant sounds differed from the standards in dur-
ation (150 ms), interaural time difference, with left ear leading with
700 μs, or pitch at 1200 Hz. Stimuli were presented in a
pseudo-randomized order, in a way that at least one standard

sound was presented between two deviant ones. The auditory
stimulation protocol consisted in total of 1500 tones, split into three
blocks, each lasting ∼7 min. Similar to a previous study investigat-
ing neural properties of auditory processing in coma,18 in the pre-
sent study we focused on responses to standard and duration
deviant sounds, as they have been previously shown to be highly
informative of coma outcome.15,18 A detailed evaluation of the pre-
dictive value of EEG responses to all sound types is provided in the
Supplementary material.

Recording setup and preprocessing

As the data of this study were multicentre and multiprotocol, EEG
was recorded at the patient’s bedside with 19 or 62 electrodes, de-
pending on the original study design,15–17 positioned according to
the international 10–20 system. EEG data were collected with a
sampling frequency of either 1000 or 1200 Hz. For consistency,
data recorded with 1200 Hz were downsampled to 1000 Hz and
data recorded with 62 electrodes were downsampled to the over-
lapping set of 19 electrodes. Across all channels the impedance
was kept below 10 kΩ. The online reference for the electrodes was
set as Fpz. In the course of preprocessing electrodes were re-
referenced to a common average reference. Epochs were extracted
from50 msbefore stimulus onset to 500 ms after. Artefactswere re-
jectedwith a criterion of ±100 μVon all electrodes. Noisy electrodes
were interpolated using three-dimensional splines.33 After re-
referencing, the datawere filtered from0.1 to 40 Hz, and in a control
analysis, to ensure that our findings are not driven bymuscle activ-
ity, from 0.1 to 20 Hz. Additionally, the EEG epochs were visually
inspected and noisy epochs were manually removed. After prepro-
cessing, we obtained 347.22± 9.23 trials (mean±SE) per patient,
204.76± 8.66 in response to standard sounds and 142.46± 1.42 in re-
sponse to duration deviants.

Training of convolutional neural network

For training the neural network we adopted a 10-fold cross-
validation procedure, i.e. we split the patients 10 times into 3 differ-
ent sets of train, validation and test patients, in a way that data
from each patient were included in only one of the three sets. The
train set had 60% of patients (80 patients), the validation set 20%
(27 patients) and the test set 20% (27 patients). The single trials of
all patients from the train set were used to train the neural network
and the trials from the validation set were used to evaluate any hy-
perparameters (e.g. learning rate, early stopping, etc.). The test set
was used only after training and optimizing the network, for an ob-
jective evaluation of the model’s performance on unseen patients.

We trained aCNNcalled EEGNet21 to predict patients’ outcomes,
which has been designed specifically for EEG data. The overall net-
work size is moderate, giving smaller training times while still
achieving robust results. The original network architecture was
changed slightly for the purpose of our study. First, according to
the recommendations as in the original study21 the filter length of
the first convolutional layer was changed to 512, instead of the ori-
ginal 64. Consequently, the number of temporal, spatial and point-
wise filters were increased to 16, 4 and 64, respectively, while the
activation function was set to ReLu. These changes were made as
preliminary analysis on a small subset of patients showed a more
stable training.

For optimizing the model we used the binary cross-entropy loss
function and the Adaptive Moment Estimation (Adam),34 with a
learning rate of 5 × 10−6. All other parameters were unchanged
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from the default suggestions. We trained the network for a max-
imum of 100 epochs, but employed early stopping after 30 epochs
if the validation loss of two consecutive epochs was smaller than
a threshold, as is standard practice in the field.35 To evaluate the
network performance we additionally used the area under the
curve (AUC).36

Outcome prediction based on network’s output

As the neural network was trained on single-trial EEG responses to
sounds (Fig. 1), it classified single-trial EEG responses as belonging
to a survivor versus a non-survivor. To link the network’s output
to coma outcome at the single patient level, for each patient we
computed the mean classification performance across all trials,
which we term ‘confidence of predicting survival’. The confidence
score ranged between zero and one and indicated the confidence
of the model’s prediction of coma outcome, as the mean label
that themodel assigned across single-trial EEG responses to sounds
of a given patient. If that score was above 0.5, then a patient was
classified as a survivor, while below 0.5 as a non-survivor, as per
convention based on a sigmoid function (Fig. 1).

For evaluating the network’s performance, for all metrics we re-
port mean±SE values obtained across the 10 folds of cross-
validation. We additionally plot the network’s output in relation
to patients’ outcome for the best model, defined as the one with
the highest AUC score of the validation set. The reported final re-
sults remain objective, as they concern the test set of patients
which was not used to train, optimize or select the best model.
We additionally evaluated the positive and negative predictive va-
lues (PPV and NPV, respectively), as the ratio of correctly predicted
survivors among all predicted survivors (PPV) or correctly predicted
non-survivors among all predicted non-survivors (NPV).

Outcome prediction in patients with indeterminate
prognosis

To assess the additional utility of ourmethod for the current clinic-
al practice, we evaluated the network’s predictions for a subset of
coma patients whose outcome prognosis was inconclusive based
on existing clinical tests. Based on previous literature and recom-
mendations, we considered the motor response, EEG reactivity,
EEG continuity and brainstem reflexes.1,2 If the above-mentioned
variables showed a discrepancy (e.g. present motor response and
brainstem reflexes, but a discontinuous and irritative EEG), a

patient was defined as being in a ‘grey zone’. For this definition,
we did not include patients where only brainstem reflex was pre-
sent and all other variables predicted a negative outcome, due to
the low positive predictive power of brainstem reflex for good out-
come.1 This resulted in 48 patients fulfilling the criteria for a clinical
‘grey zone’ (32 survivors, 16 non-survivors). Because of their rela-
tively low number, for this analysis wemerged patients from train,
validation and test sets, and examined the overall distribution of
the outcome prediction resulting from the CNN. Moreover, we per-
formed two control analyses to further evaluate the generalizability
of the network on ‘grey zone’ patients. First, we curated this split of
patients to train, validation and test sets, to ensure that a fixed but
high number of ‘grey zone’ patients are part of the test set
(Supplementary material). Second, we trained one network using
exclusively patients with determinate outcomes for training and
validation, and kept all ‘grey zone’ patients as a test set, to evaluate
generalization of outcome prediction results (Supplementary
material).

Exploring links between network’s output and
electrophysiological features of EEG responses

To explore the features of EEG responses related to the network’s
decisions, we explored (i) measures of neural synchrony and com-
plexity, previously shown to relate to patients’ outcome and pres-
ence of consciousness, respectively18; and (ii) well established
clinical variables currently used for outcome prognosis.1,2

We first computed the phase-locking value (PLV), which quanti-
fies the synchrony of EEG responses to auditory stimuli.37 The PLV
was computed for electrode pairs in the alpha range, which has
been recently shown to be predictive of patients’ outcome in two
different cohorts of patients undergoing HT.18 Here, we calculated
the mean PLV per patient across electrode pairs, applying the
same procedure as previously reported, based on a subset of pa-
tients included in the present study.18 The neural complexity was
quantified via the Lempel–Ziv (LZ) complexity, which measures
the number of unique patterns present in a signal.38 Both PLV and
LZ were calculated on single-trial EEG responses, similar to the
neural network, to capture trial-by-trial characteristics of EEG re-
sponses to the auditory stimuli. Here, we expanded the analysis
that was recently reported18 for both measures on a larger patient
cohort. Our goal on the one hand was to link these measures to
the network’s output (via Pearson correlation coefficient, Pcorr<
0.01, Bonferoni corrected) and on the other hand, to validate these

Figure 1 Schematic description of the deep learning algorithm for predicting outcome from coma. Auditory stimulation and EEG recordings are per-
formed on the first day of coma, shortly after a cardiac arrest. Single-trial EEG responses are then given as input to a CNNwhich classifies them as be-
longing to a survivor versus a non-survivor. The average of all single-trial predictions provides the network’s confidence of predicting survival. Survival
is defined at 3 months via the CPC score.

4 | BRAIN 2022: 00; 1–11 F. M. Aellen et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/advance-article/doi/10.1093/brain/aw

ac340/6987138 by U
niversitätsbibliothek Bern user on 25 January 2023

http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac340#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac340#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac340#supplementary-data


measures in patients treated with targeted temperature manage-
ment at 36°C, as they were previously only reported for patients
treated at 33°C.We excluded two patients that were part of a previ-
ous study,18 because they awoke in the hospital but subsequently
died before the CPC assessment at 3 months (see the ’Patients
and procedure’ section).

Second, we compared predictions of the network in subgroups of
patients definedaccording to the followingbinarymarkers: presence
of brainstem reflexes (pupil and corneal reflexes present), presence
ofmotor response (motor GCS≥4), reactive EEG background (change
in amplitude and/or frequency after stimulus, judged visually), dis-
continuous or suppressed EEGbackground39 and irritative EEG (pres-
ence of electrographic seizures or status epilepticus, sporadic
epileptiformdischarges, spiky or sharp periodic discharges or rhyth-
mic spike waves), using Mann–Whitney tests (Pcorr<0.01), and
Bonferroni correction for multiple comparisons.We additionally ex-
plored correlations between the network’s confidence and time to
return of spontaneous circulation (ROSC), with a Pearson correlation
coefficient, as well as links between confidence and hospital site or
CPC at 3 months with Kruskal–Wallis H-tests.

Data availability

Because of the sensitive nature of the clinical data, data and mate-
rials can be made available from the corresponding authors upon
reasonable request.

Results
Outcome of coma patients

Of the 134 patients analysed, 79 (59%) survived, where survival was
defined as CPC 1 (46 patients), 2 (22 patients) and 3 (11 patients) at 3
months. Of 134 patients, 55 (41%) had a poor outcome, correspond-
ing to a CPC of 5, and no patient was in a vegetative state (CPC of 4).

Prediction of outcome based on the neural network

The neural networks trained to discriminate auditory EEG re-
sponses of patients that later survived from those who did not
reached a mean AUC score of 0.81±0.00 on the train, 0.75±0.03
on the validation and 0.70±0.04 on the test sets (Fig. 2 and
Table 1). On the test set we obtained a PPV of 0.83± 0.03 and an
NPV of 0.57± 0.04 (Table 1). For patients treated with targeted tem-
perature management at 33°C, the average PPV was 0.83±0.04 and
for those treated at 36°C 0.81±0.06. The difference in PPV over the
two treatments over the 10 cross-validation folds was not signifi-
cant (P= 0.67, Wilcoxon signed rank test), implying that the net-
works performed at similar levels for patients treated with
targeted temperature management at 33°C and 36°C. The AUC
scoreswere also replicatedwith a control analysiswhere the neural
networks were trained with EEG data filtered between 0.1 and
20 Hz, resulting in a mean AUC score of 0.74± 0.03, PPV of 0.86±
0.02 and NPV of 0.62± 0.03 on the test set.

We next focused on one single fold of the cross-validation, and
evaluated the confidence scores assigned by the network to individ-
ual patients (Fig. 2), as our goal was to investigate the neural prop-
erties of EEG signals that may mediate the network’s outcome
prediction. In the validation and test sets, we obtained a sensitivity
of 84% for survivors and a specificity of 82% for non-survivors. Out
of all the patients classified as survivors in the train set (n= 42 pa-
tients), 36 awoke from coma, resulting in a PPV of 86%, while in
the validation/test sets 27 of 31 patients that were predicted as

survivors awoke, resulting in a PPV of 87%. These results were
largely similar for patients treated with different temperature
treatments (Fig. 2 HT, NT and Table 1).

Outcome prediction for patients in a ‘grey zone’

We next focused on patients who, from a clinical viewpoint, were
part of a ‘grey zone’, i.e. cases where currently used outcome pre-
dictors indicated indeterminate outcome. Forty-eight patients ful-
filled these criteria (n= 32 survivors and n= 16 non-survivors,
Fig. 3). The distribution of confidence values assigned by the net-
work in this subset of patients followed the distribution of the full
cohort (Figs 2 and 3). For this subset of patients we obtained a PPV
of 0.86, an NPV of 0.60 and an AUC score of 0.75, based on the
CNN. These scores were at similar levels as those obtained with
the full cohort, suggesting that although this group of patients
had indeterminate prognosis based on existing clinical tests, they
were not ‘peculiar’ cases for the neural network (see the
Supplementary material for additional analyses on ’grey zone’
patients).

Investigating the interpretability of the neural
network’s outcome prediction

Wenext evaluated the electrophysiological properties of EEG signals
that thenetwork’s outputmaybe reflectingwhile providingapredic-
tion about patients’ outcome. We first evaluated the PLV of EEG re-
sponses to sounds, previously shown to be predictive of patients’
outcomewhen treated with hypothermia.18 Here, we first replicated
these results for patients in NT. The mean PLV for survivors treated
with hypothermiawas 0.75±0.01 and for survivors treatedwith nor-
mothermia 0.72±0.02. For non-survivors, we found a mean PLV of
0.55±0.02 and 0.57±0.03 for patients treated with hypothermia
and NT, respectively. When statistically tested, we found a signifi-
cantmaineffect of outcomeonPLV (F=101.68; Pcorr<0.01),whilenei-
ther the main effect of temperature treatment (F=4.07; Pcorr=0.046)
nor the outcome by temperature interaction were significant (F=
2.17;P=0.14).Next,weexploredthepredictivepowerofthePLVinpa-
tients treated with NT, as done previously for the subset of patients
treatedwithhypothermia (partially overlappingwith those included
in our previous study18). For patients in hypothermia, the PLV pro-
vided a PPV of 0.85 and an NPV of 0.83, as previously reported.18 For
patients in NT, the PLV resulted in a PPV of 0.77 and an NPV of 0.80
(Fig. 4A).

Importantly, the confidence of survival assigned by the network
to each patient strongly correlated with the mean PLV across elec-
trodes (r=0.76; Pcorr< 0.01; Fig. 4B). This correlationwas not trivially
driven by the fact that both measures predict outcome, as it re-
mained significant when tested for survivors (r= 0.49; Pcorr<0.01)
and non-survivors (r= 0.65; Pcorr<0.01) separately.

Next, we computed the LZ complexity of EEG responses to
sounds, which by itself has been shown not to be predictive of out-
come when only including patients treated at 33°C.18 We confirmed
this previousfinding for patients of the present studywhowere trea-
ted at 36°C, whose distribution of LZ values was similar to the distri-
bution of LZ values for patients treated at 33°C (Fig. 4C).

Interestingly, although LZ complexity by itself was not predict-
ive of outcome, it showed a significant negative correlation with
the network’s confidence (r=−0.57; Pcorr< 0.01; Fig. 4D), so that
the higher the network’s confidence in predicting survival, the low-
er the complexity of EEG responses to sounds. A strong correlation
between network’s confidence and EEG complexity was also
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observed for survivors (r=−0.48; Pcorr< 0.01) and non-survivors
(r=−0.76; Pcorr< 0.01) separately. PLV and LZ complexity were also
negatively correlated, albeit with a weaker correlation than each
of these measures did with the confidence of the neural network
(Pearson’s r=−0.39; Pcorr<0.01).

Overall, these results suggest that thenetworkassignedhighercon-
fidence scores for awakening for patients with high PLV and low com-
plexity, or in other words, with stronger neural synchrony and
temporalstructure intheirEEGresponses.ExemplarEEGtracesof these
responses for a correctly classified survivor and a misclassified non-
survivor show rather smooth EEG responses to the sounds, compared
to exemplar traces of a correctly classified non-survivor andmisclassi-
fied survivor, where the EEG responses aremore ‘stochastic’ (Fig. 4B).

Comparison with clinical variables

Lastly, we compared the confidence of the network’s prediction
with clinical variables currently used for outcome prognosis. We
found a significant difference (Pcorr< 0.01; Mann–Whitney U-test)
in the network’s confidence values between patients with and

without presence of brainstem reflex, motor response, reactive
EEG background, discontinuous or suppressed EEG background
and irritative EEG (Fig. 5A–E). Patients with brainstem reflex, motor
response or reactive EEG, all of which are considered indicators of
good outcome, had significantly higher confidence scores com-
pared to patients without (Fig. 5A–C). The opposite was observed
for patients with discontinuous or irritative EEG, which are consid-
ered indicators of poor outcome (Fig. 5D and E). Interestingly, EEG
reactivity, which has a prognostic value for good outcome,27 pro-
vided similar levels of predicting awakening as the neural network
(PPV= 0.88). It is worth noting, however, that the prognostic per-
formance of EEG reactivity is likely biased, as this score is used in
the clinical interventions to influence outcome.

Last, the network’s confidence did not correlate with ROSC (r=
−0.13; P= 0.12, Fig. 5F), while no significant difference was found
in confidence scores across the four hospital sites (Kruskal–
Wallis, H=3.48; P= 0.32, Fig. 5G). As expected based on the outcome
prediction results, therewas amain effect of CPC on network’s con-
fidence when testing for CPC 1–5 (Kruskal–Wallis, H= 61.91;
Pcorr<0.01; Fig. 5H). However, there was no significant difference

Figure 2 Prediction of outcome based on the CNN. Confidence scores were computed for each patient by averaging the network’s outcome prediction
for all single-trial EEG responses to sounds of a given patient. A patient was predicted to be a survivor if the confidence scorewas above 0.5, otherwise a
non-survivor. Data from patients of the train set (empty circles) were used to train the network, while data from patients in the validation set (shaded
circles)were used to evaluate hyperparameters. The predictive value of the networkwas evaluated on a separate test set of patients (full circles), whose
datawere never used to train or optimize the network. For each of the sets, we split patients into HT (hypothermia, targeted temperaturemanagement
at 33°C) and NT (patients with targeted temperature management at 36°C). For the numerical performance scores see Table 1.
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of confidence within the survivors group, for CPC 1, 2 and 3
(Kruskal–Wallis, H=4.35; P= 0.11).

Discussion
Westudied the prognostic value of EEG responses to auditory stimu-
lation, combined with deep learning in predicting coma outcome
after cardiac arrest.Weshowed thatCNNsare powerful in extracting
single-trial information from auditory ERPs on the first day of coma,
and at predicting survival 3 months later, with a positive predictive
power of 0.83±0.03, negative predictive power of 0.57±0.04 and an
overall AUC of 0.70±0.04. These results were not available to clini-
cians treating the patients and did not influence patients’ outcome.
Predicting patients’ chances of awakening was at similar levels for
patients receiving targeted temperature management at 33 and 36°
C. The performance of the neural network was separately evaluated
onpatients ina ‘greyzone’,whereclinicalvariablesgaveinconclusive
results, reachingaPPVof0.86, suggestingthatneuralnetworksmight
havethepotential toassist inprognostication inthesecurrently inde-
terminate cases. Lastly, we showed that the confidence scores of the
neural network in predicting survivalwere strongly correlated to the
phase locking and complexity of auditory EEG responses to the audi-
tory stimuli, so that patients that were confidently characterized as
survivors had high synchrony and low complexity in their neural
responses.

Auditory stimulation for predicting outcome from
coma

The main novelty and advantages of our approach of combining
auditory stimulation with deep learning to predict coma outcome
are 3-fold: (i) it is semi-automatic, based on a single EEG recording

performed within 24 h after cardiac arrest and, if confirmed
in other data sets, can be objectively used to assist in predicting pa-
tients’ chances of awakening fromcoma; (ii) it relies on the auditory
pathway, which is currently not actively used in the clinical routine
for outcomeprediction, and can therefore provide additional clinic-
al insights for patients in a ‘grey zone’, whose outcome is indeter-
minate based on existing techniques; and (iii) the output of the
neural network is not a simple binary prediction of outcome, but
exploits a continuum of confidence values, which are then directly
linked and strongly correlated to interpretable features of EEG
responses.

Our work follows a large body of literature showing links be-
tween neural responses to auditory stimulation in comatose or un-
responsive patients and patients’ outcome.4–7 Standardized
auditory stimulation in particular has been proposed to be inform-
ative of patients’ chances of awakening.9–13 However, to date it is
not regularly used in the clinical routine, as themajority of existing
techniques are not robust enough, rendering a clinical implemen-
tation challenging.15–17 Here, we overcame this challenge by focus-
ing on one single EEG recording of ∼20 min, and analysed EEG
responses to auditory stimulation with CNNs. These networks
have the strong advantage that they can detect discriminative pat-
terns even in heterogeneous data sets, with minimal a priori as-
sumptions and preprocessing.19,20,22–24,26 Importantly, all steps of
the presented method are automatic, apart from visual inspection
of the data and manual rejection of artefacts, which were done to
ensure high-quality data. Future studies can investigate whether

Table 1 Prediction of outcome, PPV and NPV for awakening
based on the neural network

All Hypothermia Normothermia

Mean over 10 folds
AUC train 0.81±0.00 0.81±0.01 0.80±0.01
AUC validation 0.75±0.03 0.72±0.04 0.72±0.05
AUC test 0.70±0.04 0.69±0.05 0.70±0.05
PPV train 0.90±0.01 0.92±0.02 0.87±0.01
PPV validation 0.85±0.02 0.86±0.02 0.71±0.10
PPV test 0.83±0.03 0.83±0.04 0.81±0.06
NPV train 0.70±0.01 0.65±0.02 0.70±0.02
NPV validation 0.66±0.04 0.56±0.08 0.66±0.06
NPV test 0.57±0.04 0.53±0.05 0.57±0.05
Best fold
AUC train 0.79 0.72 0.88
AUC validation 0.83 0.93 0.68
AUC test 0.83 0.91 0.73
PPV train 0.86 0.82 0.93
PPV validation 0.83 0.90 0.75
PPV test 0.92 1.00 0.75
NPV train 0.71 0.60 0.83
NPV validation 0.89 1.00 0.67
NPV test 0.71 0.67 0.75

Prediction of outcome of the trained neural network. We report the mean±SE over

all 10 trained folds, as well as the performance of the best fold. We report the AUC,
PPV and NPV, with respect to survival, of the train, validation and test sets, for all

patients and separately the subcohorts of patients treated with hypothermia and

NT. The performance of the best fold is also visualized in Fig. 2.

Figure 3 Confidence of survival assigned by the network for patients
with uncertain outcome prognosis based on existing outcome predic-
tors. Confidence scores for patients in this subset followed the distribu-
tion of confidence scores in the entire patient cohort (Fig. 2). The empty
circles show patients in the train set, shaded circles patients in the val-
idation and full circles patients in the test set. The left side of the figure
represents survivors and the right side non-survivors.
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this step can also be automated and replaced with existing algo-
rithms for rejection of EEG artefacts.40

Neural networks assisting prognostication of coma
outcome

Neural networks have beenused in several fields showing an aston-
ishing potential to automate and improve prognostication of vari-
ous neurological disorders,19,20 but their use in neuro-critical care
and coma outcome prognosis remains limited. The few existing
studies using neural networks to predict coma outcome are based
on EEG recordings in the absence of external stimulation. These
have shown a remarkable performance (AUC= 0.8924; AUC at 24 h
=0.8823; best AUC at 24 h= 0.8925), in predicting outcome. In our
study, we obtained a mean AUC score of 0.70±0.04 and 0.83 for
the best fold (Table 1), and a mean PPV of 0.83± 0.03 and 0.92 for
the best fold (Table 1). The AUC valueswe obtained are slightly low-
er than previous studies. However, it is worth noting that our study

relies on a complementary piece of information towhat is currently
used in the clinical routine, that is, standardized auditory stimula-
tion. Our approach is predictive of awakening and not of overall
outcome, and therefore the most informative measure of perform-
ance is the PPV and not the AUC.

As such, we could show that neural networks have the potential
to provide concrete diagnostic information for patients in a clinical
‘grey zone’, forwhomcurrently available clinical tests are inconclu-
sive. The PPV for these patients was at similar levels as for the full
cohort. Moreover, control analyses confirmed that the network’s
prediction generalizes to ‘grey zone’ patients, even when it has
been trained with few or no ‘grey zone’ patients (Supplementary
material). Future studies with larger patient cohorts can evaluate
the clinical applicability of neural networks and confirm these
results.

One main limitation of our approach, and also of most previous
studies (with few exceptions, such as 41), is that we only predict a
binary outcome of survival versus non-survival. Survivors are

Figure 4 Investigating the interpretability of the neural network’s output. (A) PLV for survivors (left) and non-survivors (right). The horizontal line cor-
responds to a threshold PLV of 0.69, identified and already evaluated in a subset of patients, previously reported inAlnes et al.18 The previously reported
distribution of PLV values was replicated in a new cohort, predominantly treated with NT. (B) Correlation of network confidence to PLV. The network’s
confidence of survival was strongly correlated to the average PLV (Pearson’s r=0.76; Pcorr< 0.01). Exemplar EEG responses to sounds have been plotted
for two survivors and two non-survivors, one correctly and one incorrectly classified based on the neural network. (C) LZ complexity of auditory ERPs
for each patient. As previously reported in a subset of patients,18 LZ complexity was not informative of patients’ outcome. (D) Correlation between LZ
complexity and the network’s confidence of survival for the entire patient cohort (r=−0.53; Pcorr<0.01). The correlation values are also plotted separ-
ately for survivors (bottom plot) and non-survivors (top plot). The highlighted circles with bordersmark the patients whose exemplar EEG responses are
shown in B.
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defined as patientswith a CPC 1–3,which corresponds to varying le-
vels of autonomy and quality of life.32,42 Although a CPC of 1–2 gen-
erally represents a satisfactory quality of life, a CPC of 3 can be a
heterogeneous class. Becausewe trained thenetwork to specifically
discriminate between patients with CPC 1–3 versus patients with a
CPC of 5 (death), we could not find amore fine-grained link between
the network’s output and the state of survival at 3 months. Future
studies, expanding on larger patient cohorts, could use the CPC
score already during network training to evaluatewhether auditory
responses in the acute coma phase can be informative not only of
survival, but also of its quality.

Electrophysiological features contributing to the
network’s confidence in outcome prediction

Onemajor concern for the use of neural networks in a clinical envir-
onment is that of interpretability, i.e. tracing features in the data
that were important for decisions made by a network. Here, we ad-
dressed this concern by showing that the output of the neural net-
work was strongly correlated to features of EEG activity like the
phase locking, previously shown to reflect coma severity,18,43,44

and also to clinical evaluations.27,45 The phase locking of EEG re-
sponses to sounds, recently shown to be predictive of patients’
chances of awakening from coma,18 was strongly correlated to
the networks’ confidence in predicting survival, such that the high-
er the phase locking, the stronger the network’s confidence.

Crucially, this link was observed not only across survivors and
non-survivors, whichmight be considered trivial as bothmeasures
predict outcome, but also within the groups of survivors and non-
survivors separately. This suggests that the decisions made by
the neural network for assessing the confidence of survival are
strongly linked to the strength of neural synchrony across EEG elec-
trodes. Importantly, not only did we observe a strong correlation
between PLV and network’s output, but we also replicated previous
findings about the predictive value of PLV18 in a new patient cohort,
treated with targeted temperature management at 36°C.

The advantage of using CNNs over hand-crafted and prese-
lected features, such as the PLV, is that the network automatically
extracts multivariate features of the ERP response, which are most
discriminant between patient outcomes. This approach is fully
data-driven, and the input signal is minimally preprocessed, as op-
posed to computing the PLV,where oneneeds to have strong a priori
assumptions about the electrode pairs, frequency bands and spe-
cific measure to be used (see the supplementary material in Alnes
et al.18).

More surprisingly, we also observed a strong negative correl-
ation between the network’s confidence of predicting survival
and the complexity of EEG responses to sounds. Neural complexity
per se, at the single-patient level, was not predictive of patients’ out-
come. This finding has been previously reported for patients trea-
ted with targeted temperature management at 33°C,18 and here
we replicated it for patients treated at 36°C. Neural complexity

Figure 5 Links between network’s confidence in predicting survival and clinical variables currently used for outcome prognosis. The network’s con-
fidence scores were statistically compared for patients with and without: (A) brainstem reflex (Pcorr<0.01); (B) motor response (Pcorr<0.01); (C) reactive
EEG (Pcorr<0.01); (D) discontinuous EEG (Pcorr<0.01); and (E) irritative EEG (Pcorr<0.01). (F) Correlation of the network’s confidence of survival and time to
return of spontaneous circulation (ROSC, r=−0.13; P=0.12). (G) Absence of link between hospital sites and the network’s confidence scores (H=3.48; P=
0.32). (H) Differences in the network’s confidence scores across CPC outcomes. The main effect of CPC was significant when considering all outcomes
(CPC 1, 2, 3, 5) (H= 61.90; Pcorr<0.01), but not within the group of survivors (CPC 1–3, H=4.36; P=0.11).
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can be considered a proxy to neural ’noise’, of how structured EEG
responses are across time.46 Interestingly, here we found that the
higher the network’s confidence for a patient to survive the coma,
the lower the complexity of the patient’s EEG responses to auditory
stimulation. This effect was particularly strong for non-survivors.
This finding suggests that although complexity per se is not inform-
ative of coma outcome, the network is extracting some features in
EEG responses that relate to the levels of neural ’noise’ or structure
in the EEG signal, which are in turn informative of coma outcome.

Finally, we also found significantly higher confidence in the
network’s predictions of survival assigned to patients that have
intact brainstem reflexes,motor responses and reactive EEG, com-
pared to those who do not (Fig. 5A–C). All these features are con-
sidered to be markers of preserved neural functioning and to
indicate good outcome.1 Interestingly, when focusing on reactive
EEG, which has a prognostic value for good outcome,27 we found
that it provided similar levels of predicting awakening as the neur-
al network (PPV= 0.88). Notably, unlike the EEG reactivity, the
neural network was not used to inform clinical decisions about
these patients. By contrast, the network’s confidence of survival
was significantly lower for patientswith discontinuous EEG and ir-
ritative EEG than patients without (Fig. 5D and E), which are con-
sidered signs of poor outcome .27

In summary, the strong links between the network’s output and
clinical or electrophysiological features across patients strengthen
the view that the neural network’s decisions (i) are based on clinic-
ally relevant features; and (ii) can provide similar levels of perform-
ance as currently used techniques,27 but with higher level of
automation and objectivity47 and minimal preprocessing in the
EEG data.

Conclusions
In summary, we show, for the first time, the strong potential of
standardized auditory stimulation in combinationwith deep learn-
ing to predict awakening from coma. Our approach provides an ob-
jective and semi-automatic way to quantify a patient’s chances of
awakening and surviving at 3 months, already from the first few
hours after coma onset. For two different patient cohorts, treated
with controlled temperature management at 33°C and 36°C and re-
corded across four different hospitals, the neural network provides
a high PPV of awakening, of 0.83±0.04 and 0.81± 0.06, respectively.
This finding was also confirmed for a subgroup of patients whose
outcome prognosis was indeterminate with currently used diag-
nostic criteria. Importantly, we could show strong links between
the output of the neural network and electrophysiological charac-
teristics of the EEG responses to sounds reflecting neural synchrony
and complexity, which have been previously associated with the
presence of consciousness from a theoretical point of view. Our
work calls for a more systematic use of standardized auditory
stimulation in the clinical routine, in combination with
state-of-the-art deep learning algorithms, to assist and improve
early prognostication of coma outcome.
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