
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
4
8
3
5
0
/
1
7
7
7
5
4
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
2
0
.
4
.
2
0
2
4

Citation: Holzer, I.; Desiatkina, O.;

Anghel, N.; Johns, S.K.; Boubaker, G.;

Hemphill, A.; Furrer, J.; Păunescu, E.

Synthesis and Antiparasitic Activity

of New Trithiolato-Bridged Dinuclear

Ruthenium(II)-arene-carbohydrate

Conjugates. Molecules 2023, 28, 902.

https://doi.org/10.3390/

molecules28020902

Academic Editors: Adriana Corina

Hangan and Roxana Liana Lucaciu

Received: 28 November 2022

Revised: 9 January 2023

Accepted: 11 January 2023

Published: 16 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Synthesis and Antiparasitic Activity of New Trithiolato-Bridged
Dinuclear Ruthenium(II)-arene-carbohydrate Conjugates
Isabelle Holzer 1, Oksana Desiatkina 1, Nicoleta Anghel 2, Serena K. Johns 1,3, Ghalia Boubaker 2,
Andrew Hemphill 2,* , Julien Furrer 1,* and Emilia Păunescu 1,*

1 Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3,
3012 Bern, Switzerland

2 Institute of Parasitology Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
3 School of Chemistry, Cardiff University, Park Place, Cardiff CF103AT, UK
* Correspondence: andrew.hemphill@unibe.ch (A.H.); julien.furrer@unibe.ch (J.F.);

paunescu_emilia@yahoo.com (E.P.)

Abstract: Eight novel carbohydrate-tethered trithiolato dinuclear ruthenium(II)-arene complexes
were synthesized using CuAAC ‘click’ (Cu(I)-catalyzed azide-alkyne cycloaddition) reactions, and
there in vitro activity against transgenic T. gondii tachyzoites constitutively expressing β-galactosidase
(T. gondii β-gal) and in non-infected human foreskin fibroblasts, HFF, was determined at 0.1 and 1 µM.
When evaluated at 1 µM, seven diruthenium-carbohydrate conjugates strongly impaired parasite pro-
liferation by >90%, while HFF viability was retained at 50% or more, and they were further subjected
to the half-maximal inhibitory concentration (IC50) measurement on T. gondii β-gal. Results revealed
that the biological activity of the hybrids was influenced both by the nature of the carbohydrate
(glucose vs. galactose) appended on ruthenium complex and the type/length of the linker between
the two units. 23 and 26, two galactose-based diruthenium conjugates, exhibited low IC50 values and
reduced effect on HFF viability when applied at 2.5 µM (23: IC50 = 0.032 µM/HFF viability 92% and
26: IC50 = 0.153 µM/HFF viability 97%). Remarkably, compounds 23 and 26 performed significantly
better than the corresponding carbohydrate non-modified diruthenium complexes, showing that
this type of conjugates are a promising approach for obtaining new antiparasitic compounds with
reduced toxicity.

Keywords: ruthenium(II)-arene complexes; bioorganometallic; carbohydrates; CuAAC reactions;
antiparasitic; Toxoplasma gondii; human foreskin fibroblasts; auxotrophy; toxicity

1. Introduction

The interest in the development of metal complexes for medicinal applications in-
creased in the middle of the 20th century after the discovery of the anticancer properties
of cisplatin [1,2]. Metal-based drugs are attractive due to their great versatility in terms
of metal center, oxidation state, coordination number, in addition to the nature and geo-
metric orientation of the ligands [3]. As the use of platinum-based drugs is limited due to
shortcomings like the occurrence of chemoresistance and side effects associated to their
high toxicity [4,5], this encouraged the research of compounds based on other metals as
alternative to platinum anticancer therapeutics [1,6–8]. Parallel investigations aimed to en-
large the purpose of metal complexes with the identification of additional pharmacological
properties, such as antibiotic [9,10] and antiparasitic [11–16].

Ruthenium complexes were identified amid the most promising non-platinum
chemotherapeutic alternatives [17,18]. The ruthenium(II)-arene scaffold has been declined
in a myriad of compounds aimed to improve anticancer activity and selectivity [19–25], but
also targeting other therapeutic applications [11,13,16,26].
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A particular class of compounds containing this unit are the trithiolato-bridged dinu-
clear ruthenium(II)-arene complexes (A–C in Figure 1), which show not only high antiprolif-
erative activity against cancer cells [27], but also promising antiparasitic properties [28,29].
The structure of these complexes is based on a trigonal bipyramidal Ru2S3 framework,
with two ruthenium(II)-arene half-sandwich units. Two types of complexes can be dis-
tinguished, “mixed” (at least one of the bridge thiols is different, A in Figure 1) and
“symmetric” (the three bridge thiols are identical, B and C in Figure 1) [27]. Former studies
on Toxoplasma gondii [28], Neospora caninum [29] and Trypanosoma brucei [30] identified high
antiparasitic activity for some of these diruthenium compounds. For example, compounds
A–C (Figure 1) inhibit T. gondii tachyzoites proliferation with IC50 values in nanomolar
range (down to 1.2 nM for A).
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Figure 1. Structures of dinuclear thiolato-bridged ruthenium(II)-arene complexes (A–C) active against
T. gondii, of various ruthenium(II)-arene complexes presenting carbohydrate functionalized ligands
and anticancer activity (D–J), and of ferrocene-carbohydrate conjugates exhibiting antimalarial,
antibacterial, and anticancer properties (K–M).

T. gondii is an obligate intracellular protozoan parasite of the phylum Apicomplexa
that causes infections of medical and veterinary significance in humans and animals [31,32].
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Infection is usually asymptomatic in immunocompetent individuals, but it may cause
severe complications or even be fatal in immunocompromised patients [33]. Current com-
mon treatments for toxoplasmosis are not specific, require prolonged courses and have
toxic side effects, and consequently, new therapeutic solutions are needed [33–36]. Unlike
other pathogens, T. gondii has adapted to replicate in all nucleated cells of a wide range
of vertebrates, regardless of their cellular metabolism, and thus displays an exceptional
metabolic robustness [37,38]. T. gondii is auxotrophic for several metabolites including
purines, polyamines, cholesterol and choline [37]. Accordingly, tackling the parasite aux-
otrophies and metabolic peculiarities can constitute an interesting therapeutic strategy [37].

Carbohydrates contribute to cell-cell recognition and adhesion, have a crucial role in
cellular energy supply, and can bind to specific proteins (e.g., lectins, glucose transporters,
and glycoenzymes). Consequently, their conjugation to metal complexes appears as a ratio-
nal choice for drug design as it can promote biocompatibility and increase water solubility.
Carbohydrate-metal hybrids show promise not only in medicinal chemistry [39–41] but
also in catalysis [42,43]. Apart the metal, its oxidation state and coordination mode [44–46],
various structural adjustments were considered as the type of the carbohydrate [47–51], its
substitution position [52], and the presence and nature of the protecting groups [53–55].
The cancer cells glucose metabolism can be exploited for targeted therapy [56], and conse-
quently, glycoconjugates of various metal complexes were explicitly designed for selective
uptake by cells overexpressing glucose transporters [57–59]. In this context, the potential of
ruthenium complexes containing carbohydrate-functionalized ligands has been extensively
studied especially on cancer cells [60–73], and some representative examples are presented
in Figure 1. Apart cancer-specific treatment [39–41,60,74–77], alternative utilizations of
metal-carbohydrate hybrids, as for example antiparasitic therapy, also received a lot of
interest [78–80] (Figure 1).

For example Ru(II)-arene complexes as D [65,66], with a carbohydrate-derived
phosphorus-containing ligand, E [67] bearing a mannose fragment as a diamino-bidentate
leg ligand, F [68,69], with a galactose fragment N-coordinated via a nitrile group, and G [71],
containing a glucosyl functionalized 1,2,3-triazolylidene N-heterocyclic carbene ligand,
exhibited promising antiproliferative activity on various cancer cells. Complexes like H [72],
with methyl mannose or glucose units attached to a pyridyl-2-triazole bidentate ligand,
were shown to exploit the glucose transporters for cellular uptake in cancer cells. For Ru(II)
half-sandwich complexes like I [70] and J [73], the presence and nature of the protective
groups proved to be essential for the biological activity. The high affinity of the malaria par-
asite for glucose was targeted using the ferrocenyl-glucose conjugate K [79], with moderate
antimalarial activity in vitro in both Plasmodium falciparum chloroquine-resistant and non-
resistant strains. Carbohydrate-ferrocenyltriazole conjugate L [81], exhibited antibacterial
activity against both Gram-positive and Gram-negative pathogens, and triazole bridged
ferrocene-selenoribose conjugate M [82] was cytotoxic on cancer cells.

This study continues the quest for trithiolato-bridged dinuclear ruthenium(II)-arene
compounds as potential anti-Toxoplasma compounds with improved therapeutic value (in
terms of antiparasitic efficacy/host cell toxicity balance) by exploiting the conjugate strategy
and the parasite auxotrophies and specific metabolic needs. The investigation of carbohy-
drate metabolism in T. gondii has received a lot of interest [83–86] and considering the high
energetic demand accompanying parasite growth and proliferation, carbohydrates can
constitute an appealing choice among the metabolites able to promote the internalization
of the organometallic unit in the parasite.

The synthesis of trithiolato diruthenium complexes is generally straightforward and
efficient [87–89], this scaffold being robust to chemical modification and easily adaptable to
the conjugate strategy as demonstrated by the various series of hybrids with peptides [90],
drugs [91,92], fluorophores [89,93] or metabolites [93]. Ester and amide couplings [89,94],
but also CuAAC (Cu(I)-catalyzed azide-alkyne cycloaddition) click reactions [92,93] proved
to be useful tools for the functionalization of the diruthenium trithiolato unit at the level
of the bridge thiols. CuAAC offer the advantage of mild reaction conditions, compatible
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with various ligands [44,46,71–73,95–97] but also with organometallics [81,98–102], and
enables the construction of libraries of compounds [103–105]. Additionally, trithiolato
diruthenium(II)-arene compounds suitably substituted with alkyne or azide groups were
already used in CuAAC reactions for obtaining conjugates with molecules of interest e.g.,
various nucleic bases or drugs [92,93].

The nature of the carbohydrate (acetyl protected glucose or galactose) and the type
and length of the linker between the two units were addressed as sources of variability.
The new diruthenium hybrids and intermediates were screened in vitro against T. gondii
tachyzoites expressing β-galactosidase (T. gondii β-gal) grown in human foreskin fibroblasts
(HFF) with complementary assessment of HFF host cells viability. Compounds with
promising antiparasitic activity and selectivity were then subjected to dose-response (IC50)
determination on T. gondii β-gal and toxicity assessment on HFF at 2.5 M concentration.

2. Results and Discussions
2.1. Synthesis
2.1.1. Synthesis of the Dinuclear Ruthenium(II)-arene Intermediates 2–9

Alkyne and azide partners are needed for the CuAAC reactions, and when appropri-
ately substituted, both the diruthenium moiety and the carbohydrate can play either role.
With this aim, various diruthenium and carbohydrate intermediates were synthesized.

The dithiolato derivative 1 [106] (obtained from the ruthenium dimer ([(η6-p-MeC6H4Pri)
RuCl]2Cl2) and 4-tert-butylbenzenemethanethiol) was reacted with a second thiol
(4-mercaptophenol, 4-aminobenzenthiol, 2-(4-mercaptophenyl)acetic acid, and 2-mercapto-
benzyl alcohol, respectively) to provide the trithiolato-bridged dinuclear ruthenium com-
pounds 2–5, as previously reported (Scheme 1) [87–89].
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Scheme 1. Synthesis of the diruthenium intermediates bearing OH (2), NH2 (3) CH2CO2H (4), and 
CH2-OH (5) groups on one of the bridge thiols. 

Intermediates 2–4 can be modified using ester and amide coupling reactions as pre-
viously described [89,92–94]. The alkyne ester 6 was obtained in moderate yield (47%) by 
reacting 2 with 5-hexynoic acid using EDCI (N-(3-dimethylaminopropyl)-N′-ethylcar-
bodiimide hydrochloride) as coupling agent, in basic conditions (DMAP, 4-(dimethyla-
mino)-pyridine) (Scheme 2, top). 5-Hexynoic acid was also reacted with the amino diru-
thenium derivative 3 using EDCI and HOBt (1-hydroxybenzotriazole) as coupling agents, 
in basic conditions (DIPEA, N,N-diisopropylethylamine), to afford the amido alkyne 

Scheme 1. Synthesis of the diruthenium intermediates bearing OH (2), NH2 (3) CH2CO2H (4), and
CH2-OH (5) groups on one of the bridge thiols.

Intermediates 2–4 can be modified using ester and amide coupling reactions as
previously described [89,92–94]. The alkyne ester 6 was obtained in moderate yield
(47%) by reacting 2 with 5-hexynoic acid using EDCI (N-(3-dimethylaminopropyl)-N′-
ethylcarbodiimide hydrochloride) as coupling agent, in basic conditions (DMAP,
4-(dimethylamino)-pyridine) (Scheme 2, top). 5-Hexynoic acid was also reacted with
the amino diruthenium derivative 3 using EDCI and HOBt (1-hydroxybenzotriazole) as
coupling agents, in basic conditions (DIPEA, N,N-diisopropylethylamine), to afford the
amido alkyne compound 7 as reported [93] (Scheme 2, top). Similar reaction conditions
were used for the synthesis of amide 8 from carboxylic acid diruthenium derivative 4 and
propargylic amine as formerly described (Scheme 2, bottom) [92,93].
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The azide trithiolato diruthenium derivative 9 (Scheme 3), was obtained following a
two steps pathway starting from alcohol 5 using a reported protocol [93]. First, the hydroxy
group was activated by mesylation (MsCl, methanesulfonyl chloride) in basic conditions
(TEA, triethylamine), followed by the nucleophilic substitution with azide (NaN3).
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2.1.2. Synthesis of the Azide and Alkyne Functionalized Carbohydrate Intermediates 10–18

Appropriate carbohydrate derivatives bearing azide and alkyne groups were also
synthesized (Schemes 4 and 5). Azido glucose compound 10 (2,3,4,6-tetra-O-acetyl-β-
D-glucopyranosyl azide), was synthesized from commercially available 2,3,4,6-tetra-O-
acetyl-β-D-glucopyranosyl bromide following a literature protocol (Scheme 4) [107]. The
reaction was realized with TMS-N3 (trimethylsilylazide) in THF in the presence of TBAF
(tetrabutylammonium fluoride) in catalytic amounts, and 10 was isolated in moderate
yield (51%).
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The azide compounds 14–16 were obtained following a two-step procedure previously
described [52,55,108] (Scheme 5, top). First, β-D-glucose pentaacetate and β-D-galactose
pentaacetate were glycosylated with 2-bromoethanol and 4-bromo-1-butanol. The reactions
were realized in the presence of BF3·Et2O (boron trifluoride diethyl etherate) as Lewis acid
catalyst [52] and afforded the ether glycosides 11–13 in low to moderate yields (32, 41, and
47%, respectively). In the second step the bromine atom on the pending chain of 11–13 was
substituted with azide (NaN3) [55,108], derivatives 14–16 being isolated in 47, 74% and
quantitative yields, respectively.

The alkyne functionalized carbohydrates 17 and 18 were synthesized (Scheme 5,
bottom) from β-D-glucose pentaacetate and, respectively, from β-D-galactose pentaacetate
and 4-pentyn-1-ol in the presence of BF3·Et2O [109] and were isolated in medium yields
(64 and 46%).

2.1.3. Synthesis of the Carbohydrate Functionalized Trithiolato-Bridged Dinuclear
Ruthenium(II)-arene Complexes 19–26

The carbohydrate units were attached to the trithiolato diruthenium scaffold via click
1,3-dipolar cycloadditions using adapted protocols [110–112], in the presence of CuSO4
as catalyst and sodium ascorbate as a reducing agent, in DMF under inert conditions.
Complexes 6–9, bearing either alkyne or azide pendant group, were reacted with the ap-
propriately functionalized carbohydrate derivatives 10 and 14–18 (Schemes 6–9) affording
eight new trithiolato diruthenium conjugates 19–26.
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Thus, alkyne functionalized diruthenium compounds 6 and 7 were reacted with
glucose derivative 10 presenting an azide group directly anchored to the glucopyranosyl
ring (Scheme 6). Amide conjugate 20 was isolated in good yield (72%), while difficulties
were encountered in the purification of ester analogue 19 which was recovered in poorer
yield (28%).
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Other glycoconjugates were synthesized using alkyne intermediate 7 (Scheme 7) and
two types of modifications were envisioned: (i) the nature of the carbohydrate (glucose in
21 vs. galactose in 22), and (ii) the presence of spacers of different length between the azide
group and the glucopyranosyl ring (galactose derivatives 22 and 23). Conjugates 21–23
were isolated in good yields of 66, 65 and 74%, respectively. Neither the steric hindrance
nor the nature of the carbon atom on which the azide group was anchored (10 vs. 14) play
a key role on the yield (20 vs. 21–23). Similarly, the reaction of the diruthenium propargyl
amide derivative 8 with galactose azide 14 afforded conjugate 24 in 75% yield (Scheme 8).

The trithiolato dinuclear intermediate 9, presenting an azide in benzylic position on
one of the bridge thiols, was reacted with glucose and galactose alkyne derivatives 17 and
18 (Scheme 9), affording carbohydrate conjugates 25 and 26 isolated in moderate yields of
51 and 63%, respectively.

All compounds were fully characterized by 1H, 13C nuclear magnetic resonance (NMR)
spectroscopy, high resolution electrospray ionization mass spectrometry (HR ESI-MS) and
elemental analysis (see Supplementary Materials). The obtainment of the triazole connector
between the diruthenium unit and the carbohydrates was undoubtedly demonstrated
by the 1H and 13C NMR spectra of the conjugates 19–26 by the signals corresponding
to the proton of the triazole cycle at 7.74–8.66 ppm and of the corresponding carbon at
120.3–124.6 ppm. The absence of the signals corresponding to the proton of the mono-
substituted alkyne (at 1.93–2.49 in compounds 6–8, 17 and 18) in the 1H NMR spectra
of conjugates 19–26 further confirm the obtainment of the hybrid molecules. Mass spec-
trometry corroborated the spectroscopic data with the trithiolato diruthenium glucose and
galactose conjugates 19–26 showing molecular ion peaks corresponding to [M-Cl]+ ions.

2.1.4. Stability of the Compounds

For the assessment of the biological activity, the compounds were prepared as stock
solutions in dimethylsulfoxide (DMSO). Similar to former reports [88,89,94], the 1H NMR
spectra of the functionalized diruthenium complexes 6, 7, 20, 22, 25 and 26 in DMSO-d6,
recorded at 25 ◦C 5 min and more than 1 month after sample preparation showed no
significant modifications (see Figure S1 in the Supplementary Materials), demonstrating a
very good stability of the compounds in this highly complexing solvent.

Compound 19 has an ester linker that can potentially be hydrolyzed in cell growth
media. Comparable conjugates with fluorophores (coumarin and BODIPY) linked through
ester bonds to the trithiolato diruthenium unit were recently studied [89,93]. Only very
limited solvolysis of the ester bonds was noticed after 168 h for some compounds, and it
was concluded that the fluorophore diruthenium conjugates exhibit high stability in the
conditions used for the biological evaluations. Therefore, it was assumed that compound
19 is appropriately stable for the first in vitro biological activity evaluation.

2.2. Assessment of the In Vitro Activity against T. Gondii β-gal and Human Foreskin Fibroblast
Host Cells
2.2.1. Primary Screening

The biological activity of the carbohydrate azides and alkyne derivatives 14–16 and,
respectively, 17 and 18 was not measured as these compounds were not isolated pure. Glu-
cose and galactose conjugates 19–26, glucose azide derivative 10 and diruthenium alkyne
intermediate 6 were assessed for their in vitro biological activity in inhibiting proliferation
of T. gondii β-gal, a transgenic strain that constitutively expresses β-galactosidase, and
for toxicity to HFF (human foreskin fibroblast) used as host cells. The compounds were
applied to infected or non-infected HFF cultures for 72 h and at concentrations of 0.1 and 1
µM, the results being summarized in Table 1 and Figure 2. The viability of treated HFF was
measured by the alamarBlue metabolic assay, and the proliferation of T. gondii β-gal was
quantified by the β-galactosidase colorimetric test. In both cases, results are expressed as
percentage (%) compared to control parasitic and host cells treated with 0.1% DMSO for
which proliferation and viability were set to 100% (Table 1).
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Table 1. Results of the primary efficacy/cytotoxicity screening of the azide derivative 10 and of
trithiolato diruthenium compounds 2–9 and 19–26 in non-infected HFF cultures and T. gondii β-gal
tachyzoites cultured in HFF. Non-infected HFF monolayers treated only with 0.1% DMSO exhibited
100% viability and 100% proliferation was attributed to T. gondii β-gal tachyzoites treated with 0.1%
DMSO only. The compounds selected for determination of IC50 values against T. gondii β-gal are
tagged with *. For each assay, standard deviations were calculated from triplicates.
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The trithiolato diruthenium complexes 2–5 and 9, and alkyne intermediates 7 and 8
were evaluated previously against T. gondii β-gal under similar conditions [88,89,92,93],
and the corresponding values are shown in Table 1 and Figure 2 for comparison. The new
alkyne ester derivative 6 impacted T. gondii proliferation but affected significantly less
the viability of HFF compared to its diruthenium hydroxy intermediates 2. The glucose
azide derivative 10 exhibited neither antiparasitic activity nor host cell toxicity at both
tested concentrations.

In the first screening, the eight carbohydrate conjugates 19–26, applied at 1 µM, did not
impair host cell viability. Apart from glucose conjugate 25, all the dyads nearly abolished
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parasite proliferation when applied at 1 µM. Though, apart from glucose conjugate 19, all
hybrid molecules had only a limited effect on T. gondii β-gal at 0.1 µM.

Both the type of carbohydrate and the nature and length of the linker influenced
the antiparasitic efficacy and cytotoxicity of the conjugates, but no clear straightforward
trends could be identified regarding the relationship between the structural elements and
biological activity. For example, when the conjugates are applied at 0.1 µM, some differ-
ences in anti-Toxoplasma efficacy are observed. For instance, glucose ester derivative 19 is
significantly more active on T. gondii compared to the amide analogue 20. Galactose func-
tionalized compound 22 is more efficient in inhibiting the parasite proliferation compared
to the corresponding glucose derivative 21, while for the same carbohydrate an increase of
the linker length has a negative effect on the antiparasitic activity (galactose conjugates 22
and 23).
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Figure 2. Clustered column chart showing the in vitro activities at 1 (A) and 0.1 (B) µM of the azide
derivative 10 and of trithiolato diruthenium compounds 2–9 and 19–26 on HFF viability and T. gondii
β-gal proliferation. For each assay, standard deviations were calculated from triplicates and are
displayed on the graph. Data for compounds 2–5 and 7–9 were previously reported [88,89,92,93].
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2.2.2. IC50 Values against T. gondii β-gal Tachyzoites and HFF Toxicity at 2.5 µM

For a compound to be selected for the second screening, two criteria had to be met
simultaneously: (i) when the compound was applied at 1 µM, T. gondii β-gal growth
was inhibited by 90% or more compared to control treated with 0.1% DMSO only, and
(ii) HFF host cell viability was not impaired by more than 50% for a compound applied at
1 µM. Based on the results of the primary screening, glucose and galactose dyads 19–24
and 26 were selected. Pyrimethamine, currently used for the treatment of toxoplasmosis,
and which inhibited the proliferation of T. gondii β-gal tachyzoites with an IC50 value
of 0.326 µM and did not affect HFF viability at 2.5 µM (Table 2), was used as reference
compound. The selection also included the diruthenium intermediate compounds 2, 3
and 5 with free OH or NH2 groups, along with two diruthenium alkyne ester and amide
compounds 6 and 7, and diruthenium azide 9. The results are summarized in Table 2.

Table 2. Half-maximal inhibitory concentration (IC50) values (µM) on T. gondii β-gal for 15 selected
compounds and pyrimethamine (used as standard), and their effect at 2.5 µM on HFF viability.
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pounds 6 and 7, and diruthenium azide 9. The results are summarized in Table 2. 
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which inhibited the proliferation of T. gondii β-gal tachyzoites with an IC50 value of 
0.326 µM and did not affect HFF viability at 2.5 µM (Table 2), was used as reference com-
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which inhibited the proliferation of T. gondii β-gal tachyzoites with an IC50 value of 
0.326 µM and did not affect HFF viability at 2.5 µM (Table 2), was used as reference com-
pound. The selection also included the diruthenium intermediate compounds 2, 3 and 5 
with free OH or NH2 groups, along with two diruthenium alkyne ester and amide com-
pounds 6 and 7, and diruthenium azide 9. The results are summarized in Table 2. 
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which inhibited the proliferation of T. gondii β-gal tachyzoites with an IC50 value of 
0.326 µM and did not affect HFF viability at 2.5 µM (Table 2), was used as reference com-
pound. The selection also included the diruthenium intermediate compounds 2, 3 and 5 
with free OH or NH2 groups, along with two diruthenium alkyne ester and amide com-
pounds 6 and 7, and diruthenium azide 9. The results are summarized in Table 2. 
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a Data for pyrimethamine, and compounds 2, 3, 5, 7 and 9 were previously reported [88,89,92,93]. 
2 and 3 did not fulfil the first screening selection criteria, but the IC50 values and viability of HFF at 
2.5 µM were determined for comparison purpose. b Values at 95% confidence interval (CI); LS is the 
upper limit of CI and LI is the lower limit of CI. c The standard error of the regression (SE), represents 
the average distance that the observed values fall from the regression line. d Control HFF cells treated 
only with 0.25% DMSO exhibited 100% viability. e The standard deviation of the mean (three 
replicate experiments). 

The IC50 values and the cytotoxicity of the diruthenium compounds 2, 3, 5, 7 and 9 
were measured previously [88,89,92,93]. For these diruthenium intermediates the IC50 
values ranged from 0.025 µM (6) to 0.153 µM (3). However, all intermediates also strongly 
affected the viability of HFF when applied at 2.5 µM, the most cytotoxic being compounds 
5, 6 and 9. 

Glucose conjugates 19 and 21 exhibited low IC50 values (0.018 and 0.087 µM, 
respectively), but were toxic to host cells at 2.5 µM (HFF viability was reduced to 29% for 
19 and abolished for 21). Glucose hybrid 20 exhibited antiparasitic activity (IC50 = 0.110 
µM) but also medium cytotoxicity (HFF viability of 77%). Galactose and glucose dyads 22 
and 24 had only modest antiparasitic activity (IC50 values of 0.294 and 0.328 µM, 
respectively, comparable with those obtained for pyrimethamine) while being moderately 
toxic to HFF at 2.5 µM (73 and 66%, significantly more cytotoxic compared to the standard 
pyrimethamine). 

Galactose conjugates 23 and 26 were the most promising of the series exhibiting not 
only high efficacy in inhibiting T. gondii β-gal proliferation (IC50 values of 0.032 and 
0.153 µM, 10-fold and 2-fold lower compared to pyrimethamine, IC50 = 0.326 µM), but also 
low cytotoxicity on the host cells when applied at 2.5 µM (HFF viability 92 and 97%, 
respectively). 

Interestingly, both glucose and galactose hybrids 20 and 23 affected the HFF viability 
less than the diruthenium alkyne intermediate 7 from which they were obtained by click 
reactions. A similar result was also obtained for the galactose conjugate 26 compared to 
the diruthenium azide parent 9. 

The number of conjugates considered in this study is too limited to allow proper SAR 
observations. Nevertheless, apart from the conjugation with protected carbohydrates, 
other structural features of the dyads (as the nature and length of the linker between the 
two units), appear to strongly influence the biological activity, and a fine structural tuning 
is needed to obtain compounds with good pharmacological properties in terms of 
safety/anti-toxoplasma efficacy balance. 

Further studies are necessary for the identification of the mode of action of trithiolato 
diruthenium compounds. For some other types of dinuclear Ru(II)-arene complexes 
reported in the literature, interactions with DNA and oligonucleotide sequences were 
identified [113,114,115,116,117,118]. However, unlike other Ru(II)-arene complexes 
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2.5 µM were determined for comparison purpose. b Values at 95% confidence interval (CI); LS is the 
upper limit of CI and LI is the lower limit of CI. c The standard error of the regression (SE), represents 
the average distance that the observed values fall from the regression line. d Control HFF cells treated 
only with 0.25% DMSO exhibited 100% viability. e The standard deviation of the mean (three repli-
cate experiments). 

The IC50 values and the cytotoxicity of the diruthenium compounds 2, 3, 5, 7 and 9 
were measured previously [88,89,92,93]. For these diruthenium intermediates the IC50 val-
ues ranged from 0.025 µM (6) to 0.153 µM (3). However, all intermediates also strongly 
affected the viability of HFF when applied at 2.5 µM, the most cytotoxic being compounds 
5, 6 and 9. 

Glucose conjugates 19 and 21 exhibited low IC50 values (0.018 and 0.087 µM, respec-
tively), but were toxic to host cells at 2.5 µM (HFF viability was reduced to 29% for 19 and 
abolished for 21). Glucose hybrid 20 exhibited antiparasitic activity (IC50 = 0.110 µM) but 
also medium cytotoxicity (HFF viability of 77%). Galactose and glucose dyads 22 and 24 
had only modest antiparasitic activity (IC50 values of 0.294 and 0.328 µM, respectively, 
comparable with those obtained for pyrimethamine) while being moderately toxic to HFF 
at 2.5 µM (73 and 66%, significantly more cytotoxic compared to the standard py-
rimethamine). 

Galactose conjugates 23 and 26 were the most promising of the series exhibiting not 
only high efficacy in inhibiting T. gondii β-gal proliferation (IC50 values of 0.032 and 
0.153 µM, 10-fold and 2-fold lower compared to pyrimethamine, IC50 = 0.326 µM), but also 
low cytotoxicity on the host cells when applied at 2.5 µM (HFF viability 92 and 97%, re-
spectively). 

Interestingly, both glucose and galactose hybrids 20 and 23 affected the HFF viability 
less than the diruthenium alkyne intermediate 7 from which they were obtained by click 
reactions. A similar result was also obtained for the galactose conjugate 26 compared to 
the diruthenium azide parent 9. 

The number of conjugates considered in this study is too limited to allow proper SAR 
observations. Nevertheless, apart from the conjugation with protected carbohydrates, 
other structural features of the dyads (as the nature and length of the linker between the 
two units), appear to strongly influence the biological activity, and a fine structural tuning 
is needed to obtain compounds with good pharmacological properties in terms of 
safety/anti-toxoplasma efficacy balance. 

Further studies are necessary for the identification of the mode of action of trithiolato 
diruthenium compounds. For some other types of dinuclear Ru(II)-arene complexes re-
ported in the literature, interactions with DNA and oligonucleotide sequences were iden-
tified [113–118]. However, unlike other Ru(II)-arene complexes presenting labile chlorine, 
carboxylate or monodentate N-coordinated ligands, the trithiolato diruthenium com-
plexes do not hydrolyze and are stable in the presence of most biomolecules such as amino 
acids and DNA [27]. Furthermore, a recent study revealed only weak interactions via H-
bonding nucleobase-pairing between trithiolato diruthenium nucleobase conjugates and 
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The IC50 values and the cytotoxicity of the diruthenium compounds 2, 3, 5, 7 and 9 
were measured previously [88,89,92,93]. For these diruthenium intermediates the IC50 val-
ues ranged from 0.025 µM (6) to 0.153 µM (3). However, all intermediates also strongly 
affected the viability of HFF when applied at 2.5 µM, the most cytotoxic being compounds 
5, 6 and 9. 

Glucose conjugates 19 and 21 exhibited low IC50 values (0.018 and 0.087 µM, respec-
tively), but were toxic to host cells at 2.5 µM (HFF viability was reduced to 29% for 19 and 
abolished for 21). Glucose hybrid 20 exhibited antiparasitic activity (IC50 = 0.110 µM) but 
also medium cytotoxicity (HFF viability of 77%). Galactose and glucose dyads 22 and 24 
had only modest antiparasitic activity (IC50 values of 0.294 and 0.328 µM, respectively, 
comparable with those obtained for pyrimethamine) while being moderately toxic to HFF 
at 2.5 µM (73 and 66%, significantly more cytotoxic compared to the standard py-
rimethamine). 

Galactose conjugates 23 and 26 were the most promising of the series exhibiting not 
only high efficacy in inhibiting T. gondii β-gal proliferation (IC50 values of 0.032 and 
0.153 µM, 10-fold and 2-fold lower compared to pyrimethamine, IC50 = 0.326 µM), but also 
low cytotoxicity on the host cells when applied at 2.5 µM (HFF viability 92 and 97%, re-
spectively). 

Interestingly, both glucose and galactose hybrids 20 and 23 affected the HFF viability 
less than the diruthenium alkyne intermediate 7 from which they were obtained by click 
reactions. A similar result was also obtained for the galactose conjugate 26 compared to 
the diruthenium azide parent 9. 

The number of conjugates considered in this study is too limited to allow proper SAR 
observations. Nevertheless, apart from the conjugation with protected carbohydrates, 
other structural features of the dyads (as the nature and length of the linker between the 
two units), appear to strongly influence the biological activity, and a fine structural tuning 
is needed to obtain compounds with good pharmacological properties in terms of 
safety/anti-toxoplasma efficacy balance. 

Further studies are necessary for the identification of the mode of action of trithiolato 
diruthenium compounds. For some other types of dinuclear Ru(II)-arene complexes re-
ported in the literature, interactions with DNA and oligonucleotide sequences were iden-
tified [113–118]. However, unlike other Ru(II)-arene complexes presenting labile chlorine, 
carboxylate or monodentate N-coordinated ligands, the trithiolato diruthenium com-
plexes do not hydrolyze and are stable in the presence of most biomolecules such as amino 
acids and DNA [27]. Furthermore, a recent study revealed only weak interactions via H-
bonding nucleobase-pairing between trithiolato diruthenium nucleobase conjugates and 
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The IC50 values and the cytotoxicity of the diruthenium compounds 2, 3, 5, 7 and
9 were measured previously [88,89,92,93]. For these diruthenium intermediates the IC50
values ranged from 0.025 µM (6) to 0.153 µM (3). However, all intermediates also strongly
affected the viability of HFF when applied at 2.5 µM, the most cytotoxic being compounds
5, 6 and 9.

Glucose conjugates 19 and 21 exhibited low IC50 values (0.018 and 0.087 µM, respec-
tively), but were toxic to host cells at 2.5 µM (HFF viability was reduced to 29% for 19 and
abolished for 21). Glucose hybrid 20 exhibited antiparasitic activity (IC50 = 0.110 µM) but
also medium cytotoxicity (HFF viability of 77%). Galactose and glucose dyads 22 and 24
had only modest antiparasitic activity (IC50 values of 0.294 and 0.328 µM, respectively, com-
parable with those obtained for pyrimethamine) while being moderately toxic to HFF at 2.5
µM (73 and 66%, significantly more cytotoxic compared to the standard pyrimethamine).

Galactose conjugates 23 and 26 were the most promising of the series exhibiting
not only high efficacy in inhibiting T. gondii β-gal proliferation (IC50 values of 0.032 and
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0.153 µM, 10-fold and 2-fold lower compared to pyrimethamine, IC50 = 0.326 µM), but
also low cytotoxicity on the host cells when applied at 2.5 µM (HFF viability 92 and
97%, respectively).

Interestingly, both glucose and galactose hybrids 20 and 23 affected the HFF viability
less than the diruthenium alkyne intermediate 7 from which they were obtained by click
reactions. A similar result was also obtained for the galactose conjugate 26 compared to the
diruthenium azide parent 9.

The number of conjugates considered in this study is too limited to allow proper
SAR observations. Nevertheless, apart from the conjugation with protected carbohydrates,
other structural features of the dyads (as the nature and length of the linker between
the two units), appear to strongly influence the biological activity, and a fine structural
tuning is needed to obtain compounds with good pharmacological properties in terms of
safety/anti-toxoplasma efficacy balance.

Further studies are necessary for the identification of the mode of action of trithio-
lato diruthenium compounds. For some other types of dinuclear Ru(II)-arene complexes
reported in the literature, interactions with DNA and oligonucleotide sequences were iden-
tified [113–118]. However, unlike other Ru(II)-arene complexes presenting labile chlorine,
carboxylate or monodentate N-coordinated ligands, the trithiolato diruthenium complexes
do not hydrolyze and are stable in the presence of most biomolecules such as amino
acids and DNA [27]. Furthermore, a recent study revealed only weak interactions via
H-bonding nucleobase-pairing between trithiolato diruthenium nucleobase conjugates
and the respective complementary nucleic bases [93]. In the presence of some trithiolato
diruthenium complexes the oxidation of cysteine (Cys) and glutathione (GSH) to form
cystine and GSSG, respectively, was observed [119,120]. TEM (transmission electron mi-
croscopy) studies of different protozoan parasites (Toxoplasma gondii, Neospora caninum,
Trypanosoma brucei) treated with trithiolato dinuclear ruthenium(II)-arene complexes re-
vealed alterations in the mitochondrial ultrastructure indicating this parasite organelle as
potential target [29]. Noteworthy, trithiolato diruthenium conjugates with coumarin and
BODIPY fluorophores [89,121] induced analogous outcome on parasite mitochondrion.

3. Materials and Methods
3.1. Chemistry

The chemistry experimental part, with full description of synthetic procedures and
characterization data for all compounds are presented in the Supplementary Materials.

3.2. Biological Evaluation
3.2.1. Cell and Parasite Culture

All tissue culture media were purchased from Gibco-BRL, and biochemical agents
from Sigma-Aldrich. Human foreskin fibroblasts (HFF) were obtained from the American
Type Culture Collection (ATCC) and maintained in complete culture medium consisting in
DMEM (Dulbecco’s Modified Eagle’s Medium) supplemented with 10% fetal calf serum
(FCS, Gibco-BRL, Waltham, MA, USA) and antibiotics as previously described [122]. Trans-
genic T. gondii β-gal tachyzoites (expressing the β-galactosidase gene from Escherichia
coli) from RH strain were kindly provided by Prof. David Sibley (Washington University,
St. Louis, MO, USA) and were maintained by passages in HFF cultures as previously
described [122,123].

3.2.2. In Vitro Activity Assessment against T. Gondii Tachyzoites and Human
Foreskin Fibroblasts

The screening sequence for the compounds was described in previous reports [88]. All
compounds were prepared as 1 mM stock solutions from powder in dimethyl sulfoxide
(DMSO, Sigma, St. Louis, MO, USA). For in vitro activity and cytotoxicity assays, HFF were
seeded at 5 × 103/well in 96 well plates and allowed to grow to confluence in complete
culture medium at 37 ◦C and 5% CO2. Transgenic T. gondii β-gal tachyzoites were freshly
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isolated from infected cultures as described [122], and 96-well plates containing HFF
monolayer were infected with 1 × 103 tachyzoites/well.

In a primary screening, each compound was evaluated at two concentrations 0.1 and
1 µM and added to the media prior to the infection as previously described [94]. Control
non-infected non-treated HFF cultures and T. gondii β-gal infected but not-treated cultures
were cultivated in complete medium containing 0.01 or 0.1% DMSO. The 96-well plates
were incubated for 72 h at 37 ◦C/5% CO2 as previously described [94].

For the IC50 determination on T. gondii β-gal, eight serial concentrations ranging from
7 nM to 1 µM were tested for each selected compound as previously described [89,92,93]
and the β-galactosidase assay was performed as reported [122]. Briefly, infected HFF
cultures in 96-well plates were lysed with PBS containing 0.05% Triton X-100. Then the
substrate chlorophenolred-β-D-galactopyranoside (CPRG; Roche Diagnostics, Rotkreuz,
Switzerland) was added in a final concentration of 0.5 mM. Absorption was measured at
570 nm wavelength using an EnSpire® multimode plate reader (PerkinElmer, Inc., Waltham,
MA, USA).

All calculations were performed using the corresponding software tool contained in
the Excel software package (Microsoft, Redmond, WA, USA). Cytotoxicity assays using
uninfected confluent HFF host cells were performed by the alamarBlue assay as previously
reported [124]. Confluent HFF monolayers in 96-well plates were exposed to 0.1, 1 and
2.5 µM of each compound and incubated for 72 h at 37 ◦C/5% CO2. Then the medium was
removed, the plates were washed once with PBS and 200 µL of resazurin (1:200 dilution
in PBS) were added to each well. Plates were measured at excitation wavelength 530 nm
and emission wavelength 590 nM using an EnSpire® multimode plate reader (PerkinElmer,
Inc.). Fluorescence was measured at two different time points: T0 as starting timepoint and
T5h as at 5 h later. Relative fluorescence units were calculated from time points with linear
increases.

4. Conclusions

This study was focused on the synthesis and in vitro anti-Toxoplasma activity evalua-
tion of eight new trithiolato-bridged arene-ruthenium(II) carbohydrate conjugates. Acetyl
protected glucose and galactose moieties were pended on the diruthenium unit on one of
the bridging thiols using CuAAC click reactions and connectors of several types and lengths
to obtain the carbohydrate dyads. In the first screening, none of the conjugates affected
the validity of host cells at 1 µM, suggesting reduced toxicity, and seven carbohydrate-
diruthenium hybrids applied at 1 µM inhibited T. gondii β-gal growth by more than 90%.
The second screening (IC50 values and toxicity to HFF after exposure to 2.5 µM) led to the
identification of two promising acetyl protected galactose functionalized compounds 23
and 26. Both conjugates not only exceeded (up to 10-fold) the anti-Toxoplasma efficacy of the
standard drug pyrimethamine for similar level of toxicity to HFF, but also exhibited a sig-
nificantly better antiparasitic activity/cytotoxicity balance compared to the corresponding
carbohydrate non-modified diruthenium complexes.

The type and length of the linker between the diruthenium core and the carbohydrate
unit significantly influenced the biological activity, and fine structural adjustments could
further increase the anti-Toxoplasma efficacy of this type of carbohydrate conjugates. In
addition, the nature of the carbohydrate and the presence/absence of protecting groups is
known to strongly affect the biological activity of conjugates carbohydrate-organometallic
complex [53,70,73]. Thus, the use of other carbohydrates bearing, or no protective groups
is also considered.

This study showed that carbohydrate conjugation to trithiolato-diruthenium com-
plexes is a promising strategy for obtaining novel organometallic compounds with high
antiparasitic efficacy and reduced host cell cytotoxicity.
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Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules28020902/s1. Synthetical procedures; Synthesis of
the trithiolato-bridged dinuclear ruthenium(II)-arene intermediates 2–9; Synthesis of the azide and
alkyne functionalized carbohydrate intermediates 10–18; Synthesis of the carbohydrate functionalized
trithiolato-bridged dinuclear ruthenium(II)-arene complexes 19–26. Figure S1. 1H NMR Spectra of 6,
7, 20, 22, 25 and 26 recorded in DMSO-d6 at 25◦C as function of time. References [125,126] are cited
in the Supplementary Materials.
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