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Abstract
Objective: Administration of targeted therapies provides a promising treatment 
strategy for urachal adenocarcinoma (UrC) or primary bladder adenocarcinoma 
(PBAC); however, the selection of appropriate drugs remains difficult. Here, we 
aimed to establish a routine compatible methodological pipeline for the identifi-
cation of the most important therapeutic targets and potentially effective drugs 
for UrC and PBAC.
Methods: Next-generation sequencing, using a 161 cancer driver gene panel, was 
performed on 41 UrC and 13 PBAC samples. Clinically relevant alterations were 
filtered, and therapeutic interpretation was performed by in silico evaluation of 
drug-gene interactions.
Results: After data processing, 45/54 samples passed the quality control. 
Sequencing analysis revealed 191 pathogenic mutations in 68 genes. The most 
frequent gain-of-function mutations in UrC were found in KRAS (33%), and MYC 
(15%), while in PBAC KRAS (25%), MYC (25%), FLT3 (17%) and TERT (17%) were 
recurrently affected. The most frequently affected pathways were the cell cycle 
regulation, and the DNA damage control pathway. Actionable mutations with 
at least one available approved drug were identified in 31/33 (94%) UrC and 8/12 
(67%) PBAC patients.
Conclusions: In this study, we developed a data-processing pipeline for the de-
tection and therapeutic interpretation of genetic alterations in two rare cancers. 
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1   |   INTRODUCTION

According to various definitions, cancers with annual in-
cidence rates of 2–15 cases per 100,000 persons are con-
sidered rare.1 Rare tumours account for more than 20% of 
all reported cancers, which is higher than the most com-
monly occurring single tumour type.2,3 Rare cancers face 
specific challenges such as late and often incorrect diag-
nosis and lack of clinical expertise, research interest and 
standard treatments.3 Consequently, the average survival 
time of patients with rare cancers is lower than that of pa-
tients with more common malignancies.2

While urothelial carcinoma of the bladder is a com-
mon malignancy, other histological types, such as primary 
adenocarcinoma of the bladder (PBAC), account for <1% 
of newly diagnosed bladder cancers. PBAC is derived from 

the urothelium but exhibits a pure glandular phenotype.4 
Although the urachal remnant is not a direct anatomical 
component of the urinary bladder, urachal adenocarci-
noma (UrC) is usually described together with bladder ad-
enocarcinoma, as it is detected in most cases after invasion 
into the bladder.4 UrC is an aggressive malignancy deriving 
from the embryological remnant of the urogenital sinus 
and allantois. It represents an extremely low proportion of 
bladder cancers with an incidence of ~0.3/100,000,000.2,5,6 
UrC shares histological and molecular features with col-
orectal adenocarcinoma (CRC), potentially reflecting 
their similar embryological origin from the cloaca.7 As 
UrC is commonly diagnosed at an advanced stage, up to 
50% of patients require systemic treatment.8

Currently, there are no standard evidence-based guide-
lines for the management of PBAC and UrC. According 
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to small retrospective studies and case reports on UrC, 
5-FU-based treatments seem to provide superior response 
rates compared to platinum-based therapies, while 5-FU/
platinum combinations showed the best oncological re-
sults, although with the highest toxicity.8,9 Owing to the 
lack of clinically proven systemic therapies, targeted treat-
ments based on genomic profiling and biological rationale 
represent a promising personalized strategy for rare can-
cers. However, for UrC and PBAC, only a few published 
series are available relating to targeted therapies.10–14

From the perspective of treatment personalization, it 
is essential to understand the molecular mechanisms as 
well as the genetic alterations driving tumour develop-
ment and conferring responses to specific therapies. In 
the past few years, the mutational pattern of UrC has been 
intensively investigated, although the number of exam-
ined cases and genes remains limited. Most studies have 
focused on genes in the RAS/PI3K signalling pathway and 
frequently found recurring mutations in the KRAS gene. 
In addition, NF1, GNAS, NRAS and PIK3CA mutations 
have also been recurrently detected.10,11,15–19 Considering 
these overlapping alterations, the genomic background of 
UrC appears similar to that of CRC. On the other hand, 
we also found some characteristic differences, as the APC 
gene was much less frequently affected in UrC (10%) than 
in CRC (80%). In addition, microsatellite instability can 
be detected in 15% of CRCs but is rarely found in UrC.20 
Based on these findings, UrC represents a similar but 
clearly distinct molecular pattern compared with CRC.

Much less data are available on the genetic background 
of PBAC, showing alterations mainly in the MAPK or Wnt 
pathway genes.16,21 Therefore, further investigation is 
needed to gain a more detailed insight into the molecular 
background of both UrC and PBAC. An additional miss-
ing step towards the clinical implementation of genomic 
profiling is the lack of a systematic approach for interpret-
ing its potential to guide therapeutic intervention. Thus, 
in this multicentre study, we performed a genomic analy-
sis of UrC and PBAC samples using a large, commercially 
available next-generation sequencing panel with 161 
cancer-related genes. In addition, to identify potentially 
effective drugs, clinical interpretation was performed 
using an evidence-based decision support tool.

2   |   MATERIALS AND METHODS

2.1  |  Clinical samples and data collection

Formalin-fixed paraffin-embedded (FFPE) tumour tissues 
from 41 UrC and 13 PBAC patients were retrospectively col-
lected from nine academic centres. Clinicopathological char-
acteristics, including age, sex, tumour localization, Sheldon/

Mayo stage, grade, lymph node status, presence of distant 
metastasis and survival outcomes, were retrieved from med-
ical records using a standardized datasheet. Histopathology 
slides of all cases were reviewed and verified in accordance 
with World Health Organization (WHO) criteria by a geni-
tourinary pathologist (H.R.). The study conformed to the 
Declaration of Helsinki and the institutional ethics commit-
tee approved the study protocol (SE TUKEB 74/2016).

2.2  |  Nucleic acid extraction and  
next-generation sequencing (NGS)

Samples from either radical/partial cystectomy or tran-
surethral resection of the bladder (TURB) were pro-
cessed for next-generation sequencing. Tumour DNA and 
RNA were extracted from 4 μm-thick FFPE tissue slides. 
Macrodissection was performed to minimize the con-
tamination with non-malignant tissues. For this, a board-
certified genitourinary pathologist (H.R.) marked the 
tumour areas on haematoxylin and eosin (H&E)-stained 
tissue slides. Corresponding areas were scraped care-
fully, DNA was extracted using High Pure PCR Template 
Preparation Kit (Roche, Mannheim, Germany), and RNA 
was isolated using MagMAX™ FFPE DNA/RNA Ultra Kit 
(Thermo Fisher Scientific, Waltham, MA, USA) accord-
ing to the manufacturer's recommendations. Extracted 
nucleic acid concentration was quantified with Qubit™ 
dsDNA and RNA High-Sensitive Assay kit (Thermo Fisher 
Scientific, Waltham, MA, USA) on the Qubit fluorometer 
(Thermo Fisher Scientific, Waltham, MA, USA).

We used an amplicon-based targeted next-generation 
sequencing (NGS) assay (Oncomine Comprehensive 
Assay v3, OCAv3, Thermo Fisher Scientific, Waltham, 
MA, USA) to identify relevant single nucleotide variants 
(SNVs), copy number variants (CNVs), gene fusions and 
small insertions and deletions (indels) from 161 unique 
genes. NGS library preparation was performed using Ion 
AmpliSeq Library Preparation on the Ion Chef System 
(Thermo Fisher Scientific, Waltham, MA, USA). The PCR 
amplification was performed using an input nucleic acid 
concentration of 10  ng. Sequencing was performed on 
the IonTorrentS5 XL platform, according to the manufac-
turer's protocol. The average coverage of all the runs was 
approximately 2500x. Ion Reporter™ software (Thermo 
Fisher Scientific, Waltham, MA, USA) was used for the 
initial automated analysis. Sequencing reads were aligned 
with human genome assembly 19 (hg19) and embedded as 
the standard reference genome in the software. Coverage 
analysis reports from the Ion Reporter™ Software, which 
provides measurements of mapped reads, mean depth, 
uniformity and alignment over a target region, were used 
to assess the quality of the sequencing reactions. Sample 
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quality control (QC) was performed according to the fol-
lowing criteria: total number of reads >3 M, mean read 
length >75 bp, mean depth >800x and uniformity of base 
coverage >80%. Exonic variants detected at an allele fre-
quency of >15% were filtered and annotated using the 
database provided in the Ion Reporter™ software, and 
variants were checked in four freely available online da-
tabases (Ensembl Variant Effect Predictor (VEP)/ClinVar/
VarSome/COSMIC) to identify pathogenic variants. A 
variant was considered a pathogenic alteration when the 
Ion Reporter™ software and/or two external databases de-
scribed it as a pathogenic/likely pathogenic mutation.

2.3  |  Clinical interpretation of 
sequencing data

The therapeutic relevance of pathogenic variants was 
evaluated using an evidence-based decision support soft-
ware, QIAGEN® Clinical Insight Interpret (QCI®, Qiagen, 
Hilden, Germany) which assesses genomic variants from 
a therapeutic perspective in the context of published bio-
medical literature, professional association guidelines, 
publicly available databases, drug labels and clinical tri-
als. As the software works with curated information from 
several relevant sources, the list of drugs is constantly 
expanding. The database search was performed on 16 
December 2021. The somatic cancer workflow was used to 
match each patient's molecular profile to relevant thera-
peutic information. The software automatically computed 
actionability classifications (Tier 1–3) for each alteration 

according to the AMP/ASCO/CAP guidelines (Table S1). 
In addition, it provides recommendations and contrain-
dications by categorizing drug-mutation interactions as 
‘sensitive’, ‘resistant’, ‘not recommended’ or ‘predictive’. 
For this study, we considered sensitive, resistant and not 
recommended drug-mutation interactions but excluded 
the category called ‘predictive’ and focused only on FDA/
EMA-approved drugs. Since no Tier 1 recommendations 
exist for UrC and PBAC and we excluded recommenda-
tions with a low evidence level (Tier 3), only variants with 
Tier 2 recommendations were included (Figure 1).

3   |   RESULTS

3.1  |  Cohort characteristics

Forty-one patients with UrC and 13 patients with PBAC 
were included in this study. A full description of patient 
characteristics is shown in Table 1.

3.2  |  Genomic alterations detected 
by NGS

Eighty percent (33/41) of UrC and 92% (12/13) of PBAC 
samples passed sequencing quality control. The muta-
tional patterns of UrC and PBAC are presented in Figures 2 
and 3 respectively. Our sequencing analyses revealed 191 
pathogenic SNVs in 68 genes (176 in the UrC and 18 in 
the PBAC cohort), including 89 missense mutations, 87 

F I G U R E  1   Methodological pipeline for identification of therapeutic targets and drugs for UrC and PBAC.
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      |  5VARADI et al.

T A B L E  1   Clinicopathological characteristics of UrC and PBAC patients

UrC cohort PBAC cohort

n = 41 % n = 13 %

Age (year) Median (Range) 49.5 (22–77) - 59 (38–75) -

Sex Male 22 53.7 8 61.5

Female 19 46.3 5 38.5

Haematuria Yes 28 84.8 5 83.3

No 5 15.2 1 16.7

NA 8 - 7 -

Abdominal pain Yes 2 6.5 2 28.6

No 29 93.5 5 71.4

NA 10 - 6

Palpable tumour Yes 1 3.2 1 14.3

No 30 96.8 6 85.7

NA 10 - 6 -

UrC type Intestinal 18 46.2 17 53.1

Mucinous 12 30.8 9 28.1

NOS 5 12.8 4 12.5

SRC 2 5.1 2 6.3

Mixed 2 5.1 - -

NA 2 - 9 -

Calcification Yes 2 5.4 - -

No 35 94.6 - -

NA 4 - - -

Signet ring cell component Yes - - 3 25.0

No - - 9 75.0

NA - - 1 -

Sheldon staging I 0 0.0 - -

II 0 0.0 - -

IIIA 28 70.0 - -

IIIB 1 2.5 - -

IIIC 1 2.5 - -

IIID 0 0.0 - -

IVA 3 7.5 - -

IVB 7 17.5 - -

NA 1 - - -

Mayo staging I 10 25.6 1 9.1

II 19 48.7 6 54.5

III 3 7.7 4 36.4

IV 7 18.0 - -

NA 2 - 2 -

Pathological stage T1 - - 0 0.0

T2 - - 3 23.1

T3 - - 5 38.5

T4 - - 5 38.5

(Continues)
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nonsense mutations, nine frameshift deletions and six 
frameshift insertions. Ion Reporter™ software and man-
ual annotation were concordant in 63% (121/191) of the 
variants. Most SNVs were loss-of-function alterations 
(74% for UrC and 83% for PBAC). The most frequently af-
fected genes in both UrC and PBAC were TP53 (UrC, 79%; 
PBAC, 42%) and KRAS (UrC, 33%; PBAC, 25%).

Amplifications were observed in 16 and 10 genes in the 
UrC and PBAC cohorts respectively. MYC amplification 
was the most frequently identified CNV in both groups 
(UrC: 15%, PBAC: 25%).

In the UrC cohort, 37 genes were recurrently affected 
(in at least two patients). However, only seven recurrently 
affected genes were detected in PBAC.

RNA was analyzed in 24 UrC and 10 PBAC samples. 
Due to the low quality of the input RNA, the sequencing 
results of two UrC samples proved to be invalid. The only 
alteration detected at the RNA level was the MET exon 14 
skipping alteration, which was present in two UrC and 
one PBAC samples.

Alterations at the pathway level provide more func-
tional insights. Therefore, we assigned the examined 
genes to different pathways according to the Vogelstein 
classification22 (Table  2). As TP53, the most frequently 

altered gene, was assigned to both the cell cycle and DNA 
damage control pathways, these proved to be the most af-
fected pathways, followed by the RAS and PIK3 (MAPK) 
pathways. More than 90% (30/33) of UrC patients and 67% 
(8/12) of PBAC patients carried mutations in one or more 
genes assigned to the cell cycle pathway.

3.3  |  Therapeutic interpretation / In 
silico therapy prediction

We used the QCI® software to search for targeted and 
chemotherapy recommendations and contraindica-
tions for FDA/EMA-approved drugs with at least Tier 
2 evidence level. Below, we only describe the sensitive 
(recommended) mutation-drug combinations, while re-
sistant and not recommended combinations are given 
in Table  S2. FDA-and/or EMA-approved therapies were 
found in 31 (94%) patients with UrC and eight (67%) 
with PBAC. Notably, none of these drugs has been ap-
proved for the treatment of patients with UrC or PBAC. 
In the UrC cohort, 53 targeted therapeutic agents and 12 
chemotherapeutic agents were listed as the recommended 
drugs based on SNVs. In the PBAC cohort, 18 potentially 

UrC cohort PBAC cohort

n = 41 % n = 13 %

Grade I - - 1 9.1

II - - 6 54.5

III - - 4 36.4

NA - - 2 -

LN status LN−/LNx 19 76.0 8 61.5

LN+ 6 24.0 5 38.5

NA 16 - - -

M status M− 28 77.8 - -

M+ 8 22.2 - -

NA 5 - - -

LN/M status LN/M+ 11 26.8 7 53.8

LN/M−/LN/Mx 30 73.2 6 46.2

Surgery TURB 1 2.7 0 0.0

Partial CE 28 75.7 1 7.7

Radical CE 8 21.6 12 92.3

NA 4 - - -

Umbilectomy Yes 21 63.6 - -

No 12 36.4 - -

NA 8 - - -

Abbreviations: CE cystectomy, LN lymph node, LN+ positive lymph node status, LN− negative lymph node status, LNx unknown lymph node status, M+ 
positive distant metastatic status, M− negative distant metastatic status, Mx unknown distant metastatic status, NA. not available, NOS not otherwise specified, 
SRC signet ring cell carcinoma, TURB transurethral resection of bladder.

T A B L E  1   (Continued)
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      |  7VARADI et al.

effective targeted therapeutics and six chemotherapeutic 
compounds were reported based on alterations in TP53 
and KRAS genes (Figure 4). The therapeutic recommen-
dations for individual patients are presented in Table S2.

When investigating the involvement of different path-
ways, we found that the majority of the recommended 
agents for both UrC and PBAC targeted members of 
the RAS/PIK3 pathways. Regorafenib, a multi-kinase 

F I G U R E  2   Oncoprint presentation of recurrently mutated genes in UrC by the type (A) and functional effect (B) of alterations.
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inhibitor, was recommended for mutations in four 
RAS pathway genes (KRAS, NRAS, BRAF and FGFR2) 
(Figure 4A).

Therapeutic recommendations based on gene amplifi-
cation were also considered. Ten of the 19 amplified genes 
(CCND1, CDK4, EGFR, ERBB2, FGFR2, FGFR3, FLT3, 
KRAS, MET and MYC) were relevant for therapy pre-
diction. Drugs were recommended for 11 (33%) patients 
with UrC and four (33%) with PBAC based on their CNVs. 
Forty-six targeted therapeutic agents and five chemother-
apeutic compounds were assigned based on their sensitive 
alteration-drug interactions. As with SNVs, the majority 
of recommended drugs based on copy number gains were 
RAS/PIK3 pathway inhibitors, mainly multi-kinase in-
hibitors (e.g. nintedabin and ponatinib) (Figure 4B). The 
therapeutic recommendations for individual patients are 
presented in Table S2.

4   |   DISCUSSION

PBAC and UrC are rare and aggressive malignancies, 
with a median survival of 12–24 months for locally 

advanced or metastatic disease.9 This poor prognosis is 
the result of many different factors such as (1) delayed 
symptoms resulting in diagnosis at advanced tumour 
stages, (2) no standard-of-care therapeutic recommen-
dations and (3) poorly known molecular pathogenesis 
and genomic landscape of the tumour.23 As randomized 
trials for the evaluation of the clinical benefits of various 
drugs in UrC and PBAC are not feasible, precision medi-
cine is of prominent therapeutic interest for these rare 
cancers.24 Therefore, comprehensive genome profiling 
may be fundamental for driving therapeutic decisions in 
these patients. In the present study, we performed mu-
tational analyses of tumour tissues from patients with 
UrC and PBAC and sought to identify targetable altera-
tions and corresponding drugs that could potentially be 
effective for these patients.

In line with previous reports, our genomic analysis 
found TP53 (UrC: 79%, PBAC: 42%) to be the most com-
monly affected gene in both UrC and PBAC.10,15,16,18,19,21 
As TP53 mutated tumours progress faster and respond 
poorly to anticancer therapy, targeting p53 for cancer ther-
apy seems to be an attractive strategy.25 Although TP53 
has previously been considered undruggable owing to its 

F I G U R E  3   Oncoprint presentation 
of recurrently mutated genes in PBAC by 
the type (A) and functional effect (B) of 
alterations.
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      |  9VARADI et al.

essential role in cell survival, many drugs targeting TP53 
mutant tumours have been tested in early phase (Phase I/
II) clinical trials.26

KRAS mutations in UrC have been extensively inves-
tigated, as it is a commonly affected oncogene in CRC, a 
tumour type sharing large histological and molecular sim-
ilarities with UrC. After summarizing the published litera-
ture on the prevalence of KRAS mutations in both UrC and 
PBAC, it proved to be the most frequently tested gene with 
alterations in ~30% of UrC and 25% of PBAC cases, which 
is in agreement with our present results showing a 33% 
mutational frequency in UrC and 25% in PBAC.11,15,16,18,19 
These data underscore the importance of the RAS pathway 
in both UrC and PBAC.16,18,21,27 The vast majority (11/14) 
of KRAS mutations were missense mutations in codon 
12 (G12V, G12D and G12A) which is a pattern similar to 
that found in CRC.28 In recent years, several structural and 
mechanistic studies have led to the clinical development of 
selective KRAS inhibitors. Last year, the FDA granted ac-
celerated approval for sotorasib, the first KRAS-blocking 
drug for patients with non-small cell lung cancer (NSCLC). 
Phase I/II studies (e.g. NCT03600883 and NCT04699188) 
are currently investigating the efficacy of sotorasib and 
other G12C-inhibitors in other tumour types.

In our UrC cohort, four patients carried loss-of-function 
alterations in BRCA2. When considering the therapeu-
tic significance of these alterations, only one patient had 
a potentially significant (Tier 2) SNV, while the rest were 

categorized as Tier 3. Recently, PARP inhibitors (olaparib, 
rucaparib and niraparib) have become available for patients 
with alterations in BRCA1/2 or other homologous recom-
binant repair genes. Accordingly, our drug prediction rec-
ommended PARP inhibitors for UrC patients with the Tier 
2 mutation. However, little is known about the efficacy of 
PARP inhibitors in UrC patients. The only report on the 
use of a PARP inhibitor for the treatment of an UrC pa-
tient came from a Japanese phase I dose escalation study 
of niraparib and described progression during therapy. As 
BRCA positivity was not an inclusion criterion in the study, 
the BRCA status of patients with UrC is unknown.13

When considering copy number alterations, MYC am-
plification was detected at the highest frequency (5/33, 
15%) in our UrC cohort, which was lower than that re-
ported in a previous study (6/17, 35%). In addition, we 
found EGFR amplification in 6% (2/33) of our UrC patients, 
which was lower than the frequency of 20% reported by 
Lee et al.19 Furthermore, we found recurrent copy number 
gains in members of the FGF/FGFR signalling pathway 
(in four UrC and six PBAC patients). Although previous 
genomic analyses of PBAC did not reveal amplification of 
MYC gene, MYC was found to be the most frequently am-
plified gene (25%) in our study.

MYC is a global transcription factor and a driver of many 
human malignancies and has proven to be difficult to inhibit 
directly.29 In this context, it is interesting that CDK12 was 
found to be a synthetic lethal gene with MYC. These findings 

Vogelstein's pathways Genes

Patients with 
mutation n (%)

UrC PBAC

Cell cycle CCND1; CCND2; CCND3; 
CDKN2A; CDK4; CHEK2; 
MDM2; MYC; MYCL; 
MYD88; PPP2R1A; TP53*

30 (91%) 8 (67%)

DNA damage control ATM; BRCA1; BRCA2; FANCA; 
FANCD2; FANCI; MLH1; 
MSH2; MSH6; PALB2; TP53*

26 (79%) 5 (42%)

RAS BRAF; EGFR*; ERBB2*; FGFR2*; 
FGFR3*; FGFR4*; FLT3*; 
GNAQ*; GNAS*; HRAS; 
KRAS; MAP2K1; MET*; NF1; 
NRAS; RET*

20 (61%) 6 (50%)

PI3K AKT1; EGFR*; ERBB2*; FGFR2*; 
FGFR3*; FGFR4*; FLT3*; 
GNAQ*; GNAS*; MET*; 
PIK3CA; PIK3R1; PTEN; 
RET*; TSC2

14 (42%) 4 (33%)

NOTCH FBXW7; NOTCH1; NOTCH2; 
NOTCH3

6 (18%) 3 (25%)

TGF-β GNAS*; SMAD4 4 (12%) 1 (8%)

Note: *Gene assigned to more than one pathway.

T A B L E  2   Affected pathways in UrC 
and PBAC according to Vogelstein's 
classification
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F I G U R E  4   Most recommended targeted therapeutic agents for A) SNVs and B) CNVs.
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were corroborated by an independent study demonstrating 
that CDK inhibition triggered massive downregulation of 
MYC expression and its related genes.30 The overlap be-
tween MYC and the known cellular functions of CDK12, as 
well as the requirement of CDK12 for optimal processing of 
MYC, collectively indicates CDK12 is a potential therapeutic 
target for MYC-dependent cancers.31

EGFR is a widely used therapeutic target. Numerous 
anti-EGFR compounds, including tyrosine kinase inhibi-
tors (TKIs) and monoclonal antibodies, have been devel-
oped and approved for different cancers.32 This was also 
reflected in our results, which identified the second high-
est number of recommended drugs for patients with tu-
mours harbouring EGFR amplification. In the literature, 
two UrC patients have been reported to receive EGFR 
inhibitors. One patient with EGFR amplification expe-
rienced a persistent partial response to cetuximab in the 
third-line setting,10 while another UrC patient with im-
munohistochemically proven EGFR overexpression ex-
perienced a transient 55% decrease in tumour size with 
gefitinib treatment.14 These results suggest EGFR is a po-
tent therapeutic target for UrC treatment.

In addition, we found for the first time that D-type cyclin 
(CCND1/2/3) genes were affected by activating mutations 
in both UrC and PBAC samples, with frequencies of 15% 
and 25% respectively. CCNDs promote cell cycle progres-
sion from G1 to S phase by binding to and activating the 
cyclin-dependent kinases CDK4/CDK6, thereby impart-
ing oncogenic properties. The cyclin D-CDK4/6 complex 
is often hyperactivated in various tumours (e.g. NSCLC, 
head and neck, renal cell, breast, pancreatic and colorec-
tal cancers), partly by gene amplification, and is therefore 
an attractive therapeutic target.33,34 Recently, multiple 
CDK4/6 inhibitors have been approved for the treatment 
of breast cancer.33 In addition, several ongoing clinical 
trials are assessing the efficacy of palbociclib, abemac-
iclib and ribociclib in other cancers (e.g. NCT03446157, 
NCT02022982 and NCT03356223). Although molecular 
alterations in cell cycle pathway genes are not mandatory 
for the prescription of these drugs, their presence sug-
gests a favourable effect. Accordingly, this mutation-drug 
association is being tested in an ongoing phase II pan-
cancer trial (NCT04439201) to assess the efficacy of pal-
bociclib in patients with various malignancies harbouring 
CCND1/2/3 amplifications. We have no information 
about the inclusion of UrC or PBAC patients in the above-
mentioned trial, as preliminary results have not yet been 
posted. However, based on our results, UrC and PBAC 
patients carrying activating amplification in their CCND 
genes may be good candidates for future studies.

Our analyses identified one UrC and one PBAC patient 
with MET amplification. MET alterations, in addition to 
their primary cancer driver role, can mediate resistance 

to other targeted therapies, such as EGFR inhibitors. They 
do this by activating downstream signal transduction, 
which leads to escape from therapy-induced cell death.35 
This effect was reflected in our QCI® drug prediction as 
it suggested resistant association between MET amplifica-
tion and anti-EGFR drugs.

According to recent data, not only the above-mentioned 
amplification of MET, but also its exon 14 skipping alter-
ation (METex14) is associated with acquired resistance to 
EGFR-targeting compounds.36 METex14 has been identi-
fied in approximately 3% of lung NSCLCs and other solid 
tumours such as breast cancer and glioblastoma. In 2020 
and 2021, two MET inhibitors, capmatinib and tepotinib, 
were approved for use as monotherapies in patients with 
NSCLC carrying METex14.37 To our knowledge, this is the 
first report of METex14 alterations in treatment-naïve UrC 
and PBAC, with an overall incidence of 3/38 (7%–8%). 
Considering the durable response observed in NSCLC pa-
tients with METex14 alterations, UrC and PBAC patients 
with these alterations may also benefit from tepotinib or 
capmatinib therapy. Accordingly, in the only published 
UrC patient treated with tepotinib, durable disease stabili-
zation was observed.12

We identified copy number gain of ERBB2 (HER2) in 
one UrC and one PBAC sample. In breast cancer, ERBB2 
amplification is a well-known prognostic biomarker of 
poor survival in the absence of anti-HER2 therapy.38 There 
is an abundance of approved HER2-targeted agents not 
only for breast cancer, but also for other cancer entities, 
such as metastatic gastric or gastroesophageal junction 
cancers.39 Currently, several ongoing clinical trials are 
evaluating the potential benefits of targeting HER2 in var-
ious tumour types (e.g. NCT02465060 and NCT02675829). 
Little is known about the prevalence of ERBB2 amplifica-
tion in patients with UrC or PBAC. A study investigating 
the prevalence of ERBB2 amplification in different tu-
mours identified ERBB2 amplification in 2 of 7 (28%) UrC 
samples.39 This study also showed the clinical benefits 
of HER2-targeted therapy in tumours for which HER2-
inhibitors have not yet been approved.39 In the present 
study, the QCI® drug prediction algorithm recommended 
the highest number of drugs for ERBB2 amplified tu-
mours, suggesting that this alteration is an attractive ther-
apeutic target.

FLT3 amplification might also be a potentially action-
able molecular alteration, although the majority of kinase 
inhibitors approved so far are relatively nonspecific for 
FLT3 (e.g. nintedanib, ponatinib, sorafenib and sunitinib). 
The off-target activities of these multi-kinase inhibitors 
can contribute to higher toxicity, causing severe adverse 
events.40 Accordingly, in the case report by Loh et al.,11 an 
UrC patient with FLT3 amplification received sorafenib 
therapy, but it had to be discontinued shortly after drug 
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initiation due to a serious adverse event. Sunitinib was 
subsequently administered without toxicity; however, 
an additional treatment change was required because of 
disease progression. Next-generation inhibitors, such as 
quizartinib or gilteritinib, are more specific and potent 
FLT3 inhibitors with more favourable toxicity profiles; 
however, to date, these drugs are approved only for acute 
myeloid leukaemia, and thus no data on their activity in 
solid tumours are available.41

This study has several strengths. This is one of the larg-
est studies on UrC and PBAC with respect to the number 
of cases and assessed genes. This is the first study on UrC 
and PBAC that systematically applies a clinical decision 
support tool to match driver aberrations with clinically 
approved drugs. Finally, we report here for the first-time 
recurrent alterations in CCND1-2, NOTCH3, RNF43, 
CDK12, FGFR4, CREBBP and SMARCA4 in UrC and mu-
tations in MYC, CDKN2A and FLT3 in PBAC.

On the other hand, this study has several limitations. 
Due to the rarity of UrC and PBAC, a retrospective ap-
proach was needed to collect samples from multiple in-
stitutions over a long time period. Associated differences 
in sample handling and specimen age may result in het-
erogeneous quality of FFPE tissues. Consequently, a rel-
atively high rate (~9%) of the samples did not pass the 
quality control. In addition, as the clinical interpretation 
could be carried out in a retrospective manner, we were 
not able to assess whether the recommended drugs would 
have been effective in the assessed patients with UrC and 
PBAC. A further limitation is the heterogeneity of data-
bases regarding both the judgement of pathogenicity and 
druggability of certain variants. In addition, as the CNVs 
were predicted by bioinformatics tools, orthogonal vali-
dation, for example, by fluorescence in-situ hybridization 
(FISH), would be needed to validate the presence of the al-
teration. Some of these limitations could be addressed by 
the addition of in vitro (e.g. organoid) and in vivo (patient-
derived tumour xenografts) models to improve our abil-
ity to predict drug responses, which could then improve 
treatment selection for patients with rare cancers.

In conclusion, our results suggest significant overlaps 
in the genomic landscapes of UrC and PBAC. The cell 
cycle pathway was the most affected pathway, followed 
by the DNA damage control, RAS and PI3K pathways. 
However, a large individual heterogeneity was observed 
in the mutation patterns. In most cases, at least one po-
tentially druggable alteration was identified, highlighting 
the potential of genetic profiling to guide the treatment of 
these rare malignancies.
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