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When data are available from individual patients receiving either a treatment
or a control intervention in a randomized trial, various statistical and machine
learning methods can be used to develop models for predicting future outcomes
under the two conditions, and thus to predict treatment effect at the patient
level. These predictions can subsequently guide personalized treatment choices.
Although several methods for validating prediction models are available, little
attention has been given to measuring the performance of predictions of
personalized treatment effect. In this article, we propose a range of measures
that can be used to this end. We start by defining two dimensions of model
accuracy for treatment effects, for a single outcome: discrimination for benefit
and calibration for benefit. We then amalgamate these two dimensions into an
additional concept, decision accuracy, which quantifies the model’s ability to
identify patients for whom the benefit from treatment exceeds a given threshold.
Subsequently, we propose a series of performance measures related to these
dimensions and discuss estimating procedures, focusing on randomized data.
Our methods are applicable for continuous or binary outcomes, for any type of
prediction model, as long as it uses baseline covariates to predict outcomes under
treatment and control. We illustrate all methods using two simulated datasets
and a real dataset from a trial in depression. We implement all methods in the R
package predieval. Results suggest that the proposed measures can be useful
in evaluating and comparing the performance of competing models in predicting
individualized treatment effect.

K E Y W O R D S
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1 INTRODUCTION

Clinical prediction models are an important tool in modern clinical practice.1 Typically, prediction models use a range
of patient-level covariates (also called predictors or prognostic factors) to forecast the future outcome. Classical statisti-
cal techniques can be used to develop such models, while machine learning methods have become increasingly popular
For affiliations refer to page 1204
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in recent years, especially for analyzing the so-called Big Data.2,3 There is, however, an ongoing debate on whether (or
rather, under what circumstances) machine learning brings any added benefit in practice.4,5 Most applications of clinical
prediction models aim to predict absolute values (for continuous outcomes) or probabilities of an event (for binary out-
comes), and are not usually designed for comparing outcomes under different treatment regimes, that is, are not aimed
at evaluating treatment effects such as a risk difference.

The decision between treatments in clinical practice and recommendations in guidelines are predominantly informed
by results from randomized clinical trials (RCTs) or meta-analyses of RCTs, using estimates of the average relative treat-
ment effect to decide on how to treat new patients. However, there is increasing recognition that a treatment may provide
different absolute benefits to different patients. For example, the genetic characteristics of patients, their demographic
characteristics, and the severity of their disease, may all modify the difference in risk of an event between two treatments
(and this might happen even if the relative risk remains constant). Treating patients who will gain only small or even zero
benefit may lead to unnecessary costs or avoidable side effects. Thus, the common one-size-fits-all approach to treating
patients based on the average treatment effect may be wasteful or even harmful. For these reasons, a “stratified”—or even
“personalized”—approach to treating patients is of great interest.6,7 To achieve this, there is mounting interest in clini-
cal prediction models that the forecast patients’ outcomes under different treatment conditions. Rekkas et al. provided
recently a review of relevant methods.8 Such models provide patient-level estimates of treatment benefit or harm, thus
supporting personalized clinical decision-making.9

Further, a model that works well in predicting the outcome might not perform well when estimating treatment ben-
efit. Indeed, minimizing the mean squared error of outcome predictions does not necessarily minimize the error of the
treatment benefit predictions.10,11 This motivated the development of methodologies that directly focus on benefit, rather
than on predicting absolute outcomes.10,12,13 However, the problems of assessing model performance and performing
model selection remain. More specifically, while it is relatively straightforward to assess the performance of a model for
predicting an outcome (eg, by comparing observations with predictions), it is more difficult to assess model performance
when the main interest is in treatment benefit. This is because in most study designs, we only observe the outcome under
a single treatment for each patient, which means that the treatment benefit at the patient level is unobservable.14 This
is related to the “fundamental problem of causal inference.”15 In the recent years, some approaches have been proposed
for assessing a model’s capacity to predict treatment benefit10,11,16,17; Schuler et al. provide an overview18; in the recent
preprint Maas et al. described additional methods.19

Here, we build on the previous work and present a range of methods for evaluating and comparing models with respect
to their ability to predict patient-level treatment effect for a single outcome. Our starting point is to define two dimensions
of accuracy of individualized treatment effect predictions, that is, discrimination for benefit and calibration for benefit.
In addition, we propose a new concept, decision accuracy, which quantifies the ability of the model to identify patients
whose treatment benefit exceeds a threshold, BTh. Next, we propose relevant performance measures and present a range
of estimating procedures. Any statistical or machine learning method for predicting a binary or a continuous outcome
can be accommodated by our framework, as long as it provides a prediction of the outcome under treatment and control,
given a set of patient baseline predictors. We focus on model evaluation in randomized data and briefly discuss possible
extensions to observational data. We illustrate all methods using a simulated dataset and we provide an R package that
can be used to apply all our methods. We implement the new methods using a real dataset obtained from a large trial
comparing pharmacotherapies for people with depression. Finally, we discuss how our measures can be embedded in a
decision-making process, where we usually must consider multiple effectiveness and safety outcomes as well as costs.

2 NOTATION

We start by presenting all notation used in this article. We assume that our dataset includes Np patients and a complete set
of baseline covariates . We assume that patients were randomized to treatment or control (ti = 1∕0) and that we observe
outcome yi (binary or continuous) for patient i. Next, for the case when yi is continuous, we assume that there are underly-
ing true outcomes under treatment and control for each patient. The difference between these individual “counterfactual”
outcomes (ie, treatment minus control) is the true treatment benefit Bi, which we are primarily interested in estimat-
ing. Likewise, when yi is binary, we assume that the occurrence of an event is stochastic, and that the probability of an
event may differ between the treatment and control condition. The treatment benefit Bi is the difference between the lat-
ter event probabilities (ie, risk difference). Note that Bi is inherently unobservable since each patient only received one
treatment in this setting. For both continuous and binary outcomes, we assume that a patient for whom Bi > BTh would
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1190 EFTHIMIOU et al.

T A B L E 1 A list of notation used in this article

Notation Description

i Patient indicator

xi = (xi1, xi2 …) A set of patient-level covariates for patient i.

M A model that uses covariates x to predict outcomes under treatment and control.

ti Treatment indicator: 1 for treatment, 0 for control.

yi Observed outcome. Can be either continuous or binary.

ŷiM,t=1 Patient-level prediction of a continuous outcome under active treatment, as obtained from
model M. This is on the scale of the original outcome.

ŷiM,t=0 Patient-level prediction of a continuous outcome under control, as obtained from model M.
This is on the scale of the original outcome.

p̂iM,t=1 Patient-level predicted probability of an event for a binary outcome under treatment, as
obtained from model M.

p̂iM,t=0 Patient-level predicted probability of an event for a binary outcome under control, as obtained
from model M.

Bi True underlying patient-level benefit. This is unobservable.

BTh A clinically meaningful threshold for the treatment benefit.

̂BiM Patient-level benefit estimated from model M. It is equal to ŷiM,t=1 − ŷiM,t=0 for continuous
outcomes, p̂iM,t=1 − p̂iM,t=0 for binary outcomes.

PBM , PB(0)M , and PB(1)M Measures of population-level benefit after using model M to make treatment decisions.
Defined in Section 4.4.1

BAM Benefit accuracy: proportion of patients in the population for whom the sign of Bi matches
that of ̂BiM. Defined in Equation (3).

bias,RMSE Bias and root mean squared error when comparing two sets of values.

a0, a1,R2 Intercept, slope, and coefficient of determination obtained after fitting a linear regression on
two sets of values.

benefit from treatment rather than control with respect to this particular outcome; the opposite for Bi < BTh. Here, BTh is
a benefit threshold, that is, a value for Bi above which treating patients is worthwhile. In our examples below we consider
the case of BTh = 0 for simplicity. A nonzero value for BTh would be the relevant when the treatment is associated with
costs or side effects. Next, we develop a model M using all observed data from treated and control individuals. This can
be any statistical or machine learning model. Given the patient’s covariates, for a continuous outcome, model M predicts
outcomes under treatment

(
ŷiM,t=1

)
and control

(
ŷiM,t=0

)
, and thus treatment benefit ̂BiM = ŷiM,t=1 − ŷiM,t=0. Likewise, for

binary outcomes we estimate probabilities p̂iM,t=1 and p̂iM,t=0, and benefit ̂BiM = p̂iM,t=1 − p̂iM,t=0 on the risk difference scale.
The interest in this article is on methods for comparing Bi with ̂BiM, using observed yi and covariates. Table 1 provides an
overview of all notation used in this article.

3 MOTIVATING DATASETS

We illustrate the proposed methodology using a simulated dataset for a continuous outcome and a real example including
both continuous and binary outcomes. In the appendix, we also provide an example of a simulated dataset for a binary
outcome.

3.1 Simulated dataset

The dataset included 1000 patients, where for each patient i we had four patient-level covariates (xi1, … xi4). Patients were
randomized to ti = 1 or ti = 0 with 50% probability. The outcome yi was continuous and was generated using terms linear
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EFTHIMIOU et al. 1191

to xi1, xi2, xi3, xi4, and ti, and also including some interactions between covariates and interactions between treatment and
xi1, xi3. We assumed larger values of yi to be preferable (eg, reflecting a patient-reported outcome such as quality of life),
while we also generated the counterfactual outcome, to allow us to evaluate the performance of our performance met-
rics. Full details are provided in the appendix. The mean observed outcome was 5.17. According to the data-generating
mechanism, 773 patients in this sample would benefit from taking t = 1 and 227 from t = 0. The mean true benefit
was 0.29.

To analyze these data, we developed two simple regression models. The first (M1) was defined as yi∼xi1 + xi3 +
ti + xi1 ti + xi3 ti. This model was misspecified with respect to the data-generating mechanism and did not include
several genuine predictors but included the correct treatment-covariate interactions. The second model, M2 was also
mis-specified; it included more genuine predictors than M1, but missed an important interaction between treatment and
xi3: yi∼xi1 + xi2 + xi3 + xi4 + ti + xi1 ti + xi2 ti. These two “incorrect” models were prespecified for illustration purposes;
data-driven methods (eg, based on LASSO) would probably lead to other model specifications. We use this example here
to show how a model that predicts the observed outcome well may fail to capture treatment benefit; in the later sections
we use it to illustrate the proposed measures. We estimated both models in the dataset of 1000 patients. We first com-
pared the models’ ability to predict the absolute outcomes. We compared predictions ŷi from each model with the ground
truth yi, and calculated the root mean squared error (RMSE) as an overall measure of model accuracy. We also fit a lin-
ear regression yi∼ŷi to obtain the coefficient of determination (R2). We found that M2 performed better than M1 in terms
of RMSE (1.08 for M1 vs 1.03 for M2) and R2 (0.26 vs 0.33). We also found superior performance of M2 when compar-
ing AIC (3010 for M1, 2918 for M2) and BIC (3044 vs 2962). These results indicate that M2 is preferable over M1 for
outcome risk prediction and might thus be taken to suggest (naively) that M2 should also be preferred for prediction of
treatment benefit.

However, opposite conclusions were drawn when evaluating treatment benefit predictions of M1 and M2. Using the
models, we predicted treatment benefit ̂BiM for each patient and for each model , and compared it with the true underlying
benefit Bi by calculating the RMSE, and by fitting the regression Bi∼̂BiM. Results were: RMSE 0.12 for M1 vs 0.42 for M2;
slope 1.08 vs 1.24; R2 0.95 vs 0.32. Note that these results were not affected by overfitting: after using the developed models
to make predictions in the new sample of 10 000 we got similar results for all performance measures (of course, in real
applications such a big external sample would often not be available). Thus, M2 performed much worse than M1, that is,
although M2 outperformed M1 in terms of absolute outcome prediction (ie, prediction of yi given treatment choice and
covariates), it was inferior to M1 for predicting personalized treatment benefit. This apparent contradiction was expected,
since M2 did not include the correct treatment-covariate interactions to estimate treatment benefit. This example shows
that a model may perform well for absolute outcome predictions (ie, when treatment choice is already made), but badly
for predicting absolute treatment effect (ie, when treatment choice is not yet established). It also shows that choosing
a model according to its ability to predict the outcome may lead to selecting models that fail to capture patient-level
treatment benefit.

3.2 Case study: Antidepressant treatment of patients with unipolar major depression

The dataset was obtained from SUN D (Strategic Use of New generation anti-depressants in Depression). This
was a two-step multi-center trial comparing first- and second-line treatment strategies for patients with unipolar major
depression. At Step 1 of the trial, all participants received sertraline. At Step 2, participants who were not in remission
by week 3 were randomized to continue sertraline, to add mirtazapine to sertraline, or to switch to mirtazapine. Remis-
sion was defined as scoring 4 or less on the Personal Health Questionnaire-9, PHQ-9. PHQ-9 ranges from 0 to 27, where
higher values indicate more severe symptoms. The study was powered to detect an overall treatment effect in depression
symptoms measured at week 9.20

We used the data from arms 2 and 3 of the second step, that is, patients randomized to sertraline and mirtazapine
(N = 502) and patients randomized to switch to mirtazapine (N = 530). The first outcome we used was symptom sever-
ity at week 9, measured as total PHQ-9 score. The second outcome was remission (PHQ-9≤ 4). Of note, dichotomizing
a continuous outcome is usually a bad idea, as it leads to loss of information.21 We did it here, however, for illustra-
tion purposes. The dataset also contained many patient-level covariates including socio-demographic variables (age, sex,
education in years, employment and marital status), and depression-related variables (age at onset, number of previous
episodes, length of index episode, and concurrent physical conditions). It also included the item scores of the PHQ-9 at
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1192 EFTHIMIOU et al.

week 1 and 3 (ie, the time of randomization), and the Beck Depression Inventory-II (BDI-II) at weeks 1 and 3, and the
Frequency Intensity and Burden of Side Effects Rating (FIBSER) at week 1 and 3. The baseline PHQ-9 and FIBSER score
were prespecified for subgroup analyses in the original protocol.20

Missing data were not a source of concern for this dataset: only 4% of the patients had missing values for one or
more predictors or outcomes. For simplicity, we limited our analyses to patients with complete data. The results of the
main analyses have been published elsewhere.22 This dataset was later re-used to develop a set of prediction models for
the outcome under the various treatments, to facilitate a personalized choice of treatments.23 The data cannot be made
publicly available due to confidentiality agreements.

4 METHODS

4.1 General concepts and definitions

4.1.1 Discrimination and calibration when predicting outcomes

When developing a clinical prediction model, it is recommended to assess its performance in terms of calibration and
discrimination.

Discrimination is the ability of the model to correctly rank-order patients with respect to their outcomes. For example,
for a continuous outcome, if we use a model with perfect discrimination, among two randomly chosen patients, the
one with the higher predicted outcome will also have the higher observed outcome. This can be examined using
rank correlation statistics between predictions and observations. For a binary outcome, discrimination relates to the
ability of a model to split the population into groups at different risks. The area under the receiver operating char-
acteristic curve (AUC) is a standard measure of discrimination for binary outcomes and is equal to the concordance
statistic.

Calibration refers to the agreement between observed outcomes and the model’s predictions. For continuous out-
comes, calibration can be examined via a scatterplot and by fitting a calibration line, that is, regressing observed predicted.
For binary outcomes, calibration is usually quantified using the ratio of observed vs predicted events, the calibration inter-
cept, and the calibration slope. For example, for a well-calibrated model, among patients for whom we predicted 30%
probability of an event, 30% experienced the event.1

Note that other common measures of performance for continuous outcomes, such as RMSE, R2 and mean absolute
error, combine calibration and discrimination aspects, that is, they measure overall accuracy.

4.1.2 Dimensions of model accuracy when predicting treatment benefit

This article focuses on methods for predicting treatment effect rather than the outcome per se. Hence, measures of model
accuracy should quantify the model’s ability to predict treatment effect. For example, for a binary outcome, the focus is
on the reduction in risk associated with a treatment, rather than the overall risk of experiencing the outcome. Thus, we
propose the following definitions:

Discrimination for benefit: the ability of a model to rank-order patients with respect to the benefit they would receive
from treatment. For a perfectly discriminating model M, for two patients i, j for whom Bi > Bj, then ̂BiM >

̂BjM. In other
words, discrimination for benefit relates to the ability of a model to differentiate patients who will benefit more from
patients who will benefit less from treatment.

Calibration for benefit: the agreement between predicted and true treatment effects. For example, for a model
well-calibrated for benefit, among patients for which we predicted X amount of benefit (on some scale), the true benefit
is indeed X.

A model’s ability to predict individual treatment effects combines these two dimensions. A model with good discrimi-
nation for benefit might not be well calibrated for benefit; for example, a model may perfectly identify patients who would
benefit more from a treatment, but at the same time, may overestimate the effect of the treatment. Likewise, there may
be a model that is well-calibrated on average (eg, patients have accurately predicted benefit from 2 to 3%) but may fail to
identify which patients among them would gain more benefit from treatment; in this case the model would have good
calibration but bad discrimination for benefit.
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EFTHIMIOU et al. 1193

Moreover, as also noted by Fernández-Loría and Provost,17 a model that is optimal in predicting treatment benefit
may be suboptimal for making treatment decisions. Thus, we additionally define:

Decision accuracy: the ability of a model to identify patients who would benefit by at least BTh from receiving treatment
(t = 1) rather than control (t = 0). If we choose the threshold to be BTh = 0, a model with perfect decision accuracy would
maximize overall benefit in the population (with respect to this particular outcome), by identifying patients who should
be given treatment (Bi > 0) and patients who should be given control (Bi < 0). Alternatively, when choosing a positive
value of BTh (eg, to reflect possible side effects of the treatment), a perfect model would maximize the overall risk–benefit
tradeoff.

Decision accuracy combines aspects of discrimination and calibration for benefit. More specifically, it requires
discriminative performance around a relevant decision threshold (where the model should be well calibrated). In
what follows we assume BTh = 0, but a generalization to different thresholds is straightforward. We refer our read-
ers to the Discussion section for additional considerations regarding aspects of prediction accuracy with respect to
treatment effect.

4.1.3 Internal validation of prediction models

In the following sections, we discuss measures for assessing model performance with respect to the dimensions described
above. In describing these measures, we will assume that we have first obtained out-of-sample predictions of treatment
benefit for all patients. An easy way to do this is via a k-fold cross-validation (CV). More details are given in Section 1 of
the appendix.

4.2 Assessing discrimination for benefit: C-for-benefit

A method for discrimination for benefit developed for binary outcomes was proposed by van Klaveren et al.,24 the so-called
C-for-benefit. To calculate C-for-benefit, we first create pairs of the “similar” patients, one of whom received treatment,
the other control. Then, for each pair we measure observed benefit. Quoting from the article, C-for-benefit measures the
probability that “from two randomly chosen matched pairs with unequal observed benefit, the pair with greater observed
benefit also has a higher predicted benefit”. The authors proposed two methods for matching patients, that is, using either
their covariates or the predicted benefit from the model. Unfortunately, the target estimand of this approach is not clearly
defined. Different choices with respect to the matching method may affect both the estimates and “true values” (ie, the
estimand) of the performance measure; thus C-for-benefit results can be ambiguous. Note that other methods presented
below may also use matching as part of the estimation procedure, but the estimand is not affected. In the recent article by
Hoogland et al. (still a preprint by the time this text is written),25 the authors evaluated the limitations of C-for-benefit in
more detail and proposed a new measure for discrimination, the model-based c-for-benefit. However, we do not discuss
this here in more detail.

4.3 Assessing calibration for benefit

The performance measures of interest are the mean bias, that is, E
(

Bi − ̂BiM

)
(which is analogous to “calibration in the

large” for usual prognostic models26), the intercept (a0) and slope (a1) of the line Bi∼̂BiM in the population. Ancillary

summary measures of interest are the mean squared error RMSE =

√

E
((

Bi − ̂BiM

)2
)

and the R2 of the Bi∼̂BiM line. Of

note, RMSE and R2 measure overall performance, rather than just calibration.
The estimation of mean bias is straightforward for a continuous outcome, assuming randomization: we compare the

observed mean benefit at the arm level (mean observed outcome in treatment minus control) to the mean-predicted
benefit. For binary outcomes we can easily compare the observed risk difference at the arm level to the average predicted
benefit, calculated as the average predicted probability of an event for patients in t = 1 minus average predicted probability
in t = 0.

The next sections describe ways to estimate remaining performance measures.
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1194 EFTHIMIOU et al.

4.3.1 Grouping according to predicted benefit

Given that the model predictions were obtained using a k-fold CV procedure (Section 1 of the appendix), all ̂BiM have been
computed from model parameters estimated outside the present data. In other words, ̂BiM is in effect a baseline covariate
for each patient. This allows us to perform subgroup analyses based on it, because this way randomization will remain
intact, meaning that we can readily estimate causal effects of treatment.

Specifically, we split patients into Ng groups, according to ̂BiM. Given that the treatment assignment is randomized,
each group will in principle include both treated and untreated individuals, and we can estimate the observed treat-
ment benefit within each group as the mean outcome in patients on t = 1 minus that in patients on t = 0. We calculate
the average predicted benefit within each group as discussed in the previous paragraph. Finally, we fit a line to the
observed-predicted benefit pairs, to estimate all quantities of interest. Furthermore, we can visualize results in a scatter-
plot. We can add a regression line to the plot (or even a smooth curve if Ng is large). We can also add bars showing the
standard errors of the observed benefit (y-axis) and the SD of the predicted benefit (x-axis). This approach may allow us
to find groups of patients for whom the model correctly identifies large benefits or harms from treatment, which can be
particularly important for decision-making.

4.3.2 Clustering using covariates

Another approach is to try to create groups of “similar” patients, and then compare mean observed vs predicted benefit
at the group level (ie, group-level approximations of Bi and ̂BiM respectively), to estimate all measures of interest. More
specifically, we use patient covariates and an unsupervised clustering algorithm (eg, k-means) to group patients into Ng
groups. Within each group we estimate observed and predicted benefit as above, and we compare the two sets of values to
estimate all measures. Given that the clustering procedure may lead to different groups each time it is executed (k-means
depends on an arbitrary choice of initial centroids), we repeat the procedure multiple (eg, 1000) times and then average,
to obtain stable results.

One disadvantage of this method is that it is heavily dependent on the clustering procedure, and the covariates used
for it. For example, if across the groups there is not enough variation in the true or the predicted benefit, this method will
fail. Thus, the method of Section 4.3.1 might be preferable. Note that instead of clustering into groups of multiple patients,
we could use a matching method that is, match patients one-on-one, and repeat multiple times. We provide more details
in the appendix.

4.3.3 Regression for benefit

A different approach to assess calibration for benefit is to regress the observed outcome on the treatment assignment
and the predicted treatment benefit. The quantity we try to estimate here is the slope of the Bi∼̂BiM line, where a
good-performing model will have a slope close to 1. To estimate, for a continuous outcome we fit the following regres-
sion on the observed data: yi∼b0 + b1 ŷiM,t=0 + b2 t ̂BiM, where, b2 = 1 suggest a model with perfect calibration for benefit.
The intuition behind this approach is that we want to separate the ability of the model to predict outcomes in t = 0
from its capacity to estimate treatment benefit; as we mentioned already, a model might work well for the former but
might underperform for the latter. For a binary outcome we fit instead a logistic regression model logit

(
piy

)
∼ b0 +

b1 logit
(

p̂iM,t=0
)
+ b2 t ̂BiM, where ̂BiM should be here in the log-odds ratio scale. Another alternative at this point would

be to fix the b1 coefficient in the two models above to be equal to 1 (ie, to have ŷiM,t=0 or logit
(

p̂iM,t=0
)

as offset terms), as
discussed by Hoogland et al.25 However, the choice between these two alternatives is not straightforward, and it would
require simulations; see also the Discussion.

4.4 Assessing decision accuracy

4.4.1 Population benefit: dichotomizing by predicted benefit

Our first measure of decision accuracy assesses the average benefit of using a prediction model M to decide to treat
patients, assuming a threshold BTh = 0. We define the population-level benefit as the difference between the mean
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EFTHIMIOU et al. 1195

F I G U R E 1 Schematic representation of how patient i is assigned into a group according to predicted treatment benefit (̂BiM) from
model M, and treatment received (ti = 0∕1). Patients in groups G1 and G4 received the optimal treatment according to model M, patients in
G2 and G3 the suboptimal. Here we have assumed treatment benefit threshold to be zero, that is, . BTh = 0.

expected outcome if we followed the recommendations of model M (ie, we give t = 1 to patient i when ̂BiM > 0; t = 0
when ̂BiM < 0) vs the mean expected outcome if we followed the opposite of what M recommended. A model with per-
fect decision accuracy will maximize population-level benefit, by identifying the better treatment for each patient. The
(model-specific) performance measure of interest is

PBM = E(y|treat according to model M) − E(y|treat with the opposite of model M) (1)

where PB stands for “population-level benefit.” To estimate ̂PBM , we use ̂BiM,to split patients into four groups as shown
in Figure 1. Patients in group G1 (G4) were treated with t = 1 (t = 0), and according to M they received their optimal
treatment. Patients in group G2 (G3) were treated with t = 1 (t = 0), and according to M they received their suboptimal
treatment. Then, we can estimate PBM as follows:

̂PBM = yG1UG4
− yG2UG3

=
∑

i∈G1
yi +

∑
i∈G4

yi

n1 + n4
−
∑

i∈G2
yi +

∑
i∈G3

yi

n2 + n3
, (2)

where n1, … ,n4 denotes the number of patients in G1, … , G4. Because of randomization and because ̂BiM is in effect
a baseline covariate (due to how it was estimated, that is, via k-fold CV), Equation (2) is an unbiased estimate of PBM .
However, we can improve estimation by accounting for possible imbalance in covariates.27 To do so, we create a dummy
variable agree for each patient, where agree = 1 if a patient is in G1 ∪ G4 (ie, treatment assignment agrees with model
recommendation), 0 otherwise. Note that expression (2) is just the mean difference between the subgroups agree = 1
and agree = 0. Then, for a continuous outcome we regress the observed outcome over agree, also including all other
observed covariates in the regression. Then, we take the coefficient of agree as the estimate ̂PBM . Note that instead of
a regression adjustment we could follow inverse probability of treatment weighting.28 In this case, agree would assume
the role of “treatment.” For a binary outcome, we can estimate ̂PBM as a marginal risk difference. We first fit a logistic
regression model on the observed outcome over agree. Then, we use the fitted model to estimate the probability of an
event for all patients in the dataset after setting agree = 1, and then after setting agree = 0. The mean difference between
the two is our covariate-adjusted ̂PBM . To obtain confidence intervals of this estimate we can either use the so-called
standardization method (also termed “marginalization” or “G-computation”)27 or we can use bootstrapping. Of note,
bootstrapping here does not account for model estimation. In addition, the division of patients in the four groups shown
in Figure 1 is only possible if there are both patients with positive and negative predicted benefit. If all patients have
positive or all patients have negative estimated benefit, the calculation of PB using Equation (1) becomes trivial, as it
just equals the average treatment effect. In that case, this analysis is more meaningful if we assume nonzero benefit
threshold.

Other performance measures can be used instead of the PBM defined in Equation (1). For example, we could compare
outcomes when following the model, vs treating no-one, that is, t = 0 for all patients. Then, the performance measure
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1196 EFTHIMIOU et al.

would be

PB(0)M = E(y|treat according to model M) − E(y|t = 0).

Likewise, we could compare outcomes after following the model vs after treating everyone, with the performance
measures being

PB(1)M = E(y|treat according to model M) − E(y|t = 1).

Arguably these two performance measures are clinically more intuitive than PBM defined in Equation (1), and may be
more useful for evaluating the absolute performance of a model. When it comes to comparing competing models, however,
Section 2 of the appendix shows that all these performance measures rank models in the same way. There we also provide
details on estimating PB(0)M and PB(1)M . In addition, in Section 3 of the appendix we show how to estimate the difference in
PB between two completing models.

The definition of PB(0)M is relevant to the net benefit described by Vickers et al.29 In more detail, net benefit (for a binary
outcome) is defined as the reduction in event rate after following the model compared to the strategy “treat no-one” (ie,
PB(0)M ) minus the harms from treatment. Harms are quantified by Vickers et al. as the percentage of patients being treated
following the model, multiplied by a value capturing the ratio of disutility of an event over that of treatment (eg, due to
costs or side effects). Thus, net benefit is aimed at aiding decision making by providing a benefit vs harms assessment of a
model. Conversely, we are here only interested in measures of predictive performance. We describe a range of alternative
measures, that is, PB,PB(0)M ,PB(1)M and we provide additional estimating procedures, that is, that account for imbalance in
covariates. We also refer our readers to the penultimate paragraph of the Discussion.

Finally, note that the methods of this paragraph are somewhat similar to the approach used by Nguyen et al.,30 who
proposed estimating treatment effect separately in patients with positive and negative values for the predicted treatment
benefit ̂BiM.

4.4.2 Benefit accuracy: clustering using covariates

Another method to assess decision accuracy of a model is to estimate the proportion of patients in the population for
whom the sign of Bi − BTh matches that of ̂BiM − BTh. The performance measure of interest, which we call benefit accuracy,
is the following (assuming BTh = 0 for simplicity):

BAM = P
(
̂BiM > 0 & Bi > 0

)
+ P

(
̂BiM < 0 & Bi < 0

)
, (3)

where a perfect model will have BAM = 100%.
To estimate ̂BAM , we cluster “similar” patients as discussed in Section 4.3.2, and we estimate the predicted and

observed benefit within each group. Then, we compare the sign of the observed with the sign of the predicted treatment
benefit and count the proportion of groups where the two signs were concordant. We repeat the procedure multiple times
and then average, to obtain stable results.

A problem with this approach is again that (unlike the method described in Section 4.4.1) the estimation needs to use
covariates. It may thus be highly dependent on the set of covariates used to create the groups, as well as the number of
groups. This may work well when, within the created groups the sign of ̂BiM and Bi remains relatively constant. Otherwise,
this estimating procedure may fail. In that case, the estimates may be only useful for comparing models, rather than
assessing their absolute performance. See the Discussion for more considerations on this point.

In Section 4 of the appendix, we describe an alternative estimation method, where instead of clustering patients, we
match them one-on-one. All performance measures and estimators proposed in this article are summarized in Table 2.

5 RESULTS

All methods described above are implemented in the R package predieval, freely available from https://github.com/
esm-ispm-unibe-ch/predieval. In the appendix, we provide more details.
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1198 EFTHIMIOU et al.

F I G U R E 2 Calibration plot for treatment benefit predictions from models M1 (left) and M2 (right) in the simulated dataset with a
continuous outcome. The plot was generated using the bencalibr function of the predieval package in R

T A B L E 3 Calibration for benefit from the simulated dataset with continuous outcome, comparing models M1 and M2

Model M1 Model M2Performance measure
estimation method RMSE a0 a1 R2 RMSE a0 a1 R2

True values of the performance
measure, estimated using 10 000 new
patients

0.12 −0.05 1.08 0.95 0.41 −0.11 1.25 0.32

Group by benefit, Ng = 10 0.23 0.01 0.98 0.78 0.10 0.03 0.93 0.79

Group by benefit, Ng = 20 0.31 0.01 0.98 0.67 0.23 0.03 0.87 0.42

k-means, Ng = 10 0.16 −0.07 1.29 0.69 0.16 −0.04 1.19 0.67

k-means, Ng = 20 0.23 −0.09 1.34 0.71 0.36 −0.11 1.16 0.33

Note: Estimates obtained following a 10-fold CV repeated 100 times. M2 performed better in predicting the absolute prognostic outcome (results given in
text), but this table shows that it performed worse in predicting treatment benefit.

5.1 Analysis of the simulated dataset

We used the simulated dataset presented in Section 3.1, and we fitted the two predefined prediction models (M1 and
M2). Then, we assessed the internal performance of the two models using all methods presented in this article. For this,
we followed a 10-fold CV procedure repeated 100 times, to obtain out-of-sample predictions for all patients. Using these
predictions, we estimated all measures. Since this was a simulated example, we could also calculate the true value of the
performance measures. To this end, we generated a very large (external validation) dataset of 10 000 patients from the
population, and we used the models developed in the original dataset to make predictions.

We started our assessment with calibration for benefit. We found mean bias to be 0.04 for both M1 and M2. The true
values of mean bias was −0.03 for both models. Next, we created a calibration-for-benefit plot after grouping patients
into Ng = 10 groups according to ̂BiM (Section 4.3.1), shown in Figure 2. We saw that although both models were well
calibrated, M1 performed better than M2, as it was able to capture more treatment effect heterogeneity. Then, we followed
the methods of Sections 4.3.1 and 4.3.2, and did the analyses for Ng = 10, 20. Results are shown in Table 3, where we also
provide the true values of the performance measures. Finally, we followed the method of Section 4.3.3 to fit a regression
for benefit, and the slope for benefit was 0.97 [0.78; 1.15] for M1 vs 0.94 [0.65; 1.23] for M2.

Next, we turned to decision accuracy. For population benefit, we found ̂PBM1 = 0.54 [0.41; 0.66], ̂PBM2 =
0.34 [0.21; 0.47]. These were estimated using the regression-adjustment method discussed in Section 4.4.1 Following the
method described in Section 3 of the appendix (ie, unadjusted method), we estimated the difference between the two to
be 0.18 [−0.03; 0.40], i.e. the method correctly suggested model M1 to be better, albeit with uncertainty. The true values
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EFTHIMIOU et al. 1199

(in the large, external population) were PBM1 = 0.48 and PBM2 = 0.32. Next, we estimated benefit accuracy following the
clustering method of Section 4.4.2, where we repeated 500 times, for Ng = 10, 20. Results for model M1 were 92% and 86%,
and for M2 91% and 80% for Ng = 10, 20, respectively, that is, correctly suggesting M1 to be better. The true values of the
performance measures were 95% and 79% for M1 and M2, respectively.

We conclude that most evaluation methods correctly indicated that M1 yields superior estimates of individual treat-
ment benefit, despite the fact that M2 was better in absolute outcome prediction. We also noted that in some instances,
different estimation methods give very different results. We come back to this point in the Discussion section.

5.2 Analysis of the depression dataset

5.2.1 Continuous outcome: symptoms severity in PHQ-9

The mean outcome after 9 weeks was 8.3 in PHQ-9 for the “switch to Mirtazapine” treatment arm (t = 1), 8.1 for the
“combination” arm (t = 0), i.e. a clinically insignificant difference on average. For illustration purposes we explored three
different modelling strategies to predict the outcome. These strategies were not tailored to identify treatment effect het-
erogeneity, but we used them for illustration purposes, to explore the performance of the proposed measures. The first
strategy was to fit a linear regression model using all available predictors and all treatment-covariate interactions. The
second was a ridge regression with the same structure as above but including penalization for all model parameters. We
used a 10-fold CV to identify the optimal value for the tuning parameter of the model. The third strategy was to use a
support vector machine (SVM) with a radial kernel for each treatment arm separately, using again an embedded 10-fold
CV to select the tuning parameters. We fit the ridge using glmnet31 and the SVMs using the caret package in R.32 To
assess model performance, we first obtained out-of-sample estimates via a 10-fold CV. We first compared the three strate-
gies with respect to their performance in predicting the absolute outcome, across both arms. Results are shown in Table 4.
We saw that ridge and SVM performed better than the unpenalized model in absolute outcome predictions.

We are also interested in identifying what treatment each patient should receive and predicting patient-level treatment
benefit. This is potentially relevant, as all models predicted a wide range of patient-specific treatment benefit (ie, difference
in PHQ-9 score), ranging from around −15 to +13 for the linear regression model and around −5 to +6 for the other
two strategies. Such values are clinically meaningful and could be used to guide treatment decisions. We employed all
methods described in this article; results are shown in Table 5.

First, in Figure 3 we show the calibration plots for benefit, for the three different strategies, and five groups. Linear
regression seemed to perform worse, failing to find groups of patients that might benefit from treatment in different
degrees. SVM performed slightly better than ridge, with the points in the graph being a bit closer to the diagonal. Next,
we calculated all other measures for calibration for benefit described in this article, using 100 repetitions. In Table 5, we
present results in terms of bias, RMSE, slope and R2. Results suggest again that the linear regression model performed
worse than the other two models in all measures.

Then we turned to decision accuracy. We first estimated ̂PB, where ridge and then SVM performed again better. To
allow us to gauge these results, note that the simplest prediction model, that is, one that would just predict the average
outcome per treatment arm (ie, 8.3 and 8.1 respectively) would have ̂PB = 0.2. For estimating benefit accuracy, we used
k-means clustering for Ng = 10 and 50; see Table 5. Results suggested again that SVM and then ridge performed better.

We conclude that ridge and SVMs seemed to perform similarly for this example, and that both were better than the
unpenalized regression. All other things being equal, and following Occam’s razor (ie, among two similarly performing
models, choose the simplest one), we would probably prefer ridge over the SVMs. After selecting ridge, to help better
assess absolute model performance, we can also estimate PB(0) and PB(1). These were defined in Section 4.4.1, and we
used formulas in the appendix to estimate standard errors. Results were PB(0)ridge = 0.5 [0.0; 1.0] and PB(1)ridge = 0.3 [0.0; 0.7],
showing evidence that the use of this prediction model might provide a small benefit at the population level, as compared
to just prescribing t = 0 or t = 1 to every patient. Moreover, we see at Figure 3 that the model may help identify group of
patients for which the benefit is more pronounced (Table 4).

5.2.2 Binary outcome: remission

A total of 343 patients out of 1032 (33%) remitted 6 weeks post randomization, 31% in the switching arm (t = 1) and
36% in the combination arm (t = 0). Aiming to illustrate all methods presented in this article, we evaluated two different
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1200 EFTHIMIOU et al.

T A B L E 4 Comparing three modeling strategies (linear regression, ridge regression, and support vector machines [SVMs]) for
continuous outcome prediction in the antidepressants dataset

Measure of
performance

Unpenalized
linear regression

Linear regression
with ridge penalty

One SVM per
treatment arm

Comparing predicted vs observed outcomes

Bias 0.0 0.0 0.3

RMSE 5.1 4.5 4.5

R2 0.32 0.42 0.43

Calibration for benefit

Mean bias for benefit 0.20 0.16 −0.21

Group by benefit, Ng = 10 RMSE 3.5 0.9 1.2

slope −0.10 0.55 0.63

R2 0.14 0.56 0.48

Group by benefit, Ng = 50 RMSE 4.1 2.2 2.6

slope −0.08 0.62 0.66

R2 0.01 0.12 0.15

Group by k-means, Ng = 10 RMSE 2.3 1.3 1.0

slope −0.95 0.67 1.16

R2 0.54 0.43 0.63

Group by k-means, Ng = 50 RMSE 2.9 2.0 1.9

slope −0.87 0.68 1.19

R2 0.28 0.24 0.43

Regression for benefit slope 0.28 [0.14; 0.42] 0.53 [0.16; 0.90] 0.76 [0.52; 1.00]

Decision accuracy

̂PB 0.4 [−0.2; 0.9] 0.6 [0.0; 1.2] 0.5 [−0.1; 1.0]

̂BA, k-means, Ng = 10 29% 67% 68%

̂BA, k-means, Ng = 50 38% 65% 68%

Note: Brackets denote 95% Confidence intervals.
Abbreviations: BA, benefit accuracy; MSE, mean squared error; PB, population benefit.

modeling strategies. The first was an unpenalized logistic regression model with the following predictors: treatment, age,
sex, years of education, and the nine items of PHQ-9 at baseline. We also included the interactions of all these covariates
with treatment. The second modeling strategy was a stochastic gradient boosting machine (GBM), where tuning parame-
ters were chosen after a 10-fold CV (embedded in the overall 10-fold CV), repeated 3 times. We fit a separate GBM in each
treatment arm, using caret in R.32 To assess performance of these two strategies, we followed a 10-fold CV to obtain
out-of-sample predictions for the risk for remission for each patient under each treatment. Using these, we assessed the
performance of the models for predicting the outcome. There, we saw very similar results. The AUC was 0.77 and 0.76
for the logistic regression and GBMs respectively. Likewise, the mean predicted event rate in the two treatment arms was
similar across models, very close to the true event rates (36% and 31%, respectively). Using the rms package in R33 we
drew calibration plots1 (not shown here), and results were very similar: intercept −0.07 vs -0.06, slope 0.86 vs 0.90. These
results suggest that there are no important differences in the performance of the models, and we could choose logistic
regression because of its simplicity.

Next, we compare models in terms of treatment benefit. All results are given in Table 5. First, regarding discrimination
for benefit, we saw that GBMs performed very slightly better for C-for-benefit, but confidence intervals greatly overlapped.
Next, we examined calibration for benefit. The calibration for benefit plot is shown in Figure 4, for Ng = 5, where we saw
that the logistic regression model failed to predict treatment benefit across different groups. Mean bias was almost zero for
both methods. Results for all other measures of calibration for benefit are shown in Table 5, with the GBM outperforming
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T A B L E 5 Comparing two modeling strategies for predicting binary response in the antidepressants dataset

Measure of performance Logistic regression GBM

Comparing predicted vs observed outcomes

AUC 0.77 0.76

Calibration plot intercept −0.07 −0.06

Calibration plot slope 0.86 0.90

Discrimination for benefit

c-for-benefit, match by covariates 0.51 [0.47; 0.56] 0.53 [0.48; 0.58]

c-for-benefit, match by benefit 0.50 [0.46; 0.55] 0.50 [0.46; 0.55]

Calibration for benefit

Mean bias for benefit 0.0% 0.2%

Group by benefit, Ng = 5 RMSE 0.13 0.12

slope −0.52 0.15

R2 0.80 0.06

Group by benefit, Ng = 10 RMSE 0.15 0.13

slope −0.42 0.23

R2 0.22 0.09

Group by k-means, Ng = 5 RMSE 0.04 0.04

slope 1.87 1.19

R2 0.55 0.46

Group by k-means, Ng = 10 RMSE 0.05 0.05

slope 1.87 1.19

R2 0.55 0.46

Regression for benefit slope 0.40 [0.07; 0.75] 0.60 [0.30; 0.91]

Decision accuracy

̂PB 2.1% [−2.9%; 7.2%] 6.3% [1.2%; 11.2%]

̂BA, k-means, Ng = 5 80% 79%

̂BA, k-means, Ng = 10 82% 84%

Abbreviations: GBM, gradient boosting machine; MSE, mean squared error.

logistic regression in all aspects. Interestingly, we see that the estimated slopes from logistic regression when we grouped
by benefit were negative, reflecting the negative slope of the calibration plot in Figure 4. In terms of decision accuracy,
we first assessed population benefit, where logistic regression also seemed to perform worse than GBM. Note that the
simplest strategy to just predict for every patient the mean of the corresponding treatment group would give ̂PB = 4.7%
[0.0%; 10.4%] (ie, the risk difference between the two groups). Logistic regression (̂PB = 2.1%), performed worse than
even this simplest approach. Secondly, we saw that GBMs performed slightly better also for ̂BA.

Overall, we conclude that the strategy of using a GBM per treatment arm clearly outperformed the single logistic
regression model, when it comes to treatment benefit, although they had very similar performance in absolute outcome
prediction.

Finally, to assess the absolute performance of the selected model (GBM), we can also estimate PB(0) and PB(1). We
found ̂PB

(0)
GBM = 0.5%[−3.0%; 3.9%] and ̂PB

(1)
GBM = 5.2%[0.6%; 9.7%]. Essentially, we found almost no evidence that treating

patients according to the GBM model would lead to better population results than just using the simplest strategy of
giving everyone t = 0. Figure 4 also suggests that the model offers little in terms of identifying patients that might benefit
more/less from treatment. We conclude that for the analysis of the binary outcome, our two prediction models failed to
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1202 EFTHIMIOU et al.

F I G U R E 3 Calibration plots for benefit, for three competing models developed on the antidepressant example. The outcome is
depression symptoms, measured on the PHQ-9 scale. SVM: support vector machines

F I G U R E 4 Calibration plots for benefit, for two competing models developed on the antidepressant example. The outcome is binary
response. GBM: Gradient Boosting Machine

identify any meaningful treatment effect modification. Thus, we saw that even though the sample size in this example
was big (1032 patients), the uncertainty associated with estimating treatment benefit at the patient level was so large that
precluded any firm conclusions Table 5.

6 DISCUSSION

Prognostic models typically aim to predict the absolute risk of future outcomes, for example, mortality risk 6 months after
diagnosis. When such models are used to inform treatment decisions, it is important to assess their ability to accurately
predict treatment benefit, for example, the reduction or increase in the risk of an event for a patient, when receiving
treatment. We hereby started by defining two dimensions of accuracy when predicting treatment benefit, that is, dis-
crimination for benefit and calibration for benefit, by extending definitions used from prognostic modelling.1 We also
defined the decision accuracy of a model, which combined calibration and discrimination for benefit. All these aspects of
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accuracy should ideally be assessed when selecting among competing modeling strategies for assessing treatment bene-
fit. Their relative importance may be context-specific, that is, it may depend on the decision-making framework in which
the prediction model will be embedded. For instance, when the outcome is death, and when costs of intervention are of
no concern, decision accuracy is probably of primary importance. In this situation we want a model that will best identify
patients who should receive treatment (ie, patients with positive treatment benefit) and patients who should not (patients
with negative treatment benefit), as this would prevent unnecessary deaths. Conversely, if decision-making is based on
information about multiple efficacy and safety outcomes, calibration measures may be more important, particularly if
costs are also an issue and when predicted treatment effects are to be included in a health economic model. For instance,
when treatment is associated with side effects or when it is expensive, we might want to prioritize treating patients for
whom the benefit from receiving treatment is expected to be large.

Next, we discussed a series of performance measures related to these aspects of accuracy for treatment benefit. For
some of these measures we proposed alternative estimating procedures, for example, grouping patients according to their
characteristics or according to predicted benefit. The results of the simulated dataset showed that our metrics have the
potential to identify models that provide better estimates of treatment benefit. At the same time, both the results from the
simulated dataset and from the real medical example showed that different estimators may give different estimates, that is,
estimates may greatly depend on the estimating procedure. Of note, some of the estimating procedures are based on strong
assumptions, some of which may not hold in real applications. For example, when we cluster using covariates, we try to
create groups of “similar” patients, and we assume that within each cluster the true benefit is relatively constant across
all patients. In the appendix, we provide an additional estimating method for some of the metrics, based on matching
patients one-on-one. Matching was also used in a recent article by Maas et al., which described methods for estimating
performance measures for individualized treatment effects.19 Matching, however, rests on very strong assumptions (ie,
that the baseline risk is the same in each matched pair), so we expect it to be suboptimal. Thus, for some of the metrics
we proposed, the estimated values may not be good approximations of the true values. In that case, these estimates may
be better thought of as “statistics”, i.e. metrics to be compared across models rather than measures of absolute model
performance. In any case, a systematic simulation study is needed to help decide which estimators are most efficient and
least biased, that is, which ones can be used for model evaluation and which ones for model comparison; we leave this
for future work. Related to that, it would also be interesting to compare in simulations our measures with alternative
methods.18,19,25 Moreover, we only discussed a single method for discrimination for benefit, the C-statistic proposed by
van Klaveren et al.24 Although originally proposed for binary outcomes, using the method for continuous outcomes is
straightforward: we would first match patients on treatment with patients on control (according to their covariates or the
predicted benefit); then, measure the probability that from two randomly chosen matched pairs, the pair with greater
observed benefit also has a higher predicted benefit. However, we did not further pursue this idea, given the possible
limitations of this method.9

Of note, when setting up our framework, for binary outcomes we assumed stochastic events, where the treatment
benefit is defined to be the difference in the probability of an event in treatment minus that in control. Instead, we could
have assumed deterministic counterfactuals, where the latter can be technically thought of as a special case of the former
(ie, a deterministic counterfactual is the limit of a stochastic one, when the corresponding probability is 0 or 1). In that case,
the “true benefit” could only take three values, that is,−1, 0, and 1 (while in this article we assumed it is continuous, on the
[−1,1] interval). Apart from this conceptual change, methods described in this article would not be affected. However, we
think there is no a priori reason why the latter choice is preferable to the former. Moreover, on a practical level, simulations
are simpler to perform when we assume stochasticity of the events. Thus, in this article, we assumed stochastic events
(instead of fixed counterfactuals), as they facilitate the developing and testing of the methods presented in this article.

In all our analyses, we assumed fully observed data. In practice, for some of the participants, we may have missing
predictors. In such cases, we can first use a multiple imputation approach to impute the missing data,34 and then follow
all procedures described in this article (including obtaining out-of-sample predictions), and summarize all performance
measures from the imputed datasets at the end, using Rubin’s rules.35 Moreover, the analyses presented in this article used
randomized data. When the main interest is in treatment effects, randomized clinical data generally represent the best
source of information because they do not require adjustment for confounding. However, all methods could in principle
also be extended for models developed on observational data (with some refining, for example, in the assessment of mean
bias). In such cases, the usual assumptions of causal inference from observational studies need to hold, that is, proper
adjustments for confounding, measurement bias, selection bias, etc.36

Another important limitation is that, irrespective of the choice of performance measure or estimators, all methods
presented in this article are expected to have limited power to find differences between competing models. Estimating
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treatment effects in different patient groups is challenging to begin with, and, depending on the setting, it may require
large amounts of data.37 At the same time, RCTs are usually only powered to detect treatment effects at the population
level.14,38 Moreover, comparing slightly different models for treatment benefit will be even more challenging in most
cases, unless the dataset is extensive. This issue was highlighted in the analyses described in this article, both the ones
using simulated and the ones using real data. In these analyses we saw that the assessment of treatment benefit was
associated with large uncertainty, even though the sample sizes we used would probably be considered large in practical
applications. This was especially problematic for the case of binary outcomes (and serves therefore as another argument
to why dichotomization should be avoided). Thus, in general, we recommend that researchers should be particularly
cautious when trying to explore effect modification in usual cases of data availability.

For these reasons, extending our approaches to use in large observational datasets may be particularly useful. An IPD
meta-analysis of many RCTs39 offers another way to increase sample size, by putting together data from multiple studies.
The use of data from multiple sources bears the extra advantage of better allowing us to evaluate the generalizability of
predictions to new settings.40 The problem is that obtaining IPD from multiple studies is often difficult in practice, while
IPD can be prone to substantial between-study heterogeneity, for example, when studies adopt different variable defini-
tions, measurement methods and other design choices. Initiatives such as YODA (https://yoda.yale.edu/) and Clinical
Study Data Request (https://www.clinicalstudydatarequest.com/) aim to promote the sharing of IPD, hopefully facilitat-
ing the conduct of more IPD-NMAs in the future.41 Our methods would require adjustments to use in a meta-analytical
setting; this is also an area of interesting future research. Moreover, for most clinical conditions there are multiple com-
peting interventions to choose from. Thus, it would be interesting to extend all methods presented for comparing more
than two treatments (as was the case in the depression dataset presented in this article), and eventually to an IPD network
meta-analysis setting.42,43

Finally, when developing our methods, we assumed a common treatment threshold BTh for all patients. However, we
could think of cases when this value is different for different types of patients, for example, when some patients are at a
higher risk of an adverse effect. In that case the threshold for treatment might be higher. In such cases, if we can write
BTh as a function of patient covariates, we can easily change the definitions of our measures in Section 4.4 to accom-
modate variability in thresholds. Then, the treatment recommendation for patient i would be decided after comparing
̂BiM to Bi,Th.

Generally, however, we acknowledge that personalizing the decision-making process is a very complicated procedure
in practice, as it should consider many aspects, such as patient preferences, likelihood of multiple side effects, multiple
efficacy outcomes, costs, etc. A cost-benefit analysis,29 a decision curve analysis,44,45 or a multiple criteria decision analysis
(MCDA46) can all inform health-care decisions and facilitate a shared decision making between patients and doctors.
MCDA aims to do so by balancing costs, benefits and risks of the interventions, while also taking into account the personal
preferences of the patients. A range of models that predict treatment benefits and harms (ie, treatment effects for multiple
effectiveness and safety outcomes) would be needed to inform such an analysis. The current article only considered the
issue of model evaluation and model selection for a single outcome, which might be a very small part of this bigger process.
However, we still think it is important to make best use of existing data when developing a new prediction model for
benefit, as it may be used to guide treatment decisions.

To summarize, in this article we proposed a range of measures for assessing the performance of models aiming to
predict patient-level relative effects among two interventions, and we provided freely available software which can used
to improve our understanding of these methods as well as facilitate their uptake in practice.

AFFILIATIONS
1Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
2Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland
3Department of Psychiatry, University of Oxford, Oxford, UK
4Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
5Department of Epidemiology and Data Science, Amsterdam University Medical Centers, Amsterdam, The Netherlands
6Smart Data Analysis and Statistics B.V., Utrecht, The Netherlands
7Graduate School for Health Sciences, University of Bern, Bern, Switzerland
8Departments of Health Promotion and Human Behavior and of Clinical Epidemiology, Kyoto University Graduate School of Medicine/School of
Public Health, Kyoto, Japan
9Centre for Infectious Disease Epidemiology and Research, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa

 10970258, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9665 by U
niversitaet B

ern, W
iley O

nline L
ibrary on [14/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://yoda.yale.edu/
https://www.clinicalstudydatarequest.com/


EFTHIMIOU et al. 1205

10Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
11MRC Clinical Trials Unit at UCL, University College London, London, UK

ACKNOWLEDGEMENTS
OE, MS and ME were supported by the Swiss National Science Foundation (Ambizione grant number 180083, special
project funding 189498). IW was supported by the Medical Research Council Programme MC_UU_00004/07. TD is sup-
ported by the European Union’s Horizon 2020 research and innovation programme under ReCoDID grant agreement no.
825746. JH is supported by ZonMw (grant 91215058).

DATA AVAILABILITY STATEMENT
The data cannot be made publicly available due to confidentiality agreements.

ORCID
Orestis Efthimiou https://orcid.org/0000-0002-0955-7572
Jeroen Hoogland https://orcid.org/0000-0002-2397-6052
Thomas P.A. Debray https://orcid.org/0000-0002-1790-2719
Michael Seo https://orcid.org/0000-0002-5229-590X
Ian R. White https://orcid.org/0000-0002-6718-7661

REFERENCES
1. Steyerberg E. Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating. New York: Springer-Verlag; 2009.

doi:10.1007/978-0-387-77244-8
2. Chen M, Hao Y, Hwang K, Wang L, Wang L. Disease prediction by machine learning over big data from healthcare communities. IEEE

Access. 2017;5:8869-8879.
3. Dash S, Shakyawar SK, Sharma M, Kaushik S. Big data in healthcare: management, analysis and future prospects. J Big Data. 2019;6:54.
4. Christodoulou E, Ma J, Collins GS, Steyerberg EW, Verbakel JY, van Calster B. A systematic review shows no performance benefit of

machine learning over logistic regression for clinical prediction models. J Clin Epidemiol. 2019;110:12-22.
5. Austin PC, Harrell FE, Steyerberg EW. Predictive performance of machine and statistical learning methods: impact of data-generating

processes on external validity in the ‘large N, small p’ setting. Stat Methods Med Res. 2021;30:1465-1483.
6. Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015;372:793-795.
7. Jameson JL, Longo DL. Precision medicine — personalized, problematic, and promising. N Engl J Med. 2015;372:2229-2234.
8. Rekkas A, Paulus JK, Raman G, et al. Predictive approaches to heterogeneous treatment effects: a scoping review. BMC Med Res Methodol.

2020;20:264.
9. Kent DM, van Klaveren D, Paulus JK, et al. The PATH statement explanation and elaboration document. Ann Intern Med.

2020;172:W1-W25.
10. Zhao Y, Fang X, Simchi-Levi D. Uplift modeling with multiple treatments and general response types. arXiv:1705.08492 [cs], 2017.
11. Rolling CA, Yang Y. Model selection for estimating treatment effects. J R Stat Soc Series B Stat Methodology. 2014;76:749-769.
12. Powers S, Qian J, Jung K, et al. Some methods for heterogeneous treatment effect estimation in high-dimensions. arXiv:1707.00102 [stat],

2017.
13. Nie X, Wager S. Learning objectives for treatment effect estimation. arxiv.org:1712.04912v1 [stat.ML], 2017.
14. Kent DM, Steyerberg E, Klaveren D v. Personalized evidence based medicine: predictive approaches to heterogeneous treatment effects.

BMJ. 2018;363:k4245.
15. Rubin DB. Estimating causal effects of treatments in randomized and nonrandomized studies. J Educ Psychol. 1974;66:688-701.
16. Kapelner A, Bleich J, Levine A, Cohen ZD, DeRubeis RJ, Berk R. Evaluating the effectiveness of personalized medicine with software.

Front Big Data. 2021;4:572532.
17. Fernández-Loría C, Provost F. Causal decision making and causal effect estimation are not the same… and why it matters. INFORMS

J Data Sci. 2022;1:4-16.
18. Schuler A, Baiocchi M, Tibshirani R, Shah N. A comparison of methods for model selection when estimating individual treatment effects.

arXiv:1804.05146 [cs, stat], 2018.
19. Maas CCHM, Kent DM, Hughes MC, et al. Performance metrics for models designed to predict treatment effect. MedRxiv, 2022. doi:10.

1101/2022.06.14.22276387
20. Yonemoto N, Tanaka, S, Furukawa TA, et al. Strategic use of new generation antidepressants for depression: SUN(∧_∧) D protocol update

and statistical analysis plan. Trials. 2015;16:459.
21. Altman DG, Royston P. The cost of dichotomising continuous variables. BMJ. 2006;332:1080.
22. Kato T, Furukawa TA, Mantani A, et al. Optimising first- and second-line treatment strategies for untreated major depressive disorder -

the SUN D study: a pragmatic, multi-Centre, assessor-blinded randomised controlled trial. BMC Med. 2018;16:103.

 10970258, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9665 by U
niversitaet B

ern, W
iley O

nline L
ibrary on [14/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0002-0955-7572
https://orcid.org/0000-0002-0955-7572
https://orcid.org/0000-0002-2397-6052
https://orcid.org/0000-0002-2397-6052
https://orcid.org/0000-0002-1790-2719
https://orcid.org/0000-0002-1790-2719
https://orcid.org/0000-0002-5229-590X
https://orcid.org/0000-0002-5229-590X
https://orcid.org/0000-0002-6718-7661
https://orcid.org/0000-0002-6718-7661
http://info:doi/10.1007/978-0-387-77244-8
info:doi/10.1101/2022.06.14.22276387
info:doi/10.1101/2022.06.14.22276387


1206 EFTHIMIOU et al.

23. Furukawa TA, Debray TPA, Akechi T, et al. Can personalized treatment prediction improve the outcomes, compared with the group
average approach, in a randomized trial? Developing and validating a multivariable prediction model in a pragmatic megatrial of acute
treatment for major depression. J Affect Disord. 2020;274:690-697.

24. van Klaveren D, Steyerberg EW, Serruys PW, Kent DM. The proposed ‘concordance-statistic for benefit’ provided a useful metric when
modeling heterogeneous treatment effects. J Clin Epidemiol. 2018;94:59-68.

25. Hoogland J, Efthimiou O, Nguyen TL, Debray TPA. Evaluating individualized treatment effect predictions: a new perspective on
discrimination and calibration assessment, 2022. doi:10.48550/arXiv.2209.06101

26. Van Calster B, McLernon DJ, van Smeden M, et al. Calibration: the Achilles heel of predictive analytics. BMC Med. 2019;17:230.
27. Morris TP, Walker AS, Williamson EJ, White IR. Planning a method for covariate adjustment in individually randomised trials: a practical

guide. Trials. 2022;23:328.
28. Austin PC, Stuart EA. Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity

score to estimate causal treatment effects in observational studies. Stat Med. 2015;34:3661-3679.
29. Vickers AJ, Kattan MW, Sargent DJ. Method for evaluating prediction models that apply the results of randomized trials to individual

patients. Trials. 2007;8:14.
30. Nguyen T-L, Collins GS, Landais P, Le Manach Y. Counterfactual clinical prediction models could help to infer individualized treatment

effects in randomized controlled trials—an illustration with the international stroke trial. J Clin Epidemiol. 2020;125:47-56.
31. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2021;33(1):1-22.

doi:10.18637/jss.v033.i01
32. Kuhn M. Building predictive models in R using the caret package. J Stat Softw. 2008;28(5):1-26. https://doi.org/10.18637/jss.v028.i05
33. Harrell F. rms: Regression Modeling Strategies. R package version 6.0-1. 2021. https://CRAN.R-project.org/package=rms
34. Sterne JAC, White IR, Carlin JB, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls.

BMJ. 2009;338:b2393.
35. Rubin DB. Multiple Imputation for Nonresponse in Surveys. New York: John Wiley & Sons; 2004.
36. Hammerton G, Munafò MR. Causal inference with observational data: the need for triangulation of evidence. Psychol Med.

2021;51:563-578.
37. van Klaveren D, Balan TA, Steyerberg EW, Kent DM. Models with interactions overestimated heterogeneity of treatment effects and were

prone to treatment mistargeting. J Clin Epidemiol. 2019;114:72-83.
38. Brookes ST, Whitley E, Peters TJ, Mulheran PA, Egger M, Davey Smith G. Subgroup analyses in randomised controlled trials: quantifying

the risks of false-positives and false-negatives. Health Technol Assess. 2001;5:1-56.
39. Debray TPA, Moons KGM, Valkenhoef G, et al. Get real in individual participant data (IPD) meta-analysis: a review of the methodology.

Res Synth Methods. 2015;6:239-309.
40. Steyerberg EW, Nieboer D, Debray TPA, van Houwelingen HC. Assessment of heterogeneity in an individual participant data

meta-analysis of prediction models: an overview and illustration. Stat Med. 2019;38:4290-4309.
41. Chaimani A. Conduct and reporting of individual participant data network meta-analyses need improvement. BMC Med. 2020;18:156.
42. Efthimiou O, Debray TPA, van Valkenhoef G, et al. GetReal in network meta-analysis: a review of the methodology. Res Synth Methods.

2016;7:236-263.
43. Debray TP, Schuit E, Efthimiou O, et al. An overview of methods for network meta-analysis using individual participant data: when do

benefits arise? Stat Methods Med Res. 2016;0962280216660741:1351-1364. doi:10.1177/0962280216660741
44. Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction models. Med Decis Making. 2006;26:565-574.
45. Chalkou K, Vickers AJ, Pellegrini F, Manca A, Salanti G. Decision curve analysis for personalized treatment choice between multiple

options. arXiv:2202.02102 [stat], 2022.
46. Thokala P, Duenas A. Multiple criteria decision analysis for health technology assessment. Value Health. 2012;15:1172-1181.

SUPPORTING INFORMATION
Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Efthimiou O, Hoogland J, Debray TP, et al. Measuring the performance of prediction
models to personalize treatment choice. Statistics in Medicine. 2023;42(8):1188-1206. doi: 10.1002/sim.9665

 10970258, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9665 by U
niversitaet B

ern, W
iley O

nline L
ibrary on [14/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

info:doi/10.48550/arXiv.2209.06101
info:doi/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v028.i05
https://cran.r-project.org/package=rms
info:doi/10.1177/0962280216660741

	Measuring the performance of prediction models to personalize treatment choice 
	1 INTRODUCTION
	2 NOTATION
	3 MOTIVATING DATASETS
	3.1 Simulated dataset
	3.2 Case study: Antidepressant treatment of patients with unipolar major depression

	4 METHODS
	4.1 General concepts and definitions
	4.1.1 Discrimination and calibration when predicting outcomes
	4.1.2 Dimensions of model accuracy when predicting treatment benefit
	4.1.3 Internal validation of prediction models

	4.2 Assessing discrimination for benefit: C-for-benefit
	4.3 Assessing calibration for benefit
	4.3.1 Grouping according to predicted benefit
	4.3.2 Clustering using covariates
	4.3.3 Regression for benefit

	4.4 Assessing decision accuracy
	4.4.1 Population benefit: dichotomizing by predicted benefit
	4.4.2 Benefit accuracy: clustering using covariates


	5 RESULTS
	5.1 Analysis of the simulated dataset
	5.2 Analysis of the depression dataset
	5.2.1 Continuous outcome: symptoms severity in PHQ-9
	5.2.2 Binary outcome: remission


	6 DISCUSSION

	Affiliations
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES
	Supporting Information

