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Abstract 

As sociologists are increasingly turning away from using odds ratios, reporting average 

marginal effects is becoming more popular. We aim to restore the use of odds ratios in 

sociological research by introducing marginal odds ratios. Unlike conventional odds ratios, 

marginal odds ratios are not affected by omitted covariates in arbitrary ways. Marginal odds 

ratios thus behave like average marginal effects but retain the relative effect interpretation of 

the odds ratio. We argue that marginal odds ratios are well suited for much sociological inquiry 

and should be reported as a complement to the reporting of average marginal effects. We define 

marginal odds ratios in terms of potential outcomes, show their close relationship to average 

marginal effects, and discuss their potential advantages over conventional odds ratios. We also 

briefly discuss how to estimate marginal odds ratios and present examples comparing marginal 

odds ratios to conventional odds ratios and average marginal effects. 
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Introduction 

Logit models and their ensuing odds ratios form the backbone of much sociological research. 

Despite their prominence, recent methodological research has brought to sociologists’ attention 

some serious problems in using and interpreting odds ratios (Allison 1999; Mood 2010; Breen, 

Karlson, and Holm 2018; Bloome and Ang 2022). These problems are rooted in a peculiar 

property of the logit model: The magnitude of its coefficients changes even if one controls for 

a third variable that is uncorrelated with the predictor of interest; a property known as 

noncollapsibility, rescaling, or sensitivity to unobserved heterogeneity. Although sociologists 

have responded to this challenge in different ways, the reporting of (average) marginal effects 

implied by a logit model or obtained from a linear probability model is now recommended in 

the methods literature (Breen, Karlson, and Holm 2018; Mize 2019; Mize, Doan, and Long 

2019; Long and Mustillo 2021). Marginal effects are not arbitrarily affected by the error term 

and yield readily interpretable effects on the probability scale, which to many is more intuitive 

than a ratio between odds (Cramer 2007; Norton and Dowd 2018). 

 Marginal effects are also beginning to replace odds ratios as a preferred effect metric in 

substantive research. This change in practice becomes clear when one considers papers 

published in the American Sociological Review between 2010 and 2021. Upon conducting a 

search on the ASR website, we found that the term “marginal effect” appeared in 11 papers of 

which the vast majority (nine) were published between 2016 and 2021. Similarly, “linear 

probability model” appeared in 16 papers of which the vast majority (13) were published 

between 2016 and 2021. In contrast, “odds ratio” appeared in 41 papers of which only a 

minority (nine) were published between 2016 and 2021. Although marginal effects are gaining 

popularity over odds ratios, they do not necessarily align with much sociological research in 

which relative inequality is a key concept (e.g., in stratification research, political sociology, 

medical sociology, or demography). Indeed, many sociologists still prefer the odds ratio 
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precisely because it is a relative measure, and because it is insensitive to the marginal 

distribution of the dependent variable (Mare 1981; Erikson and Goldthorpe 1992). In contrast, 

the magnitude of a marginal effect depends on the distribution of the binary outcome (Mare 

1981:76; Holm, Ejrnæs, and Karlson 2015), a property that makes it difficult to directly 

compare effect sizes among, say, populations with different overall outcome rates. 

 In this paper, we aim to restore the odds ratio as a relevant effect metric in sociological 

research by introducing what we term a “marginal odds ratio.” This effect metric has properties 

similar to the properties of marginal effects, including being unaffected by noncollapsibility, 

but it retains the relative effect interpretation. It thus presents itself as a viable alternative or 

complement to the reporting of marginal effects.1 Drawing on work in statistics and 

epidemiology on this topic (e.g., Zhang 2008; Pang, Kaufman, and Platt 2016; Daniel, Zhang, 

and Farewell 2021), we first define the marginal odds ratios in the potential outcomes 

framework.2 This framework makes clear the marginal odds ratio estimand and shows its close 

relationship to the average marginal effect estimand. We then explain how the marginal odds 

ratio should be interpreted as a population-averaged effect, and how this interpretation differs 

from the conventional odds ratio typically obtained from a logit model that has a conditional 

interpretation. We then go on to briefly outline how to estimate the marginal odds ratio using 

counterfactual predictions from a logit model. We also present two examples demonstrating 

the versatility of the marginal odds ratio. In a companion technical paper, we give a thorough 

technical introduction to estimation approaches and introduce software that makes the 

estimation of marginal odds ratios straightforward (Jann and Karlson 2023). 

 
1 Being a ratio, the marginal odds ratio can take on values between zero and infinity, and a value of one means 
that there is no effect. To obtain a symmetric measure (with zero corresponding to a null effect), one could take 
the log. Although sociologists employ both the odds ratio and the log odds ratio, we mainly focus on the former 
in this paper as it is more straightforward to interpret in empirical work. 
2 Sociologists have also recently begun discussing marginal odds ratios (see Erikson et al. 2005; Breen, Karlson, 
and Holm 2018:46; Kuha and Mills 2020:521-522; Karlson, Popham, and Holm 2021). Moreover, there is a well-
established literature in statistics on this topic for clustered or “multilevel” data (see, e.g., Zeger, Liang, and Albert 
1988; Agresti 2002). We also draw on these literatures. 
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Marginal Odds Ratios 

We define the marginal odds ratio using potential outcomes notation (Rubin 1974). This 

notation makes clear the estimand and its close relationship to the average marginal effect. In 

our exposition, we exclusively focus on binary treatments and refer readers interested in the 

extension to continuous treatments to our technical paper (Jann and Karlson 2023). Let 𝑌! be 

the potential outcome of an individual receiving either the treatment (𝑇 = 1) or the control 

(𝑇 = 0). Comparing 𝑌! for the treated (𝑌") or untreated (𝑌#) is informative about the effect of 

𝑇 on 𝑌. Scholars are often interested in the average treatment effect, which is defined as 

𝐸[𝑌"] − 𝐸[𝑌#], i.e., the difference in the expectation over each potential outcome. For binary 

outcomes, the expectation equals the probability of success, meaning that the average treatment 

effect equals an average marginal effect defined as 

 AME = Pr[𝑌" = 1] − Pr[𝑌# = 1] (1) 

The AME is the success probability difference if everyone was treated relative to if everyone 

was untreated.  In a similar vein, we define the marginal odds ratio as 

 MOR =
odds(Pr[𝑌" = 1])
odds(Pr[𝑌# = 1]) 

(2) 

where odds(𝑝) stands for 𝑝/(1 − 𝑝). This odds ratio is the ratio of the odds of success if 

everyone was treated relative to the odds of success if everyone was untreated.3 The estimands 

in Equations (1) and (2) involve the same counterfactual quantities but the AME is a probability 

difference whereas the MOR is a ratio between odds. 

 The estimands in Equations (1) and (2) can also be expressed as depending on other 

variables, which we denote X. For example, applied researchers will often be interested in 

adjusting for a set of additional covariates if they want to control for potential confounding or 

are interested in effects for different subpopulations. If we assume that X has a given 

 
3 This definition only holds under the SUTVA assumption. 
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distribution in the population, then we can express the conditional success probability given 

X = x as Pr(𝑌! = 1|X = x) = 𝐸[𝑌!|X = x]. By the law of iterated expectations, we can write 

the unconditional success probability as 

 Pr(𝑌! = 1) = 𝐸X[Pr(𝑌! = 1|X = x)] (3) 

where 𝐸X is the expectation over the distribution of X. Thus, we can rewrite Equations (1) and 

(2) as 

 AME = 𝐸X[Pr(𝑌" = 1|X = x)] − 𝐸X[Pr(𝑌# = 1|X = x)] (4) 

 MOR =
odds{𝐸X[Pr(𝑌" = 1|X = x)]}
odds{𝐸X[Pr(𝑌# = 1|X = x)]} (5) 

We term the expression in Equation (5) the “adjusted marginal odds ratio”, although it is the 

same estimand as the marginal odds ratio given in Equation (2). The expression in Equation 

(5) is useful when estimating marginal odds ratios in substantive research using observational 

data where confounding is ubiquitous. Given that we refer to Equation (5) as an adjusted MOR, 

we refer to the Equation (2) as a gross or unadjusted MOR. We may think about them as effects 

controlling and not controlling for additional and potentially confounding covariates (Karlson, 

Popham, and Holm 2021). We later give an example showing the difference between the two. 

Relationship to the Logit Model 

Although we have defined the marginal odds ratio estimand in terms of potential outcomes, 

sociologists usually obtain odds ratios from a logistic response model. To show the relationship 

between the two, we first write the unconditional logistic model as 

 Pr(𝑌! = 1) = logit(𝛼 + 𝛿𝑡) (6) 

where logit(𝑧) stands for exp(𝑧) [1 − exp(𝑧)]⁄ . In this model, the exponent to the treatment 

logit coefficient, exp(𝛿), has a marginal odds ratio interpretation. However, once we condition 

on other covariates, X, the interpretation of the odds ratio changes to a conditional one. To see 

this, assume that we include X in the regression equation, 
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 Pr(𝑌! = 1|X = x) = logitI𝛼J + 𝛿K𝑡 + x𝛽M (7) 

In this model, 

 CORX =
odds[Pr(𝑌" = 1|X = x)]
odds[Pr(𝑌# = 1|X = x)] = expI𝛿KM (8) 

is a conditional odds ratio (COR), where conditional refers to the effects operating at the 

subgroup level defined by the covariates in X. The conditional odds ratio differs from the 

marginal counterpart adjusting for X, given by  

 MORX =
odds{𝐸X[Pr(𝑌" = 1|X = x)]}
odds{𝐸X[Pr(𝑌# = 1|X = x)]} =

oddsO𝐸XPlogitI𝛼J + 𝛿K + x𝛽MQR
odds{𝐸X[logit(𝛼J + x𝛽)]}

 (9) 

which has a population-averaged interpretation, i.e., the average population response to 

changing treatment status (Zeger, Liang, Albert 1988:1050). The COR in Equation (8) is the 

response of the subgroup defined by the covariates in X (and the COR is assumed to be constant 

across those groups as the covariates enter additively on the logit scale). In other words, the 

COR in Equation (8) and the MOR in Equation (9) refer to different estimands, have different 

interpretations, and cannot be directly compared (Pang, Kaufman, and Platt 2016; Breen, 

Karlson, and Holm 2018; Daniel, Zhang, and Farewell 2021; Schuster et al. 2021). 

 To provide further intuition about the difference between the substantive interpretations 

of the two estimands, we find it instructive to compare them to the distinction between 

conditional and unconditional quantile regression (Firpo, Fortin, and Lemieux 2009; Killewald 

and Bearak 2014). In quantile regression, we are typically interested in modelling a given 

percentile in an outcome distribution as function of a treatment variable and some potential 

confounders, thus echoing the setup we have described for the odds ratios. In conditional 

quantile regression, the percentiles in the conditional outcome distribution are modelled (i.e., 

the percentiles in the residual distribution after netting out the effects of the confounders). Thus, 

it recovers the treatment effect on a percentile in the outcome distribution among individuals 

with similar values on the confounders. In unconditional quantile regression, the percentiles in 
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the unconditional outcome distribution are modelled, i.e., how the treatment affects the 

percentile in the overall or marginal outcome distribution, but still controlling for the potential 

effects of confounders (via their correlation with the treatment variable).  

 Like marginal and conditional odds ratios, the two quantile estimands have different 

interpretations. For example, for the conditional one, researchers would be interested in 

whether a labor market program affects the 25th earnings percentile within groups with 

different levels of schooling. For the unconditional one, researchers would be interested in 

whether the labor market program affects the 25th earnings percentile in the overall earnings 

distribution, controlling for the possibility that schooling and participation in the labor market 

program may be correlated (and thus schooling will act as a confounder). If we extend these 

descriptions to odds ratios, then imagine that we replace the earnings outcome with the binary 

outcome of obtaining a job (and consider the odds ratio as the preferred effect metric). The 

conditional odds ratio would then capture the labor market program effect among participants 

within groups with different levels of schooling, whereas the marginal odds ratio would capture 

the labor market effect on average in the population, accounting for any sorting into the labor 

market program on schooling.4 

 Marginal and conditional odds ratios are equally valid estimands and their respective 

uses should depend on the research question. However, from a mathematical perspective, the 

difference between them arises from what statisticians call noncollapsibility: 

“Noncollapsibility of the OR derives from the fact that when the expected probability of 

outcome is modeled as a nonlinear function of the exposure, the marginal effect cannot be 

expressed as a weighted average of the conditional effects” (Pang, Kaufman, and Platt 

 
4 In light of this comparison to quantile regression, an alternative term to “marginal” would be “unconditional.” 
However, we adopt the former term because this terminology is already established in the literature (Stampf et al. 
2010). 
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2016:1926). Indeed, the key difference between the two estimands is whether the averaging 

occurs on the log odds scale or on the probability scale. 

 The mathematical relationship between the two estimands (noncollapsibility) is well-

described in the methods literature. From this literature, we highlight two key points. First, 

from Equations (8) and (9), we see that the MOR will differ from the COR whenever 𝛽 ≠ 0 

(i.e., if there are other relevant predictors apart from the treatment variable). Moreover, the 

MOR will be attenuated relative to the COR. For example, if there is just a single covariate	𝑋, 

the relationship between the two can be approximated by  

 lnMOR% =
ln COR%

W1 + 0.35𝛽&var(𝑋)
 (10) 

(Zeger, Liang, and Albert 1988:1054).5 Whenever 𝛽 = 0, the COR collapses to the MOR. 

Whenever 𝛽 ≠ 0, i.e., if the adjusting covariate has a non-zero effect on the outcome, the COR 

will be larger than the MOR even if 𝑋 is not confounding the treatment effect.6 Moreover, the 

attenuation of the MOR relative to the COR depends on the magnitude of 𝛽 and the dispersion 

in 𝑋. In the example we later provide, we demonstrate how the attenuating effect of 

noncollapsibility operates. 

 Second, while there is only one MOR, there are in principle an infinite number of CORs. 

The interpretation of the conditional odds ratio will depend on the covariates included in the 

regression equation as it refers to effects specific to subgroups defined by those covariates. 

Each of these CORs is not directly comparable to the other CORs. In practical terms, whenever 

researchers successively add variables to a logit regression equation––a widespread practice in 

sociological research––the COR estimand changes and so coefficients of the treatment of 

 
5 This approximation assumes that 𝑋 is normally distributed, and the number 0.35 is the approximation of 
"16√3 (15𝜋)⁄ ,

!
from the expression derived in Zeger, Liang, and Albert (1988:1054). We obtain a similar 

approximation if we formulate the logit model in terms of and underlying latent variable model (see Breen, 
Karlson, and Holm 2018). 
6 This situation is sometimes referred to as rescaling bias (Karlson, Holm, and Breen 2012; Breen, Karlson, and 
Holm 2013). 
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interest are not directly comparable. Karlson, Holm, and Breen (2012) suggested solving this 

issue by holding one underlying COR estimand constant (what they refer to as the full model 

including all covariates) and then changing the set of conditioning control variables using 

residualized predictors (what they refer to as a reduced model). For this reason, the method by 

Karlson, Holm, and Breen (2012) recovers a COR estimand (Karlson, Popham, and Holm 

2021). 

Why Should Sociologists Use Marginal Odds Ratios? 

Because MOR and COR both are valid estimands, there is no a priori argument for choosing 

one over the other. However, although we agree with the general point that the choice of 

estimand should depend on the research question, for most practical purposes we find that the 

MOR estimand is superior to COR estimands. We highlight four reasons. First, the MOR has 

an interpretation equivalent to an average marginal effect on the probability scale: It is a 

population-average effect focusing on the average “population response” to a treatment of 

interest. Given the increasing reporting of average marginal effects in sociological research, the 

MOR presents itself as a notable alternative or complement to the reporting of AMEs. Second, 

because MORs are unaffected by noncollapsibility, they can be used for comparing coefficients 

from same-sample models including different covariates (i.e., for mediation analyses or effect 

decompositions). Third, MORs are straightforward to compare across different studies or 

populations as their magnitude does not depend in arbitrary ways on the conditioning set (i.e., 

set of control variables). Fourth, because many COR estimands exist (depending on the 

conditioning set), but only one MOR estimand, researchers are free from presenting arguments 

for why a specific COR estimand is more interesting than another. Such arguments would 

require highly developed theoretical frameworks which are rare in sociology. 
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Estimating Marginal Odds Ratios 

Marginal odds ratios can be estimated in different ways. In a technical companion paper (Jann 

and Karlson 2023), we review these approaches and show which estimands each estimation 

technique recovers. Here, we present an estimation approach based on counterfactual 

predictions (known as G-computation) and focus on binary treatments for making the 

exposition as accessible as possible (Robins 1974). This approach compares counterfactual 

predictions from a (typically parametric) model involving the treatment and conditioning 

covariates (Zhang 2008). The approach proceeds in four steps: 

(1) Regress 𝑌 on 𝑇 and X using a logit model (or, in principle, any other model). 

(2) Generate two sets of predictions of the success probability for each observation in 

the data, one setting everyone to be treated, 𝑇 = 1, and one setting everyone to be 

untreated, 𝑇 = 0 (i.e., 𝑝̂',)*" and 𝑝̂',)*#, where 𝑖 indexes observations). 

(3) Average each set of predictions to obtain the marginal or population-averaged 

success probabilities if treated (𝑝̅)*") and if untreated (𝑝̅)*#), respectively. 

(4) To obtain the marginal odds ratio, plug in the average marginal predictions from 

step 3 into the formula for the marginal odds ratio, 

 MOR̀ =
odds(𝑝̅)*")
odds(𝑝̅)*#)

 (11) 

 

G-computation is a straightforward way of obtaining marginal odds ratios. This approach is 

available in the user-written Stata command lnmor, which we present in our companion paper 

(Jann and Karlson 2023).7 It is also worth noting that the average marginal effect can be 

obtained by the four steps outlined above, except that in the fourth step, one plugs in the average 

 
7 Stata command lnmor also supports continuous treatments and provides consistent standard errors. 
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marginal predictions into the estimand formula for AMEs, i.e., 𝑝̅)*" − 𝑝̅)*#. From this 

estimation perspective, the close relationship between AME and MOR also becomes apparent. 

Examples 

Academic Ability and Intergenerational College Mobility 

Stratification scholars are interested in quantifying the extent to which academic abilities 

explain or mediate family background inequalities in educational attainment (Boudon 1974; 

Erikson et al. 2005; Jackson 2013). Gaps by family background in educational attainment that 

operate independently of demonstrated academic abilities are theorized to represent the 

“secondary effects” of family background, i.e., how class origin-based aspirations, preferences, 

and outlooks feed into educational decisions over and above those difference that come about 

through unequal skill levels. In our example, we examine the extent to which academic ability 

(as measured by a cognitive test) accounts for the gap in college attainment between children 

born to parents with and without a college degree. To fully illustrate the difference between 

MOR and COR, we conduct this analysis on representative samples from the United States and 

Denmark. Comparing the United States and Denmark is substantively interesting because, for 

the birth cohorts we analyze here (born in the mid-1950s through the mid-1960s), Denmark 

was a more educationally mobile country than the United States (Landersø and Karlson 2021). 

 For the United States, we analyze data from the National Longitudinal Survey of Youth 

1979, which follows a national probability sample of children aged 14 through 21 in 1979 

(Bureau of Labor Statistics 2019). For Denmark, we examine data from the Danish National 

Longitudinal Survey of Youth, which follows a national-probability sample of 7-graders in 

1968/1969 (Hansen 1995). Both datasets provide information on parental college attainment, 
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respondent college attainment (as adults), and a standardized cognitive ability test.8 Our 

analytical strategy is straightforward: We compare the unadjusted or gross gap by parental 

college attainment to the one adjusted for academic ability. 

 Table 1 shows the results. We find that the unadjusted or gross marginal odds ratio is 

about twice as large in the United States (7.6) as in Denmark (3.8), meaning that Denmark is 

significantly more educationally mobile (row 1). This estimate has a marginal or population-

averaged interpretation as the “population response in child college attainment” to changing 

from non-college to college-educated parents. Adjusting for academic ability (row 2), we find 

that the marginal odds ratio reduces to 2.5 in both countries. We interpret this adjusted marginal 

odds ratio as the impact, on average in each population, of parental college attainment on child 

college attainment, accounting for the unequal distribution of academic abilities across family 

background. Because the adjusted MOR reduces to the same number (2.5), it means that the 

“secondary effects” of family background are of similar magnitude in the two countries. 

Moreover, because the unadjusted MOR is much larger in the U.S. than in Denmark, it means 

that academic ability “mediates” a significantly larger portion of the gap by parental college 

attainment in college completion in the U.S. than in Denmark.9 

[TABLE 1 ABOUT HERE] 

 In contrast to the adjusted marginal odds ratio, the conditional counterpart in row 3 is 

3.4 for the United States and 2.9 for Denmark. Thus, had we been using this adjusted COR for 

comparing the two countries, we would have concluded that, net of academic ability, Denmark 

is a (albeit only slightly) more educationally mobile country. The adjusted COR has an 

interpretation that is different from the marginal counterpart: It is the odds ratio for groups with 

 
8 In the replication package for this article, we provide the Stata code used for generating the results in this analysis, 
including the recoding of variables. NLSY79 is available from the Bureau of Labor Statistics; DLSY is available 
from the Danish National Archives. The final NLSY sample is 10,068; the final DLSY sample is 2,185. 
9 In log odds ratios, academic ability explains 56 and 33 percent of the gap in United States and Denmark, 
respectively. 
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similar levels of demonstrated academic ability, and it does not refer to population-level effects. 

Moreover, the difference between the adjusted MOR and COR points to the attenuating impact 

of noncollapsibility. This impact is significantly larger in the United States than in Denmark, 

meaning that academic ability is a much stronger predictor of college attainment in the United 

States than in Denmark (net of parental college attainment).10 

 Using the Karlson-Holm-Breen (KHB) approach, we present the unadjusted COR in 

row 4 (Karlson, Popham, and Holm 2021).11 The KHB approach holds constant the COR 

estimand (i.e., the COR within groups of children with different ability levels). We make three 

observations regarding this estimand. First, had we used this COR for comparing the two 

countries’ gross mobility levels, Denmark would be almost three times as mobile by this 

measure (compared to twice as mobile with the unadjusted MOR). Had we adjusted for 

additional covariates (e.g., aspirations) that also have more predictive power in the United 

States than in Denmark, this ratio would only grow (and the estimand would change). As we 

stated earlier, CORs are valid estimands but as there are an infinite amount of them (depending 

on the conditioning set) and sociological theory rarely is sufficiently detailed to make informed 

choices about which COR is the better one, it is difficult to argue for choosing one over the 

other. The MOR does not have this property (there is only one estimand) and so appears to be 

the best choice for any initial comparison of mobility levels in this example. 

 Second, as is the case with MORs, the unadjusted COR can be compared to the adjusted 

COR to gauge mediation. Here we find that the percent mediated is virtually identical to that 

based on MORs, indicating that conclusions about mediation are similar using MORs or the 

 
10 By the “strength of the predictor,” we refer to 𝛽!var(𝑋) in Equation 10; that is, both the impact of ability and 
the dispersion in ability affect the degree of attenuation. Because academic ability is a latent variable, we cannot 
meaningfully disentangle the two here. Had we controlled for a variable with a natural metric (e.g., parental 
income or number of books in the home), we could have decomposed the attenuating impact into the contribution 
of each of these two components. 
11 The KHB approach uses residualized control variables to make constant the scales of the coefficients across 
logit models with different covariates (see Karlson, Holm, and Breen 2012). 
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KHB approach (Karlson, Popham, and Holm 2021).12 Third, comparing the unadjusted COR 

to the unadjusted MOR is informative about the impact of noncollapsibility (as were comparing 

the adjusted odds ratio counterparts). Here again we find that the bias stemming from 

noncollapsibility is larger in the United States than in Denmark (resulting from academic ability 

being a stronger predictor in the United States). 

 In rows 5 and 6, we also present average marginal effects, i.e., the probability difference 

estimand [cf. Equations (1) and (4)]. Similar to the odds ratios, we find that the unadjusted 

AME is larger in the United States (43 percentage points) than in Denmark (31 percentage 

points). Moreover, adjusting for academic ability significantly reduces the AMEs and, in 

relative terms, to an extent similar to the reductions seen in log odds ratios.13 However, the 

adjusted AME is now smaller in the United States than in Denmark (about 14 percent), pointing 

to the well-known “flipped-signs phenomenon” of interaction terms depending on the scale of 

measurement (Bloome and Ang 2022). Still, had we relied exclusively on AMEs, we would 

have concluded that the “secondary effects” of family background are (slightly) larger in 

Denmark than in the United States, a conclusion that would run counter to the conclusion based 

on the MOR (similarity) and, in particular, the COR (opposite country difference).  

 

Trends in the College Gap in Attitudes towards Racial Segregation  

Political sociologists are interested in how schooling shapes attitudes. We examine the gap in 

attitudes towards racial segregation between respondents with and without a four-year college 

degree. In particular, we study whether this gap has changed over two decades, focusing on the 

results based on average marginal effects (absolute gaps) and marginal odds ratios (relative 

gaps) when we also control for a range of other covariates. We examine data from the General 

 
12 For the CORs reported in Table 1, in log odds ratios academic ability explains 54 and 33 percent of the gap in 
the United States and Denmark, respectively. 
13 For the United States, the percent explained is 59 percent; for Denmark, 35 percent. 



15 
 

Social Surveys cumulative file (Smith et al. 2019), focusing here on the years 1976 through 

1996 when information on attitudes towards racial segregation was collected. Our outcome 

variable is the response to a question about whether white people have a right to keep black 

people out of their neighborhoods if they feel like it (and that black people should respect that 

right). We collapse the outcome variable into a binary variable indicating agreement (1) or 

disagreement (0) with the stated opinion. We measure college attainment as having completed 

at least 16 years of schooling. Moreover, we include additional covariates, including survey 

year (for studying trends from 1976 through 1996), age, gender, race, marital status, and a 

generic 7-point political views variable indicating whether the respondent thinks of him- or 

herself as liberal (1) or as conservative (7). The final sample with valid information on all 

variables comprises 12,239 respondents.14 

 In this example, we are not interested in quantifying the degree of confounding but 

merely in summarizing the trends in the college gap net of other factors. We specify a logit 

model in which calendar year is fully interacted with the college dummy and all other 

covariates (allowing for the effects of the covariates to change over time). We estimate the 

model specified both as a linear probability model and as a logit model. For all models, we 

derive average marginal effects and marginal odds ratios evaluated at calendar years 1976, 

1981, 1986, 1991, and 1996, and report these implied quantities in Table 2 (estimates of the 

coefficients in the underlying regression models are available in the Appendix).  

[TABLE 2 ABOUT HERE] 

 The main finding in Table 2 is that the absolute college gap (as measured by average 

marginal effects) in the attitude towards racial segregation has declined significantly over the 

20-year period, whereas the relative gap (as measured by marginal odds ratios) has remained 

 
14 In the replication package for this article, we provide the final sample of the GSS used in this example and Stata 
code for generating the results in this analysis, including the recoding of variables. 
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unchanged. In 1976, the absolute college gap net of the other covariates is around 21 percentage 

points on average (for both AMEs implied by the linear probability model and the logit model, 

respectively), suggesting that college educated individuals were much less likely than 

individuals without a college degree to support racial segregation. In 1996, the absolute gap is 

reduced to about 7 or 8 percentage points on average, pointing to a decline of around 60 percent 

in just 20 years. This decrease is also highly statistically significant. By way of contrast, the 

relative gap implied by the marginal odds ratios is virtually constant (we can detect a minor 

change in the odds ratio towards 1, but this trend is not statistically significant). 

 Thus, while both average marginal effects and marginal odds ratios point to a substantial 

college divide in attitudes towards racial segregation (with non-college educated being more 

supportive of this opinion)—even when we control for potentially “confounding” variables—

they disagree on the trend in this gap. To see why this is the case, we report in Figure 1 the 

average marginal predictions from the logit model by college attainment and survey year. From 

this figure, we can easily see that the absolute gap reduces over time because there is a general 

decline in support of racial segregation; this decline is steeper among non-college educated in 

absolute terms because they start at a higher level than the college educated. However, the 

relative difference does not change much, resulting in constant odds ratios.15 In conclusion, the 

support for racial segregation declined steadily over the period in question, resulting in a 

decline in the absolute college gap, but the relative difference between non-college and college 

did not change. 

[FIGIRE 1 ABOUT HERE] 

 
15 We also calculated risk ratios with this outcome definition (agreeing to the opinion) and the results are identical 
to those based on odds ratios, indicating that the relative gap has remained constant over time. 
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Discusssion 

We have introduced to sociologists the marginal odds ratio, an odds ratio that “behaves like” 

the increasingly popular average marginal effect (on the probability scale): The marginal odds 

ratio is unaffected by noncollapsibility, has a population-averaged interpretation, and is 

“derived from” a given model. We have demonstrated the close relationship between the 

marginal odds ratio and average marginal effects, and we have outlined why we believe that 

marginal odds ratios should be preferred over conditional odds ratios in many areas of 

sociology. 

 In addition to introducing to sociologists the marginal odds ratio as a complement to the 

reporting of average marginal effects, our defining the marginal odds ratio in terms of potential 

outcomes also highlights the crucial distinction between estimands and estimation (Lundberg, 

Johnson, and Stewart 2021). Many sociologists think of odds ratios as the exponentiated 

coefficients from logistic response models and have been trained in interpreting these 

coefficients as if they behave like coefficients from linear regression models. By separating the 

estimands from their estimation, as we do in this paper, we hope to contribute to sociologists 

being more precise about the quantities they are interested in estimating. 

 We have also presented empirical examples to illustrate the uses and interpretation of 

marginal odds ratios relative to the conditional counterparts or the average marginal effect. 

Although these examples are stylized, they represent types of analyses that are widespread in 

mainstream sociology. We show how overall conclusions can depend on the chosen estimand. 

As all of the estimands are equally valid from a statistical perspective, the choice should depend 

on the research question. For the examples we provided, the marginal odds ratio appears as an 

obvious candidate. However, in most applied research, it will be useful to report and interpret 

estimates of several estimands. In particular, reporting both average marginal effects and 
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marginal odds ratios could be very informative about absolute and relative differences, even if 

it results in the “flipped-signs phenomenon” (Bloome and Ang 2022). 

 For readers interested in an in-depth description of estimation techniques and the 

estimands they each recover, including user-written Stata software that implements the 

discussed methods, we refer to our technical companion paper (Jann and Karlson 2023). In the 

replication package for this paper, we share code and sample data that reproduce the two 

examples reported earlier. We hope that these tools will urge sociologists to consider using the 

marginal odds ratio and reporting it as a complement to average marginal effects in substantive 

research. 
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Tables and Figures 

Table 1. Odds ratios and average marginal effects of parental college attainment gap in college 
attainment unadjusted and adjusted for academic ability. The United States and Denmark. Standard 
errors in parentheses. 

 USA 
(N = 10,068) 

DNK 
(N = 2,185) USA/DNK  

1: MOR: Unadjusted 7.7 
(0.46) 

3.8 
(0.55) 2.03* 

2: MOR: Adjusted 2.5 
(0.13) 

2.5 
(0.33) 1.00 

3: COR: Adjusted 3.4 
(0.23) 

2.9 
(0.45) 1.17 

4: COR: Unadjusted (khb) 14.2 
(1.05) 

4.9 
(0.78) 2.90* 

5: AME: Unadjusted 0.43 
(0.01) 

0.31 
(0.03) 1.38* 

6: AME: Adjusted 0.17 
(0.01) 

0.20 
(0.20) 0.86 

Note: MOR is marginal odds ratio; COR is conditional odds ratio; AME is average marginal effect; khb is the 
Karlson-Holm-Breen decomposition method (using orthogonalized predictors). US data are from the NLSY79; 
the Danish data are from the Danish Longitudinal Survey of Youth. * indicates that the country difference in log 
odds ratios is statistically significant at a five percent level. 
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Table 2. Average marginal effects and marginal odds ratios of the college gap in the attitude toward 
racial segregation in 1976, 1981, 1986, 1991, and 1996. Standard errors in parenthesis. 

 AMELPM AMELOGIT MOR lnMOR 

1976 -0.215 
(0.019) 

-0.213 
(0.021) 

0.366 
(0.043) 

-1.006 
(0.118) 

1981 -0.180 
(0.013) 

-0.181 
(0.012) 

0.374 
(0.030) 

-0.983 
(0.079) 

1986 -0.146 
(0.009) 

-0.147 
(0.008) 

0.383 
(0.025) 

-0.959 
(0.065) 

1991 -0.111 
(0.011) 

-0.115 
(0.009) 

0.393 
(0.035) 

-0.934 
(0.089) 

1996 -0.076 
(0.017) 

-0.088 
(0.010) 

0.403 
(0.053) 

-0.909 
(0.130) 

1976–1996 difference 0.138 
(0.031) 

0.125 
(0.028) - 0.097 

(0.211) 

1976–1996 prop. reduction 64.4% 
(9.6) 

58.5% 
(7.7) - 9.7% 

(20.0) 
Note: MOR is marginal odds ratio; LPM is linear probability model; AME is average marginal effect. Estimates 
are adjusted for gender, race, age, marital status, and overall political view. Data are from General Social Surveys 
Cumulative File, N = 12,239. 
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Figure 1. Trends among college and non-college educated in the attitude towards whites’ right to live 
segregated from blacks, 1976–1996. Average marginal predictions. 

 
Note: Estimates are adjusted for gender, race, age, marital status, and overall political view. Data are from General 
Social Surveys Cumulative File, N = 12,239.  
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Appendix A 

Appendix Table A1. Linear probability and logit models of the college gap in the 
attitude toward racial segregation, 1976–1996.  

 Linear Probability Model Logit Model 

 B SE B SE 

year -0.0128 0.0034 -0.1113 0.0208 
college -0.2146 0.0193 -1.0500 0.1222 
age 0.0043 0.0006 0.0172 0.0033 
race (ref. white)     
 black -0.2556 0.0296 -0.1341 0.2203 
 other 0.0114 0.0637 0.0864 0.3619 
marital (ref. married)     
 widowed 0.0702 0.0274 0.2756 0.1410 
 divorced -0.0002 0.0245 0.0163 0.1356 
 separated 0.0029 0.0422 -0.1625 0.2417 
 never married 0.0175 0.0289 0.0770 0.1666 
polviews 0.0160 0.0057 0.0756 0.0317 
female 0.0018 0.0152 0.0101 0.0824 

     

year*college 0.0069 0.0015 0.0056 0.0109 
year*age 0.0000 0.0001 0.0007 0.0003 
year*race     
 year*black 0.0096 0.0024 0.0261 0.0192 
 year*other 0.0002 0.0046 0.0014 0.0283 
year*marital     
 year*widowed 0.0008 0.0024 0.0110 0.0130 
 year*divorced 0.0007 0.0019 0.0042 0.0117 
 year*separated 0.0019 0.0035 0.0186 0.0215 
 year*never married 0.0005 0.0023 0.0038 0.0144 
year*polviews -0.0004 0.0005 0.0003 0.0029 
year*female -0.0007 0.0013 -0.0057 0.0077 
constant 0.1669 0.0401 -1.3402 0.2206 

Note: Data are from General Social Surveys Cumulative File, N = 12,239. The variable year is centered 
around 1976 to facilitate interpretation of the main effects and interaction terms. 
 

 

 


