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Abstract

The fractionation of Mg isotopes was determined during the cyanobacterial mediated
precipitation of hydrous magnesium carbonate precipitation in both natural environ-
ments and in the laboratory. Natural samples were obtained from Lake Salda (SE
Turkey), one of the few modern environments on the Earth’s surface where hydrous5

Mg-carbonates are the dominant precipitating minerals. This precipitation was asso-
ciated with cyanobacterial stromatolites which were abundant in this aquatic ecosys-
tem. Mg isotope analyses were performed on samples of incoming streams, ground-
waters, lake waters, stromatolites, and hydromagnesite-rich sediments. Laboratory
Mg carbonate precipitation experiments were conducted in the presence of purified10

Synechococcus sp cyanobacteria that were isolated from the lake water and stromato-
lites. The hydrous magnesium carbonates nesquehonite (MgCO3·3H2O) and dypingite
(Mg5(CO3)4(OH)25(H2O)) were precipitated in these batch reactor experiments from
aqueous solutions containing either synthetic NaHCO3/MgCl2 mixtures or natural Lake
Salda water, in the presence and absence of live photosynthesizing Synechococcus15

sp. Bulk precipitation rates were not to affected by the presence of bacteria when air
was bubbled through the system. In the stirred non-bubbled reactors, conditions sim-
ilar to natural settings, bacterial photosynthesis provoked nesquehonite precipitation,
whilst no precipitation occurred in bacteria-free systems in the absence of air bubbling,
despite the fluids achieving a similar or higher degree of supersaturation. The extent20

of Mg isotope fractionation (∆26Mgsolid-solution) between the mineral and solution in the
abiotic experiments was found to be identical, within uncertainty, to that measured in
cyanobacteria-bearing experiments, and ranges from −1.4 to −0.7 ‰. This similarity
refutes the use of Mg isotopes to validate microbial mediated precipitation of hydrous
Mg carbonates.25
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1 Introduction

Traditional stable isotopes (C, O, N, S, B) have been used extensively to elucidate bio-
geochemical processes in aquatic lacustrine environments (e.g. Pentecost and Spiro,
1990; Peterson and Fry, 1987). The stable isotopic composition of “non-traditional”
metals such as Ca, Cu, Fe, Li, Mg, Zn are just starting to be used to understanding5

the processes operating in lake systems. Of these isotope systems, Mg is of particular
interest because: (1) it is a major component of the lake water; (2) it is an important
component of chlorophyll in aquatic microorganisms (Black et al., 2006, 2007); (3) hy-
drous Mg-minerals are known to form in lake sediments (Castanier et al., 1993; Power
et al., 2009), and (4) stable Mg isotopes fractionate more significantly compared to10

other alkaline earth metals such as Ca and Sr (Galy et al., 2002; Tipper et al., 2006;
Higgins and Schrag, 2010; Li et al., 2011; Schauble, 2011).

One of the most important processes controlling the biogeochemical cycling of Mg
in continental waters is carbonate biomineralization (Lowenstum and Weiner, 1989;
Dove, 2010). Cyanobacteria-induced mineralization has occurred in both ancient and15

modern environments since the Precambrian (Kempe and Kazmierczak, 1990; Knoll et
al., 1993; Brady et al., 2009; Planavsky et al, 2009; Raven and Giordano, 2009; Riding,
2000; Ries, 2010). Most modern freshwater cyanobacteria-dominated carbonate for-
mation is observed in alkaline aquatic environments with high Ca to Mg ratios (Scholl
and Taft, 1964; Müller et al., 1972; Otsuki and Wetzel, 1974; Kelts and Hsü, 1978;20

Pentecost, 1978; Stabel, 1986; Thompson and Ferris, 1990; Pedone and Folk, 1996;
Ferris et al., 1997; Thompson et al., 1997; Kazmierczak and Kempe, 2006; Dupraz et
al., 2009; Power et al., 2011), and produces various calcium carbonate minerals. In
contrast, the formation of Mg-rich carbonate minerals by cyanobacteria occurs only in
specific Earth surface environments, such as Lake Salda in Turkey, which is fed by ultra-25

mafic rock weathering products (e.g. Braithwaite and Zedef, 1994), alkaline lakes such
as those in British Columbia (Renaut, 1990; Power et al., 2007, 2009), and in some
saline lake sediments (Renaut and Long, 1989; Renaut and Douglas, 1990; Queralt et
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al., 1997). Interest in these Mg(HCO3)2 -dominated lakes has been recently stimulated
by discovery of Mg carbonates on the surface of the Mars, which may provide evidence
for the presence of Mg-rich waters (Calvin et al., 1994; Russell et al., 1999; Edwards
et al., 2005; Palomba et al., 2009).

The reaction rates and mechanisms of Ca-carbonate precipitation associated with5

cyanobacterial activity, both in liquid suspension (Hartley et al., 1995, Obst and Dit-
trich, 2006; Obst et al., 2009; Dittrich and Sibler, 2010; Kranz et al., 2010) and in
biofilms (Jorgensen et al., 1983; Cox et al., 1989; Hartley et al., 1996) are relatively
well understood. In contrast, the main biological and physico-chemical factors control-
ling hydrous Mg carbonate precipitation and Mg isotope fractionation in natural waters10

are still poorly constrained. In this regard, the alkaline Lake Salda (SW Turkey) rep-
resents an excellent natural laboratory where contemporary Mg carbonate precipita-
tion can be studied. Previous studies provided a comprehensive understanding of the
geology, lithology, biology, and mineral precipitation processes occurring in the lake
basin (e.g. Braithwaite and Zedef, 1994, 1996), and suggested that most of the hydro-15

magnesite (Mg5(CO3)4(OH)24H2O) microbialites (stromatolites) developed along the
lake coast were formed by cyanobacterial and algal activity (Braithwaite and Zedef,
1994). In this study we sampled Lake Salda waters, sediments, and stromatolites and
performed laboratory experiments to characterize the range and mechanisms of Mg
isotope fractionation occurring in this lacustrine environment. These results represent20

the first quantitative experimental and field calibration of Mg isotope fractionation be-
tween the aqueous solution and biotically and abiotically formed hydrous magnesium
carbonates under conditions similar to the lake water. As such, these results provide
the fundamental basis for using magnesium isotopes as a proxy for tracing biomineral-
ization processes in past and contemporary continental aquatic environments.25
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2 Materials and methods

2.1 Site description

Lake Salda (also known as Salda Gölü in Turkish) is located in SW Turkey and has a
surface area close to 45 km2 and an average depth of 80 m, with a maximum reported
depth of 200 m (see Fig. 1a). Its limnology, geology, and geochemistry has been exten-5

sively studied (Schmid, 1987; Braithwaite and Zedef, 1994, 1996; Russell et al., 1999;
Zedef et al., 2000; Kazanchi et al., 2004). This lake is a natural analogue for mineral
carbonation (e.g. Oelkers et al., 2008), as meteoric waters feeding the lake dissolve
adjacent ultramafic rocks and precipitate hydromagnesite in shallow littoral zones. This
is similar to the process recently documented in the British Columbia playas (Power et10

al., 2009). The lake has no outlet and the water level varies annually depending on
precipitation and evaporation.

Contemporary hydromagnesite stromatolites are developed in the coastal zone (lit-
toral) of the SW part of the lake, known as Kocaadalar Burnu, where they form three
20 to 100 m2 mounds situated ∼50 m offshore and rise ∼10 m from the lake bottom,15

reaching within 3–4 m of the lake surface. Similar to Braithwaite and Zedef (1994,
1996), we define all of the modern, actively grown microbialite structures as stroma-
tolites. Underwater diving examination of the deepest part of these mounds showed
no evidence of stromatolites below 6–10 m water depth. 1–1.5 m2 stromatolites were
found in other parts of the lake within 10–20 m of the shoreline (see Fig. 1b). Finally,20

at the littoral of the north side of the lake, most of the submerged stones were covered
by actively forming, non-solidified stromatolites (see Fig. 1c) that had the same surface
texture as the larger mounds. Detailed underwater examination of the stromatolite sur-
faces demonstrated that they are alive and actively growing. The mineral surface was
covered by a layer of green algae, diatoms, and cyanobacteria with oxygen bubbles25

adjacent to the surface of the microbial mats (see Fig. 1d).
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2.2 Lake water and mineral sampling

Water samples were taken from inflowing streams and the lake littoral zone in February
2008, February 2010, and September 2010. A profile of the lake water column (down
to 70 m depth) was also collected from the middle of the lake in September 2010 using
an Aquatic Research Co. horizontal polycarbonate water sampler, enabling ultraclean5

sampling in the field (Shirokova et al., 2010). The water samples were immediately
filtered through sterile, single-use Sartorius Minisart0.45 µm acetate cellulose filters.
The first 100 ml of the filtrate was systematically discarded. Dissolved oxygen, pH, and
temperature were measured on-site with an uncertainty of 5 %, 0.02 units, and 0.5 ◦C,
respectively. Concentrations of dissolved organic carbon (DOC), Cl, SO4, alkalinity,10

cations and trace element (TE) were subsequently measured in the laboratory using
methods routinely applied for analysis of lake and river water samples (Pokrovsky et
al., 2010, 2011; Shirokova et al., 2010; Vasyukova et al., 2010). From 2 to 5 liters of
surface water were also filtered on-site using a sterile Nalgene disposable filter unit
and 0.22 µm polycarbonate filters. These samples were stored in sterile polypropylene15

containers and subsequently used for the bacterial culturing. Once filtered, all water
samples were stored at 5 ◦C.

Hydromagnesite samples were collected from the massive stromatolite mounds of
Kocaadalar Burnu, other air-exposed stromatolite islands, and parts of stromatolites
collected from 4–5 m depth. We also sampled hydromagnesite sand from the beach20

and carbonate mineral coatings on submerged branches and grasses. A map of the
lake with position of sampling points is given in Electronic Supplementary Material
ESM-1.

2.3 Culture and characterization of cyanobacteria

A culture of Synechoccocus sp. cyanobacteria was isolated from the surface of coastal25

stromatolites sampled in February 2008 from the depth of 1 m at 50 m from the Lake
Salda shoreline. Cyanobacterial strains Chroococcus turgidus, Plankothrix, Anabaena,
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and Microcystis were reported to occur in adjacent Mg(HCO3)2-rich alkaline Lake Bur-
dur, SW Turkey (Girgin et al., 2004). The culture was purified on agar BG-11 or Pratt
media and individual colonies were grown in synthetic, cyanobacteria BG-11 Freshwa-
ter Solution for 3 weeks until the stationary growth phase was attained. Continuous
illumination at 2000 lx was provided from fluorescent lamps. Cyanobacterium Syne-5

choccocus typically consists of isolated elongated cells, without significant mucilage.
The phylogenetic affiliation of the collected and grown cyanobacterium Synechoc-

cocus was performed by DNA extraction (UltraClean® Microbial DNA Isolation Kit
MO BIO) and 16S RNA gene amplifying using bacterial-specific primer 27F (5’-
AGAGTTTGATCCTGGCTCAG) and prokaryote-specific reverse primer 1492R (5’-10

GGTTACCTTGTTACGACTT) – see Gerard et al. (2009) for the condition of PCR am-
plification) and sequencing (Cogenics, Beckman Coulter Genomics). The sequence
was then identified by Basic Local Alignment Search Tool (BLAST)against the National
Center for Biotechnology Information (NCBI) non-redundant nucleotides database. We
found that the purified culture and Synechoccocus sp. PCC 6312, already reported to15

occur in alkaline lakes and notably Lake Salda (Girgin et al., 2004), share 96 % their
16S RNA genes. The concentration of the bacterial cell suspensions was quantified
via optical density (O.D.) using a spectrophotometer at a wavelength of 750 nm (Hu et
al., 2000; Sarcina and Mullineaux, 2000). The O.D. calibration curve – wet weight was
linear up to 1.3 absorbance units and the ratio between wet and freeze-dried weight of20

Synechoccocus sp. was 8.0±2.0.
A similar cyanobacteria culture was isolated from the interior part of the stromatolite

and from the algal coating on submerged branches in inflowing stream. As such, this
culture can be viewed as representative of the Lake Salda peryphyton. Note that other
cyanobacterial species like Gloeocapsa sp. were also reported to occur in Lake Salda25

stromatolites and its water column (Braithwaite and Zedef, 1994). Therefore, several
experiments on the Salda Lake water were performed using a previously described
model Gloeocapsa sp. culture (Pokrovsky et al., 2008; Mavromatis et al., 2011).
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2.4 Laboratory precipitation experiments

Laboratory experiments were aimed at precipitating hydrous Mg carbonates in the
presence of the cyanobacterial cultures extracted from the Lake Salda stromatolites
under controlled conditions. Experiments were performed in 1000 ml sterile borosil-
icate glass reactors. Two distinct fluid phases were used in the experiments. One5

is a low-phosphate Cyanobacteria BG-11 freshwater solution medium (Sigma-Aldrich
C3061, Rippka et al., 1979); this fluid had the same composition as the BG-11 growth
medium other than for its phosphate concentration, which was 50 µM or 10 % that of the
traditional BG-11. The second was the cell supernatant (sterile filtered BG-11 media
after 14–30 days of culture growth during the stationary phase), into which 0.025–10

0.030 M MgCl2 and ∼0.05 M NaHCO3 were added. In addition, sterile Lake Salda
water, (0.014 M Mg, 0.03 M DIC) amended with low-phosphate BG-11 nutrient com-
ponents, was used for additional bacterial growth experiments. A summary of these
reactive fluid compositions is provided in Table 1.

Several distinct types of biotic experiments were performed at 25±2 ◦C. Experiments15

S-Bio-2, S-Bio-5, and S-Bio-7 were performed in reactors that were continuously stirred
with a magnetic stirring bar and bubbled with sterile humid air with an average flow rate
of 1.5±0.3 L/min. Experiments S-Bio-1, S-Bio-3, S-Bio-4, and S-Bio-6 were performed
in reactors that were stirred, but without air bubbling. Experiments S-Bio-8, S-Bio-9,
and S-Bio-10 were run without shaking and bubbling. Each of these experiments was20

performed under continuous fluorescent light of 30 µmol photon m−2 s−1.
Abiotic, cell-free control experiments were also performed at a variety of conditions.

Experiment S-Abio-1 was performed with stirring and air bubbling in the presence of a
sterile supernatant of the Synechoccocus sp. cyanobacteria containing 50±10 mg l−1

of dissolved organic carbon (DOC) in the form of cell exometabolites in which MgCl225

and NaHCO3 were added in concentrations similar to those of the biotic experiments.
The supernatant solution used in these abiotic experiments was generated after cen-
trifugation and filtration through a 0.22 µm sterile filter of the Synechoccocus sp. culture
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collected ∼20 days after attainment of the stationary phase. Abiotic control experi-
ments S-Abio-2, S-Abio-5, and S-Abio-6 were performed without air bubbling in sterile
Lake Salda water amended with low-phosphate BG-11 culture media. Experiment S-
Abio-4 was performed without air bubbling in a solution having elevated concentrations
of Mg and alkalinity (0.05 M MgCl2 +0.1 M NaHCO3). All abiotic experiments were per-5

formed in the presence of 0.01 M NaN3 to prevent potential microbial growth.
One additional experiment, S-f, was run to assess Mg consumption and isotopic

fractionation by Synechoccocus sp. without carbonate precipitation. This experiment
was performed in the absence of dissolved MgCl2 and NaHCO3 and Synechoccocus
sp. was grown in BG-11 medium. The fluid phase and biomass in this experiment was10

sampled after 5 days and 3 months of growth.

2.5 Sampling and analyses

30–50 ml aliquots of the homogeneous suspension (containing the fluid, precipitated
mineral phase, and cells if present) were sampled periodically from the reactors in a
sterile laminar hood box. The optical density and pH were measured in liquid sub-15

samples, whilst the solution supernatants were initially filtered, using 0.22 µm filters,
and used for alkalinity, DOC, and Mg concentration measurements. Trace elements
were measured without preconcentration by ICP-MS (e.g., Pokrovsky et al., 2010,
2011). Alkalinity was determined by HCl titration using an automatic Schott TitroLine
alpha TA10plus titrator with an uncertainty of ±2 % and a detection limit of 5×10−5 M.20

The DOC content was determined using a Shimadzu TOC-6000 SCN Carbon Total
Analyzer with an uncertainty of 3 % and a detection limit of 40 µ M. Magnesium con-
centrations were measured by flame atomic absorption spectroscopy using a Perkin
Elmer AAnalyst 400 with an uncertainty of ±2 % and a detection limit of 0.2 µM. pH
was measured using a Mettler Toledo combined electrode, with a precision of ±0.01.25

The uncertainty of biomass concentration determination via optical density is estimated
to be ±10 %.
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Prior to sample characterization by Scanning Electron Microscopy (SEM), organic
matter was removed from the solid phases by treating them with 10 % H2O2 for 2–3
days at the same pH as the experimental fluids. The residual solids were then thor-
oughly rinsed with de-ionized water and freeze dried at −55 ◦C. The mineral phases
were then characterized using a Jeol JSM840a SEM, and an INEL CPS 120 X-ray5

diffractometer using Coκα, with a scan speed of 0.02 ◦ s−1. Untreated solids were kept
for chemical analysis as described below.

Transmission Electron Microscopy (TEM) analysis was performed using the TEM-
SCAN facilities of the University of Toulouse, with a JEOL JEM 2100F unit equipped
with a field emission gun (FEG) source and a PGT EDX detector. TEM samples for10

analyses were prepared by immersing 200 mesh copper grids coated with a carbon
film for 10 s in solutions containing live bacteria taken from the experiments that ei-
ther produced or did not produce mineral precipitates. To minimize the potential effect
of crystallization from salts present in reactor solutions on TEM/EDX measurements,
20 ml aliquots were centrifuged at 4000 rpm for 10 min and washed twice with sterile15

MilliQ water. Grids were dried and covered with a 20 nm carbon layer prior to TEM
analysis.

2.6 Magnesium isotope analyses

The Mg isotope compositions of liquid and solid samples collected in the field and pro-
duced during laboratory experiments were analyzed according to the procedure de-20

scribed by Mavromatis et al. (2011). Magnesium isotopic ratios were measured using
a Thermo-Finnigan “Neptune” Multi Collector Inductively Coupled Plasma Mass Spec-
trometer (MC-ICP-MS) at the GET (Toulouse, France). Instrumental mass fractionation
effects were corrected via sample-standard bracketing, and all results are presented in
delta notation with respect to the DSM-3 international reference material (Galy et al.,25

2001):
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δxMg=


( xMg

24Mg

)
sample(

xMg
24Mg

)
DSM3

−1

 ·1000 (1)

where x refers to the Mg mass of interest. The reproducibility of these δ26Mg analyses
was typically <0.08 ‰ and was confirmed by replicate analyses of three international
Mg reference standards (DSM-3, CAM-1 and OUMg). The isotopic offset between the
Mg in the fluid and that incorporated into the solid phase is defined as:5

∆26Mgsolid-liquid ≡δ26Mgsolid−δ26Mgliquid (2)

This value was determined for all samples where both the fluid and solid phases were
collected in the present study.

3 Results

3.1 Chemical and Mg isotopic composition of Lake Salda water and minerals10

3.2 Hydrochemistry

The major and trace element compositions of all collected samples are listed in the
Electronic Supplementary Material (ESM) 1. The Mg concentration, alkalinity, and
pH values measured in Lake Salda waters and inflowing streams are in general in
agreement with values reported by Braithwaite and Zedef (1994, 1996) and Kazanci et15

al. (2004). In February 2008 and February 2010, the surface water temperature was
around 8–10 ◦C whereas in September 2010, it varied from 27.5 ◦C at the surface to
13 ◦C at 70 m depth. The most significant stromatolite growth occurs during the summer
(Braithwaite and Zedef, 1996) and as such, detailed chemical and isotopic analysis of
the lake water composition was performed on water samples collected during Septem-20

ber 2010. At this time, pH decreased from 9.20±0.05 at the surface to 9.03±0.03
6483
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at the bottom of the water column; DOC concentrations ranged from 4.5 to 3.5 mg l−1,
whilst Alkalinity and Mg, Ca, and Cl concentrations remained constant in the water
column and were equal to 0.032±0.001 mol l−1, 390±5 mg l−1, 4.0±0.1 mg l−1 and
195±5 mg l−1, respectively. The Mg concentration of incoming streams and groundwa-
ters was ∼3 times lower than the lake water, and were thereby strongly undersaturated5

with respect to nesquehonite.

3.2.1 Stromatolite mineralogy

The examined stromatolites were dominated by hydromagnesite, as shown by XRD
analysis of multiple spots of a 20 cm-thick representative sample and littoral sediments.
The carbonate sand of the littoral zone of the lake (the white deposits shown in Fig. 1a)10

wad also composed of hydromagnesite as it originated from the wave abrasion of grow-
ing stromatolites (Braithwaite and Zedef, 1996). The external stromatolite surface had
a typical honeycomb-like structure (see Fig. 2a, b), likely formed by the heterotrophic
degradation of cyanobacteria cell which are mineralized within their ExoPolySaccha-
ride (EPS) layers (e.g. Dupraz et al., 2004). Platelets of hydromagnesite were clearly15

seen in the inner parts of stromatolites, which were not exposed directly to lake wa-
ter (see Fig. 2d). Similar needle-like habits occur on hydromagnesite covering sub-
merged solids such as tree branches (see Fig. 2c). These crystal forms were com-
monly observed and they are abundant in all investigated hydromagnesite samples.
The imprints of Pyrogira green algae were often recognized by the SEM on stromatolite20

surfaces (not shown) as these algae efficiently colonized active stromatolite surfaces
forming visible air bubbles (see Fig. 1d).

3.2.2 Mg isotopes

The δ26Mg composition of the water column was homogeneous at the time of sampling
(September 2010), and it did not vary between different sites in the littoral zone, or25

due to the presence of stromatolites (see Table 2). The mean δ26Mg composition of
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the water column in September 2010 was 0.12±0.04 ‰, but was found to be slightly
lighter at the other sampling times; the mean δ26Mg composition of the water found
to be −0.005 and −0.02 ‰ in February 2008 and February 2010 respectively. The
incoming spring and ground waters had lighter δ26Mg compositions ranging between
−1.4 and −0.8 ‰. The internal and external parts of stromatolites and the littoral sand5

exhibited δ26Mg composition of −0.99±0.07 ‰.

3.3 Experimental modeling of hydrous Mg carbonate precipitation in laboratory

The measured chemical composition of the reactive fluids and the mineralogy of precip-
itated solid phases are listed in the Table ESM-2 of the Electronic Supporting Material
and are described in detail below.10

3.3.1 Solid phases

X-ray diffraction analysis demonstrated the precipitation of nesquehonite
(MgCO33H2O), dypingite (Mg5(CO3)4(OH)25H2O), and hydromagnesite
(Mg5(CO3)4(OH)24H2O) at distinct times during the experiments. Nesquehonite
precipitation was limited to the first 12–23 days of experiments S-Bio-2 and S-Bio-5,15

but it was present after 48 days in experiment S-Abio-4, which was performed in
fluids two times more enriched in Mg and DIC. Two biotic experiments (S-Bio-1 and
S-Bio-2) yielded brucite at the end of the experiment with nesquehonite followed by
dypingite at the beginning. For the majority of the abiotic (S-Abio-1, S-Abio-3) and
some biotic experiments (S-Bio-2, S-Bio-3 and S-Bio-5), dypingite or mixtures of20

dypingite and hydromagnesite, were the main mineral phases present at the end of
experiment. Experiments performed on Lake Salda water without air bubbling often
yielded hydromagnesite. SEM images (see Fig. 2e–j) revealed that nesquehonite
exhibited a needle-like habit (see Fig. 2e), whilst the dypingite was present as 2 to
10 µm diameter aggregates that grow with time to 5–15 µm rosettes (see Fig. 2f).25

The hydromagnesite was characterized by 0.5–1 µm size rounded elongated crystals
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forming large associates (see Fig. 2g). Overall, the sequence of precipitation and
recrystallization appears to be: nesquehonite (20–120 µm long, 10±5 µm wide
needles,) → dypingite (5–15 µm rosettes) → hydromagnesite 20–40 µm (aggregates).

It is worth noting that the hydromagnesite crystal associates formed in fluids con-
taining Gloeocapsa sp. cyanobacteria during experiment S-Bio-8 (see Fig. 2h) were5

surprisingly similar to the external surface of Lake Salda stromatolites (see Fig. 2a,
b), whereas the rosette-like dypingite and hydromagnesite aggregates obtained in ex-
periments with Synechoccocus sp. cyanobacteria during experiment Exp S-Bio-10
(Fig. 2f) and Exp S-Bio-3 (Fig. 2i) were similar to the natural hydromagnesite coatings
of submerged surfaces in Lake Salda (see Fig. 2c). Note the shape of hydromagnesite10

crystals formed in experiment S-Bio-3 (Fig. 2g) was similar to that of coccoid Syne-
choccocus sp. cyanobacteria (see Fig. 3), suggesting some embedding of the cells.
Such an embedding of cells and cell associates was evident in experiment Exp S-Bio-
11 which was performed with Gloeocapsa sp. cyanobacteria cultured 40 days in Mg,
HCO3-enriched BG-11 media (see Fig. 2j) and was likely responsible for the typical15

honeycomb structure of Mg hydrous carbonates formed in the presence of cyanobac-
teria (see Fig. 2h) as well as in natural stromatolites (see Fig. 2a, b).

The TEM examination of bacteria grown during 2 weeks in low-phosphate BG-11
nutrient media containing initially 0.025 M MgCl2 +0.05 M NaHCO3 evidenced the pres-
ence of nanometer-size spherulite crystals assembled in network-like 1–2 µm sized as-20

sociates usually adjacent to the surfaces of live cells (see Fig. 3a, d, e). In addition,
mineral coating of whole cell surfaces (see Fig. 3c) or cell sheaths (see Fig. 3b) was
frequently observed. Cells grown in Mg2+, HCO−

3 low nutrient media remained mineral
precipitate-free (see Fig. 3f).

3.3.2 Chemical composition of the fluid phase25

The temporal evolution of pH and Mg concentration in all experiments as well as
the temporal evolution of alkalinity and biomass concentrations during representative
experiments are illustrated in Fig. 4. The Mg concentration and alkalinity of the reactive
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fluids tended to decrease and the pH tended to increase with time during all biotic
experiments, notably those with air bubbling (see Fig. 4a, c, e). Abiotic stirred experi-
ments without air bubbling did not produce a measurable decrease in Mg concentration
or alkalinity, although a slight pH increase was observed (Fig. 4b, d, f). The stirred bi-
otic experiments both with and without air bubbling produced very similar variations in5

pH, Mg concentration, and alkalinity (see Fig. 4), though the biomass production was
a factor of two higher in experiments with air bubbling (see Fig. 5). The addition of
nutrient BG-11 components to Lake Salda water had a significant effect on biomass
production and Mg hydrous carbonate precipitation, as evident from the decrease in
Mg concentration (see Fig. 6).10

The mass of precipitated hydrous magnesium carbonate is plotted as a function of
the measured biomass present in the reactor fluid in Fig. 7. The line drawn in this figure,
consistent with all the results of all experiments containing biomass can be described
by:

Mgprecipitated(mmoles)= (7.1±0.9)×Biomassproduced(gwet),r
2 =0.93−0.84 (3)15

Converting this relationship into molar scale and taking into account that the ratio of
wet to dry biomass of Synechoccocus sp. is 8±2 and that the proportion of carbon
in dry biomass is 50 % yield the molar inorganic Mg to organic C ratio in reaction
product of 1.4 ± 0.2. This value is compatible with the theoretical Mg/Corg ratio of 1 for
nesquehonite as first precipitating phase during cyanobacterial photosynthesis:20

Mg2++2HCO−
3 +3H2O=MgCO3 ·3H2O ↓+CH2O+O2 ↑ (4)

The speciation and saturation state of the reactive fluids with respect to potentially pre-
cipitating mineral phases for all experiments was calculated using PHREEQC software
together with its MINTEQA2 database (Parkhurst and Appelo, 1999). The speciation
of aqueous Mg during the experiments was dominated by aqueous Mg2+, but also25

contained significant concentrations of MgCO−
3 (aq) and MgHCO◦

3. The evolution of the
saturation state of the reactive fluids during the biotic and abiotic experiments with and
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without air bubbling is illustrated in Fig. 8a and b, respectively. The initial fluid super-
saturation state with respect to nesquehonite, the first precipitating phase, ranged from
0.2 to 0.6, at the beginning of the experiments, then maximized to 0.8–1.6 , before
massive mineral precipitation, after which it decreased to 0.1–0.3. The saturation state
of these fluids with respect to dypingite was not calculated owing to lack of relevant5

thermodynamic data. Experiments with lower HCO−
3 concentrations and thus a lower

degree of supersaturation (≤0.3) failed to produce sufficient mineral precipitation for
analysis. The abiotic experiments resulted in mineral precipitation only when air bub-
bling was applied; the stirred no-bubbling experiments failed to precipitate detectable
quantities of hydrous Mg carbonate, despite the fact that Ωnesquehonite was similar or10

even higher than that in the biotic experiments (see Fig. 8b).
Apparent precipitation rates (ri ) were calculated from the first derivative of the fluid

phase Mg concentration with respect to time, from the onset of precipitation to the
attainment of constant fluid Mg concentrations using:

ri =
dcMg

dt
. (5)15

where cMg stands for the concentration of Mg in the reactive fluid and t designates
time. Experiments performed in the presence of sterile humid air bubbling attained
steady-state Mg concentrations over shorter time periods (12±3 days) and exhibited
approximately twice higher apparent precipitation rates compared to bubbling-free ex-
periments. Under similar environmental conditions (Mg, alkalinity, bubbling regime),20

the precipitation rate measured in biotic experiment S-Bio-2 was significantly higher
than that measured in its abiotic counterpart (experiment S-Abio-1).

3.3.3 Magnesium isotopic composition

Mg-isotope analyses were performed on selected samples of experiments S-Bio-1, S-
Bio-2, S-Abio-1, S-Abio-4, and S-Abio-5 where nesquehonite and dypingite were the25

main precipitated mineral phases. The Mg isotope compositions for all of the analyzed
6488
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samples are given in Table 3, and the evolution of δ26Mgsolid-solution during the experi-
ments is plotted in Fig. 9. All of the experiments exhibited mass-dependent fractiona-
tion between the liquid and the solid phase. The precipitated hydrous Mg carbonates
had δ26Mg compositions that were 0.5–1.4 ‰ lighter than their liquid counterparts,
whilst the precipitated brucite was only 0.1–0.2 ‰ lighter than the aqueous solution.5

The isotopic composition of Synechoccocus sp. cells from the mineral-free experiment
was found to be 0.15 ‰ heavier than the growth medium.

Based on analysis of solution chemical and isotopical composition, there was no
evidence for any relationship between the extent of Mg fractionation and the fluid
pH, IAPhydromagnesite, Mg, alkalinity and biomass concentrations. Generally, during the10

course of experiments in which a single mineral hydrous Mg carbonate phase was
precipitated (e.g. S-Bio-5, S-Abio-1), the ∆26Mgsolid-liquid values were found to remain
constant (see Fig. 9a, b).

4 Discussion

4.1 Comparison of Lake Salda sediments and laboratory precipitates15

Although stromatolites from Lake Salda have been extensively studied in the past, the
present study confirmed the dominance of hydromagnesite (Mg5(CO3)4(OH)24H2O) as
the main mineral of these microbialites. The external surface of stromatolites had an
extremely porous, void-like, honeycomb-like structure reflecting the presence of bac-
terial associates or cyanobacterial colonies. The persistence of hydromagnesite both20

in the lake littoral sediments and in live microbialites confirmed its long-term stability in
the lake water. This observation agrees with reports of hydromagnesite’s dominance
in alkaline playas of British Columbia (Power et al., 2009) and the persistence of hy-
dromagnesite in other alkaline lake sediments (Renaut and Long, 1989; Queralt et al.,
1997).25
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The bottom waters of the lake and the incoming streams were undersaturated with
respect to hydromagnesite and nesquehonite, which suggests the importance of both
(i) microbial photosynthetic activity and (ii) surface temperature in creating the fluid
supersaturation necessary for mineral precipitation.

In contrast to the natural samples, experiments produced mainly nesquehonite and5

dypingite in both biotic and abiotic systems. Although the transformation of nesque-
honite into hydromagnesite is relatively fast (on the order of weeks) it has only been
studied at elevated temperatures (Davies and Bubela, 1973; Hopkinson et al., 2008).
These same authors also suggested that dypingite (Mg5(CO3)4(OH)25(H2O)) may rep-
resent an intermediate metastable phase during the transition of nesquehonite to hy-10

dromagnesite. This is in agreement with the results of our long-term experiments (S-
Bio-8, S-Bio-9 and S-Bio-10) where the transformation of dypingite to hydromagnesite
occurred. This long-term transformation can explain the presence of less stable in-
termediate phases (e.g. nesquehonite and dypingite) in experiments run at 25 ◦C for
only 14 to 42 days. Similarly, Power et al. (2007), reported dypingite formation in biotic15

mesocosm experiments, and nesquehonite formation in abiotic control experiments
performed in the presence of a microbial consortia isolated from Atlin Playas, British
Columbia, Canada, at a pH of ∼9.5

A striking similarity was observed between hydrous Mg carbonates forming at the
surface of live stromatolites in Lake Salda (see Fig. 2b) and those precipitating in long-20

term laboratory experiments in the presence of Gloeocapsa sp. (see Fig. 2h), as well as
in numerous field observations (e.g. Fig. 9c and Fig. 11 in Dupraz et al., 2004). Dupraz
et al. (2009) observed that discontinuous EPS calcification generates a micropeloidal
structure resulting from the presence of coccoid clusters or filamentous bacteria rem-
nants. Furthermore, these authors reported that no precipitation is observed in or on25

the sheaths of cyanobacteria, and only a negligible precipitation is directly associated
with the inner layers of the active filamentous cyanobacteria mats. Instead, precipita-
tion occurs at the uppermost mat layer, which is composed of EPS, empty filamentous
bacteria, and coccoids (Gloeocapsa spp.). Results of the present study corroborates
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the mechanism of honeycomb - like structure formation via hydrous Mg carbonate pre-
cipitation due to the presence of EPS and cell capsules.

The amount of precipitated hydrous Mg carbonate and biomass production were
highly correlated (r2 ∼ 0.9) in our laboratory experiments which was consistent with
theoretical mineral yield during the biomass production (see Fig. 7). Moreover, the5

mineral yield due to microbial photosynthesis and, thus, mineral precipitation rates,
were very similar among different experiments despite the fact that the experiments
were performed in various distinct fluids, durations, biomass concentration, and air
bubbling regimes. Given the large variety of investigated conditions, we suggest that
the linear relationship shown in Fig. 7 (Eq. 3) can be used for the quantitative predic-10

tion (±25 %) of the amount of hydrous Mg carbonate precipitation in the presence of
photosynthesizing cyanobacteria.

4.2 The mechanisms of Mg carbonate precipitation in the presence of
cyanobacteria

Carbonate mineral formation in the presence of photosynthetic bacteria has been at-15

tributed to the alkaline environment produced due to release of hydroxyl ions as a
result of photosynthesis (Thompson and Ferris, 1990; Douglas and Beveridge, 1998).
pH was observed to increase in all experiments, although this increase was almost
negligible in abiotic experiments performed without air bubbling. In the abiotic experi-
ments, this pH increase originated from the degassing of the initial reactive fluid which20

contained 3–5×10−2 mol kg−1 NaHCO3 at pH ∼8.2–9.2. Owing to this high aqueous
bicarbonate content, these initial fluids had a pCO2 of ∼(0.3–10)×10−2.0 atm, which
is supersaturated with respect to the atmosphere. The bubbling of sterile humid air
liberated CO2 from the reactive fluid leading to both an increase in pH and degree of
supersaturation with respect to Mg carbonate minerals. In the biotic experiments, this25

pCO2 decrease was accompanied by an additional pH increase due to photosynthetic
uptake of HCO−

3 ions and OH− release.
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In contrast, the lack of precipitation in abiotic, non-bubbling experiments may stem
from insufficient fluid supersaturation occurring in the vicinity of cells during photo-
synthesis (e.g., Pokrovsky and Savenko, 1994). A significant degree of supersatura-
tion, which can occur in microbial mats due to a local rise in pH in calcium system
(Jorgensen and Revsbech, 1983; Shiraishi et al., 2008), was apparently necessary to5

initiate nesquehonite precipitation. This increase in supersaturation could not be de-
tectable in our bulk solution Ω versus time plot (Fig. 8). It seems likely therefore that live
photosynthesizing cells may also have acted as nucleation centers due to high local
supersaturation in our experiments.

Results of the experiments performed in axenic cultures suggest that cyanobacteria10

increase the pH of the bulk solution (hence increasing the degree of fluid supersatu-
ration) and provide favorable nucleation sites. Given the presence of microcrystalline
mineral precipitates near cell walls and at cell surfaces (see Fig. 3) we suggest that
cyanobacterial polysaccharides play a significant role in Mg hydrous carbonate pre-
cipitation. A similar connection was proposed for Ca carbonate precipitation (e.g.,15

Braissant et al., 2003, 2007; Dittrich and Sibler, 2010). The role of cyanobacterial
polysaccharides on Mg hydrous carbonate precipitation is further confirmed by the
similarity of hydrous Mg carbonate crystals observed in natural microbialites and those
grown in laboratory cultures (see Fig. 2b and h). The capacity of a single culture to pre-
cipitate carbonate crystals with a similar form as those of microbial consortia of Lake20

Salda stromatolites may have important consequences on Mg-rich carbonate forma-
tion mechanisms, before the appearance of massive CaCO3 formation in the ocean.
If the presence of live cyanobacteria is capable of inducing hydromagnesite precipita-
tion simply by increasing pH and supersaturation and without specific action of other
bacteria, then the formation of Mg-rich stromatolites in the Precambrian could occur25

via the simplest life forms, before the emergence of complex microbial consortia. This
conclusion questions the role in magnesium carbonate precipitation of the postmortem
decomposition of cyanobacterial sheaths by heterotrophic bacteria as suggested for
ancient dendritic reef structures (Laval et al., 2000).
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It is widely accepted that actively metabolizing microbial cells can avoid calcium car-
bonate mineral encrustation and cell entombment (Thompson et al., 1997; Aloisi et al.,
2006; Bontognali et al., 2008; Martinez et al., 2010) via cell electric potential regula-
tion, S-layer formation, and extracellular EPS generation (e.g., Krumbein et al., 1977;
Chafetz and Buczynski, 1992; Arp et al., 1999a, b; Martinez et al., 2008). Unlike biocal-5

cification (Dupraz et al., 2009; Martinez et al., 2010; Bundeleva et al., 2011), hydrous
Mg carbonate formation does not appear to trigger a cell protection mechanism. The
presence of hydrous Mg carbonate nanoclusters at the surface of live cells, detectable
in the TEM images (see Fig. 3a, d, e), and the complete cell encrustation by precipi-
tated mineral seen by the SEM (Fig. 2h, j) suggests a significant role of the cell surface10

in governing hydrous Mg carbonate formation in the presence of cyanobacteria.
An additional difference between calcite versus hydrous Mg carbonate nucleation at

the vicinity of photosynthesizing cells may be the different size of forming crystals. Un-
like calcite or dolomite submicron nano-globulles (e.g. Aloisi et al., 2006; Bontognali et
al., 2008; Spadafora et al., 2010), the first precipitated hydrous Mg carbonate, nesque-15

honite, are 50 to 200 µm length crystals (Fig. 2I) and as such they cannot encrust
the small Synechoccocus. Similarly, rosette-like dypingite crystal aggregates (Fig. 2f,
i), formed at the second stage of experiment are also too large to cover completely
cyanobacterial cells at the beginning of incrustation. Only at the stage of hydromag-
nesite formation at the end of experiment (Fig. 2h, j) does massive embedding and20

encrusting becomes possible due to (i) the small size of hydromagnesite platelets, and
(ii) the presence of dead cells which are easier to mineralize (e.g., Chafetz and Buczyn-
ski, 1992; Martinez et al., 2010).

4.3 Mg isotope fractionation

The extent of Mg isotope fractionation between cells and aqueous solutions25

(δ26Mgsolid-solution) due to cell surface adsorption and intracellular uptake during Syne-
choccocus sp. Growth was equal to 0.152 ‰. This value is similar to the fractionation
factor observed during Gloeocapsa sp. cyanobacteria growth (Mavromatis et al., 2011).
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Black et al. (2006) reported that chlorophyll-a, isolated from cyanobacterium S. elon-
gates, preferentially incorporates light Mg isotopes with a fractionation factor of −0.71
to −0.53 ‰ depending on the growth stage. However, the chlorophyll represents small
fraction of total cell Mg, compared to the cytoplasm. As such, there may be significant
variation of the Mg isotopic ratio in different cell fractions, with cytoplasm being “heav-5

ier” than the chlorophyll. Unlike other essential metals, Mg is not exchanged during the
cell division, but once taken up by the cells, remains inside them (Silver and Walder-
haug, 1992). This explains the light Mg isotope composition of mineral-free biomass,
collected after 5 days and 3 months (see Table 3).

During the abiotic experiment S-Abio-1 in the presence of air bubbling, the pre-10

cipitated dypingite exhibited a δ26Mgsolid-solution value between −1.4 ‰ and −1.25 ‰,
whereas abiotic experiment S-Abio-4 without bubbling produced only nesquehonite
with δ26Mgsolid-solution =−0.47 ‰. In contrast, the biotic experiment with bubbling (ex-
periment S-Bio-5) yielded nesquehonite slightly lighter than its abiotic counterpart and
depleted in 26Mg compared to the fluid phase. Finally, biotic experiments produced15

brucite with δ26Mgsolid-solution =−0.2 ‰ to −0.1 ‰. Overall, we observed a systematic
enrichment of minerals by isotopically light Mg in the order brucite < nesquehonite <
dypingite with dypingite fractionation factors similar to that reported for hydrous Mg car-
bonates formation in the presence Gloeocapsa sp. cyanobacteria (Mavromatis et al.,
2011). The preferential incorporation of light Mg isotopes in the precipitating solids is20

consistent with previous Mg isotope analyses on biogenic skeletal carbonates (Chang
et al., 2004; Buhl et al., 2007; Hippler et al., 2009) and abiotically precipitated low
Mg-calcite (Galy et al., 2002; Immenhauser et al., 2010).

The ∆26Mgsolid-liquid values were almost constant as a function of elapsed time (see
Fig. 9a) and the fraction of Mg remaining in solution (see Fig. 9b). The nearly con-25

stant ∆26Mgsolid-liquid values for each mineral phase were consistent with a closed-
system equilibrium fractionation model. This suggests a continuous isotopic ex-
change/equilibration between the precipitated hydrous Mg-carbonates and the reac-
tive fluid (Criss, 1999). Taking into account earlier results for dypingite (Mavromatis
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et al., 2011) and for other hydrous Mg carbonates (this work), it can be assumed that
hydrous Mg-carbonate minerals are in a continuous isotopic equilibrium with the fluid
phase in aquatic environments. This conclusion is consistent with our observations
that the precipitated magnesium phase transforms several times during the temporal
evolution of each experiment. The exchange does not seem to be appreciably affected5

by physicochemical factors such as pH, pCO2, Mg and DIC concentration or biological
activity

The isotopic shift between solid and solution observed in the laboratory is in close
agreement with that found in the Salda lake ecosystem (see Fig. 10). As Salda lake is
a closed basin, assuming the Mg concentration of the lake water is constant, the mass10

of Mg arriving to the lake must equal that precipitated in the form of magnesium car-
bonates. Consequently, mass balance requires that the precipitated hydromagnesite
exhibit the same Mg isotopic offset as that between the incoming streams and ground-
waters versus the Salda lake water. This is exactly what was observed. A δ26Mg offset
of 1.0–1.4 ‰ was observed between the Salda lake water and the incoming streams15

and groundwaters; both naturally forming and laboratory synthesized magnesium car-
bonates were 1.0–1.4 ‰ lighter than their corresponding fluid phase. It is important to
note that the presence of biofilms and other, heterotrophic bacteria in natural stroma-
tolites apparently, had an insignificant effect on the overall isotopic fractionation factor
compared to the laboratory cyanobacteria monocultures.20

A very significant observation in this study is that the Mg isotope fractionation found
in abiotic precipitation experiments was nearly identical to that found in biotic exper-
iments and in the natural system. This similarity refutes the use of Mg isotopes to
validate microbial mediated precipitation of hydrous Mg carbonates. Similar, if our
observation of continuous Mg isotope exchange between hydrous Mg-carbonates and25

aqueous solutions is general, the Mg-isotopic signature of hydrous Mg-carbonates can-
not be used as a paleoproxy tool. Furthermore, assuming that the observed closed
isotopic equilibrium indicates a dissolution/re-precipitation process, a similar isotope
exchange mechanism for oxygen and carbon may also occur.
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5 Conclusions

The hydrochemistry of Lake Salda and field observations suggested a strong microbial
control on hydrous Mg carbonate precipitation in the upper layers of the lake. Labora-
tory experiments with cyanobacteria culture Chroococales sp. isolated from live stro-
matolite resulted in the precipitation of the hydrous magnesium carbonates nesque-5

honite and dypingite under various laboratory conditions. We discovered a universal
dependence between the amount of Mg carbonate precipitated and bacterial biomass
production, consistent with theoretical ratio of mineral precipitation during photosyn-
thesis. This relationship can be used to reconstruct paleoproductivity based on the
amount of accumulated Mg carbonates. All laboratory experiments yielded similar bulk10

hydrous magnesium carbonate precipitation rates, although the pH of the reactive fluid
was 0.5–1.0 units higher in biotic compared to abiotic experiments. Taken together
these observations suggest that the presence of cyanobacteria is required to increase
solution pH and thus the fluid supersaturation state as well as to provide nucleation
sites at the cell surface. No cell protection mechanisms was evident to avoid cells15

encrusting and entombment by precipitating hydrous Mg carbonates. The difference
between the identity of mineral precipitates and solution 26Mg concentration obtained
from abiotic experiments were similar within uncertainty of those obtained in the pres-
ence of Synechoccocus sp. and in previous experiments performed in the presence
of Gloeocapsa sp. cyanobacteria. Considering that similar ∆26Mgsolid-liquid values were20

observed between inflow waters and hydromagnesitic stromatolites of Lake Salda, it
can be inferred that a continuous exchange of Mg-isotopes occurred between the solid
and liquid phase. This conclusion suggests that the Mg isotopic composition of hydrous
Mg carbonates cannot be used as a paleoproxy tool.

Supplementary material related to this article is available online at:25

http://www.biogeosciences-discuss.net/8/6473/2011/
bgd-8-6473-2011-supplement.pdf.
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Kazanci, N., Girgin, S., and Dügel, M.: On the limnology of Salda Lake, a large and deep soda

lake in southwestern Turkey: future management proposals, Aquatic Conservation: Mar.
Freshw. Ecosyst., 14, 151–162, doi:10.1002/aqc.609, 2004.

Kazmierczak, J. and Kempe, S.: Genuine modern analogues of Precambrian stromatolites from25

caldera lakes of Niuafo’ou Island, Tonga, Naturwissenschaften, 93, 119–126, 2006.
Kelts, K. and Hsu, J.: Freshwater carbonate sedimentation, in: Lakes – chemistry, geology,

physics, edited by: Lerman, A., Springer, 295–323, 1978.
Kempe, S. and Kazmierczak, J.: Chemistry and stromatolites of the sea-linked Satonda Crater

Lake, Indonesia: A recent model for the Precambrian sea?, Chem. Geol., 81, 299–310,30

1990.
Knoll, A. H., Fairchild, J. J., and Sweet, K.: Calcified microbes in Neoproterozoic carbonates:

Implications for our understanding of the Proteroizic/Cambrian transition., Palaios, 8, 512–

6500

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/8/6473/2011/bgd-8-6473-2011-print.pdf
http://www.biogeosciences-discuss.net/8/6473/2011/bgd-8-6473-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1002/aqc.609


BGD
8, 6473–6517, 2011

Can Mg isotopes be
used to trace

cyanobacteria-
mediated

L. S. Shirokova et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

525, 1993.
Kranz, S. A., Wolf-Gladrow, D., Nehrke, G., Langer, G., and Rost, B.: Calcium carbonate

precipitation induced by the growth of the marine cyanobacterium Trichodesmium, Limnol.
Oceanogr., 55, 2563–2569, 2010.

Krumbein, W. E., Cohen, Y., and Shilo, M.: Solar Lake (Sinai), 4., Stromatolitic cyanobacterial5

mats, Limnol. Oceanogr., 22, 635–656, 1977.
Laval, B., Cady, S. L., Pollack, J. C., McKay, C. P., Bird, J. S., Grotzinger, J. P., Ford, D. C., and

Bohm, H. R.: Modern freshwater microbialite analogues for ancient dendritic reef structures,
Nature, 407, 626–629, 2000.

Li, W., Beard, B. L., and Johnson, C. M.: Exchange and fractionation of Mg isotopes between10

epsomite and saturated MgSO4 solution, Geochimica et Cosmochimica Acta, 75, 1814–
1828, 2011.

Lowenstum, H. A. and Weiner, S.: On biomineralization, Oxford University Press, Oxford, New
York, 1989.

Martinez, R., Pokrovsky, O. S., Schott, J., and Oelkers, E. H.: Surface charge and zeta-potential15

of metabolically active and dead cyanobacteria, J. Colloid Interface Sci., 323, 317–325,
2008.

Martinez, R. E., Gardes, E., Pokrovsky, O. S., Schott, J., and Oelkers, E. H.: Do photosynthetic
bacteria have a protective mechanism against carbonate precipitation at their surfaces?,
Geochim. Cosmochim. Acta ,74, 1329–1337, 2010.20

Mavromatis, V., Pearce, C., Shirokova, L. S., Bundeleva, I. A., Pokrovsky, O. S., Benezeth, P.,
and Oelkers, E. H.: Magnesium isotope fractionation during inorganic and cyanobacteria-
induced hydrous magnesium carbonate precipitation, Geochim. Cosmochim. Acta, submit-
ted, 2011.

Müller, G., Irion, G., and Förstner, U.: Formation and diagenesis of inorganic Ca-Mf carbonates25

in the lacustrine environment, Naturwissenschaften, 59, 158–164, 1972.
Obst, M. and Dittrich, M.: Calcium adsorption and changes of the surface microtopography of

cyanobacteria studied by AFM, CFM, and TEM with respect to biogenic calcite nucleation,
Gechemistry Geophysics Geosystems, 7, 15, 2006.

Obst, M, Wehrli, B. and Dittrich, M.: CaCO3 nucleation by cyanobacteria: laboratory evidence30

for a passive, surface-induced mechanism, Geobiology, 7, 324–347, 2009.
Oelkers, E. H., Gislason, S. R., and Matter, J.: Mineral carbonation of CO2, Elements, 4, 333–

338, 2008.

6501

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/8/6473/2011/bgd-8-6473-2011-print.pdf
http://www.biogeosciences-discuss.net/8/6473/2011/bgd-8-6473-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
8, 6473–6517, 2011

Can Mg isotopes be
used to trace

cyanobacteria-
mediated

L. S. Shirokova et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Otsuki, A. and Wetzel, R. G.: Calcium and total alkalinity budgets and calcium carbonate pre-
cipitation in a small hard-water lake, Arch. Hydrobiol. 73, 14–30, 1974.

Palomba, E., Zinzi, A., Cloutis, E. A., D’Amore, M., Grassi, D., and Maturilli, A.: Evidence for
Mg-rich carbonates on Mars from a 3.9 µm absorption feature, Icarus, 203, 58–65, 2009.

Parkhurst, D. L. and Appelo, C. A. J.: User’s Guide to PHREEQC (Version 2) – A Computer Pro-5

gram for Speciation, Batch- Reaction, One-Dimensional Transport, and Inverse Geochemical
Calculations, U.S. Geological Survey Water-Resources Investigations Report 99-4259, 310,
1999.

Pedone, V. A. and Folk, R. L.: Formation of aragonite cement by nannobacteria in the Great
Salt Lake, Utah. Geology, 24, 763–765, 1996.10

Pentecost, A. and Spiro, B.: Stable Carbon and Oxygen Isotope Composition of Calcites As-
sociated with Modern Fresh-Water Cyanobacteria and Algae, Geomicrobiol. J., 8, 17–26,
1990.

Pentecost, A.: Blue-green algae and freshwater carbonate deposits, Proc. R. Soc. London B.,
200, 43–61, 1978.15

Peterson, B. J. and Fry, B.: Stable isotopes in ecosystem studies, Annu. Rev. Ecol. Syst., 18,
293–320, 1987.

Planavsky, N., Reid, R. P., Lyons, T. W., Myshrall, K. L., and Visscher, P. T.: Formation and
diagenesis of modern marine calcified cyanobacteria, Geobiology, 7, 566–576, 2009.

Pokrovsky, O. S. and Savenko, V. S.: Experimental modeling of CaCO3 precipitation at the20

conditions of photosynthesis in seawater, Oceanology, 35, N6, 805–810, 1995.
Pokrovsky, O. S., Martinez, R., Golubev, S. V., Kompantzeva, E. I., and Shirokova, L. S.: Ad-

sorption of metals and protons on Gloeocapsa sp. cyanobacteria: a surface speciation ap-
proach, Applied Geochemistry, 23, 2574–2588, 2008.

Pokrovsky, O. S., Viers, J., Shirokova, L. S., Shevchenko, V. P., Filipov, A. S. and Dupré, B.:25
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Table 1. Experimental conditions of all experiments performed in this study. All abiotic experi-
ments were conducted in the presence of 0.01 M NaN3.

Experiment Medium Duration conditions Biomass pH range Mg range (mM) DOC, Rate (Mg slope)
(days) range, gwet/L mg L−1 mmol day−1 Solid phase

S-BIO-1 BG-11 43 Stirring, no bubbling 0.1–3.1 8.7–10.6 25.6–2.2 17–62 −0.86 Dypingite+brucite

S-BIO-2 BG-11 30 Stirring, bubbling 0.2–3.7 8.2–10.5 30.8–4.1 60 −1.22 Nesquehonite,
Dypingite, brucite

S-BIO-3 BG-11 on Salda lake water 34 Stirring, no bubbling 0.2–2.2 9.2–10.8 15–2.5 7–18 −0.38∗∗ Dypingite, hydromagnesite

S-BIO-4 BG-11 on Salda lake water 36 Stirring, no bubbling 0.1–3.0 9.3–10.8 14–3 9–17 −0.435∗∗ Dypingite, hydromagnesite

S-BIO-5 BG-11 30 Stirring, bubbling 0.4–2.8 8.2–10.4 31–7 23–29 −0.71 Nesquehonite, dypingite

S-BIO-6 Salda lake water w/o BG-11 34 Stirring, no bubbling 0.2–0.9 9.2–9.6 9.5–12 No precipitation

S-BIO-7 0.05 M MgCl2+0.005 M NaHCO3 31 Stirring, bubbling 0.05–3.0 8.1–10.0 52–40 No precipitation

S-BIO-8∗ BG-11: 0.025 M MgCl2 +0.036 M NaHCO3 100 No stirring, no bubbling 0.05–4.0 8.4–10.4 25–5 20–120 N.D. Hydromagnesite

S-BIO-9 BG-11: 0.025 M MgCl2 +0.036 M NaHCO3 100 No stirring, bubbling 0.05–3.5 8.4–10.7 25–5 10–65 N.D. Hydromagnesite

S-BIO-10 BG-11: 0.025 M MgCl2 +0.036 M NaHCO3 100 No stirring, no bubbling 0.05–3.5 8.5–10.8 25–5 10–40 N.D. Hydromagnesite

S-BIO-11∗ BG-11: 0.025 M MgCl2 +0.05 M NaHCO3 40 Stirring, no bubbling 0.2–2.2 8.7–10.6 25–4 6.2–90 N.D. Dypingite, brucite

S-ABIO-1 Supernatant 25 Stirring, bubbling 8.15–9.3 23–9 90–30 −0.50

S-ABIO-2 BG-11 on Salda lake water 35 Stirring, no bubblinh 0 9.2–9.39 13–12 7.4 No precipitation

S-ABIO-3 Supernatant 25 Stirring, no bubbling 0 8.1–9.25 37–13 30 −1.39 Dypingite

S-ABIO-4 0.05 M MgCl2 +0.1 M NaHCO3 48 Stirring, no bubbling 0 8.33–8.90 52–27 −0.67 Nesquehonite, dypingite

S-ABIO-5 BG-11 on Salda lake water 35 Stirring, no bubblinh 0 8.2–9.46 21–22 No precipitation

S-ABIO-6 BG-11 on Salda lake water 45 Stirring, no bubbling 0 9.3–9.4 13.1–13.8 No precipitation

∗ Gloeocapsa sp. Culture;
∗∗ The rates are significantly lower due to lower initial Mg concentration.
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Table 2. Mg isotopic composition of natural samples.

Sample description LIQUIDS SOLIDS ∆26Mg
δ25Mg 2σ δ26Mg 2σ δ25Mg 2σ δ26Mg 2σ solid-liquid Mineralogy

T3 Salda Lake coast and stromatholites 0.1337 0.0162 0.2569 0.0721 −0.365 0.048 −0.696 0.036 −0.952 Hydromagnesite
Coastal water and carbonate sediments −0.0637 0.0772 −0.1360 0.1509 −0.504 0.066 −0.993 0.154 −0.857 Hydromagnesite
Stromatolite – Interior part −0.532 0.041 −1.038 0.032 −1.118∗ Hydromagnesite
Stromatolite – Exterior part −0.479 0.004 −0.938 0.023 −1.018∗ Hydromagnesite
Salda-Water February 2010 −0.0053 0.0077 −0.0208 0.0046
Live stromatolites + bacteria −0.395 0.026 −0.754 0.018

Lake depth profile:
T07-0 0.075 0.017 0.150 0.010
T07-20 0.035 0.044 0.094 0.049
T07-40 0.100 0.031 0.167 0.031
T07-60 0.040 0.034 0.117 0.080
T07-70 0.079 0.011 0.137 0.063

T08, Stromatolite islands 0.050 0.024 0.084 0.027
T11, 1.5 m depth, fragm. stromatolites 0.045 0.024 0.080 0.042

T09, Incoming spring −0.733 0.042 −1.402 0.053
T10, Spring under mountain, Yuoruk MZL −0.535 0.101 −1.010 0.107

T1, Coastal lake water, Feb 2008 −0.019 0.046 −0.005 0.070
T2 Incoming spring, Feb 2008 −0.384 0.049 −0.759 0.028

Epsomite deposits at the wood 0.1000 −0.183 0.023 −0.340 0.047 −0.440 Epsomite

∗ Assuming δ26Mg in Salda lake water of 0.08 ‰.
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Table 3. Mg isotopic composition of laboratory samples.

Expt. Sample Time LIQUIDS SOLIDS ∆26Mg
No. (Days) δ25Mg 2σ δ26Mg 2σ δ25Mg 2σ δ26Mg 2σ solid-liquid Mineralogy

S-Bio-1 1 0 −0.270 0.034 −0.524 0.050
8 13 0.048 0.060 −0.017 0.056

13 37 −0.091 0.055 −0.462 0.026 −0.050 0.071 −0.567 0.005 −0.105 Brucite

S-Bio-2 6 7 −0.080 0.059 −0.168 0.102 −0.807 0.032 −1.573 0.016 −1.406 Nesquehonite
10 15 −0.409 0.072 −0.757 0.121 −0.565 0.040 −1.067 0.036 −0.310 Dypingite
14 26 −0.233 0.050 −0.447 0.026 −0.366 0.010 −0.699 0.041 −0.252 dypingite+brucite

S-ABIO-1 4 6 −0.074 0.041 −0.103 0.033 −0.738 0.016 −1.428 0.005 −1.325 Dypingite
8 13 0.113 0.036 0.213 0.011 −0.590 0.032 −1.191 0.020 −1.404 Dypingite

13 25 0.090 0.028 0.195 0.031 −0.555 0.023 −1.061 0.030 −1.256 Dypingite

S-BIO-5 4 10 −0.068 0.068 −0.165 0.102 −0.467 0.017 −0.965 0.055 −0.800 nesquehonite
9 20 −0.025 0.030 −0.101 0.051 −0.368 0.002 −0.769 0.129 −0.668 nesquehonite

11 26 0.184 0.030 0.361 0.073 −0.332 0.051 −0.705 0.087 −1.066 nesquehonite

S−ABIO−4 10 40 −0.206 0.026 −0.382 0.063 −0.418 0.045 −0.849 0.094 −0.468 nesquehonite
S−f−5 culture 5 days 5 −0.474 0.046 −0.973 0.052 −0.385 0.052 −0.821 0.067 0.152

3 months −0.582 0.005 −1.184 0.019 −0.211
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Figure 1 
Fig. 1. (A): View of the Salda lake coast. The white and light blue layers in the littoral zone
originate from hydromagnesite sand formed due to modern and paleostromatolites wave abra-
sion. (B): modern stromatolite formations in the littoral zone. (C): stromatolite coatings of the
peridote rock debris taken from a depth of 1–1.5 in the littoral zone. (D): the surface of ac-
tive stromatolite covered by Pyrogira algae and diatoms with oxygen bubbles illustrating active
on-going photosynthesis.
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Figure 2, Natural samples.  

 

 

 

 

 

A B 

C D 

 37

  

 

 

Figure 2, continued. Laboratory precipitates. 
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F 
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J 

Fig. 2. SEM images of natural stromatolites and experimentally precipitated minerals: (A–D),
natural samples; (E–J), laboratory precipitates. (A): Sample T3-1 from the coastal zone,
(B) close-up showing the external surface of this stromatolite (C): 2–10 mm thick mineral coat-
ings taken from grasses and tree branches in the littoral zone water. (D): interior part of the
microbialite. EDS analyses demonstrated the presence of only C, Mg, and O in all the nat-
ural samples shown in A–D. (E–J): nesquehonite and dypingite precipitates recovered from
experiment S-Abio-4, (F) dypingite recovered from experiment S-Bio-10, (G), hydromagnesite
recovered from experiment S-Bio-3 (H), hydromagnesite recovered from experiment S-Bio-8, (I)
dypingite recovered from experiment S-Bio-3, and (J) dypingite and hydromagnesite recovered
from experiment S-Bio-11.
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Figure 3 
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Fig. 3. TEM images of hydrous precipitated Mg carbonate after 14 days in
0.025 M MgCl2 +0.05 M NaHCO3 stirred solution without air bubbling (A–E) and Synechococ-
cus sp. after its growth during 14 days in BG-11 media without mineral precipitation (F).
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Figure 4.  1 

F E 

D 

B 

C 

A 

Fig. 4. Reactive fluid evolution during all experiments performed in this study. Temporal evolu-
tion of pH (A, B), Mg concentration (C, D), and alkalinity (E, F) during experiments performed
in continuously stirred reactors with air bubbling (left panel, A, C, E) and without air bubbling
(right panel, B, D, F). The symbol size is encompasses the uncertainty of the analyses. The
lines connecting the data points are for the aid of the reader.
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Figure 5. The biomass evolution during experiments performed  in stirred reactors with 9 

airbubbling (experiment S-Bio-2, circles) and without air bubbling (experiment S-Bio-3, and 10 

S-Bio-4, diamonds and triangles). The lines connecting the data points are for the aid of the 11 

reader. 12 

 13 

 14 

Fig. 5. The biomass evolution during experiments performed in stirred reactors with airbub-
bling (experiment S-Bio-2, circles) and without air bubbling (experiment S-Bio-3, and S-Bio-4,
diamonds and triangles). The lines connecting the data points are for the aid of the reader.
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 7 

Figure 6. Magnesium and biomass concentration evolution during experiments in 8 

stirred reactors with Salda lake water amended with BG-11 (S-Bio-4, open squares) and 9 

without BG-11 components (S-Bio-6, solid circles). The lines connecting the data points are 10 

for the aid of the reader. 11 

 12 

 13 

 14 

A B 

Fig. 6. Magnesium and biomass concentration evolution during experiments in stirred reac-
tors with Salda lake water amended with BG-11 (S-Bio-4, open squares) and without BG-11
components (S-Bio-6, solid circles). The lines connecting the data points are for the aid of the
reader.

6513

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/8/6473/2011/bgd-8-6473-2011-print.pdf
http://www.biogeosciences-discuss.net/8/6473/2011/bgd-8-6473-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
8, 6473–6517, 2011

Can Mg isotopes be
used to trace

cyanobacteria-
mediated

L. S. Shirokova et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

 42

 1 

 2 

 3 

 4 

 5 

 6 

0

5

10

15

20

25

30

0 1 2 3 4 5
Biomass increase, gwet

∆
 [M

g]
, m

m
ol

S-Bio-1, No bubbling

S-Bio-3, No bubbling

S-Bio-4, No bubbling

S-Bio-5, Bubbling

S-Bio-2, Bubbling

Stirring, Salda lake and BG-11

 7 

Figure 7. Relationship between the amount of precipitated magnesium (mmol) and the 8 

increase of the biomass (gwet) in different biotic experiments (r² = 0.84 – 0.93). 9 

10 

Fig. 7. Relationship between the amount of precipitated magnesium (mmol) and the increase
of the biomass (gwet) in different biotic experiments (r2 =0.84−0.93).
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Figure 8 A. 
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Fig. 8 B. 
 
 
 
 
 
 
 

(b)

Fig. 8. Temporal evolution of degree of saturation of nesquehonite (Ωnesquehonite) of the reactive
fluids in stirred experiments. A: During biotic experiment S-Bio-2 and abiotic experiment S-
Abio-1 with air bubbling; B: During biotic and abiotic experiments without air bubbling. The
lines connecting the data points are for the aid of the reader.
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Figure 9. Temporal evolution of δ26Mg in the liquid and solid samples collected during 4 

experiments Bio-A and Abio-A plotted as a function of elapsed time (A) and fraction of Mg 5 

remaining in solution (B). The size of the symbols incorporates the uncertainty (2σ) on δ26Mg. 6 

Lines connecting datapoints (criterium is elapsed time) are for the aid of the viewer.  7 

 8 

A 

B 

Fig. 9. Temporal evolution of δ26Mg in the liquid and solid samples collected during experi-
ments Bio-A and Abio-A plotted as a function of elapsed time (A) and fraction of Mg remaining
in solution (B). The size of the symbols incorporates the uncertainty (2σ) on δ26Mg. Lines
connecting data points (criterion is elapsed time) are for the aid of the viewer.
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 5 

Figure 10. Mg isotopic composition in Salda lake water (blue diamonds), inflowing 6 

springs (pink squares), stromatolites and sediments (yellow triangles). 7 

 8 

Fig. 10. Mg isotopic composition in Salda lake water (blue diamonds), inflowing springs (pink
squares), stromatolites and sediments (yellow triangles).
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