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there is theoretically room for improve-
ment.[4] Finding a cheaper and better cata-
lyst for ORR is therefore vital.[5,7]

In this search for better catalysts, high-
entropy alloys (HEAs) have shown great 
promise, because they offer an unbounded 
number of different alloys within a contin-
uous composition space.[8,9] Because each 
material will give many different adsorp-
tion sites, HEAs can serve as a discovery 
platform for new catalysts,[10] with several 
discoveries recently made using com-
putational models for various catalyzed 
reactions.[10–15] The idea of thinking of the 
catalytic activity as a continuous function 
of the HEA composition to be optimized 
in an experimental context where the 
number of experiments must be kept as 

low as possible has developed recently.[16–19] It was found with 
simulations that the function of ORR catalytic activity for the 
Ag-Ir-Pd-Pt-Ru HEA composition space has a relatively long 
length scale of around 0.3 with respect to molar composition.[16] 
This means that the correlation between molar compositions 
is still expected to be significant even when they are spaced 30 
atomic percent (at%) apart in composition space. This matches 
well experimental investigations of thin-film libraries with con-
tinuous variations in the compositions of the same five ele-
ments, where the observed length scale comes out the same as 
in the simulations.[20]

It is a further investigation of this composition space and its 
nature that is scrutinized in the current work. We hypothesize 
that locally optimal catalysts are connected by ridges of subop-
timal compositions on the function of catalytic activity. This is 
analogous to a mountain landscape, where the best catalysts are 
the mountain tops, and the mountains are connected via ridges. 
In other words, it is possible that there is a common thread that 
connects optimal compositions and hence can lead to active 
catalysts in the composition space. This could be a way to limit 
where to look in the vast composition space of HEAs. Instead of 
finding the needle in the haystack, we may only need to find a 
thread and follow it. Searching for optimal catalysts by following 
ridges is analogous to mutations in a biological evolutionary fit-
ness landscape, where small gradual mutations following the 
ridge will lead to an increase in fitness while going too far off 
the path of the ridge may lead to extinction.[21] Thus, the compo-
sition space can be treated like an evolutionary landscape where 
the mutations are slight changes in molar fractions of elements.

In the current work, simulations of the electrochemical ORR 
are used to model the landscape of the catalytic activity as a 
function of the composition of the quinary Ag-Ir-Pd-Pt-Ru alloy. 

The search for better and cheaper electrocatalysts is vital in the global tran-
sition to renewable energy resources. High-entropy alloys (HEAs) provide 
a near-infinite number of different alloys with approximately continuous 
properties such as catalytic activity. In this work, the catalytic activity for the 
electrochemical oxygen reduction reaction as a function of molar composition 
of Ag-Ir-Pd-Pt-Ru HEA is treated as a landscape wherein it is shown that the 
maxima are connected through ridges. By following the ridges, it is possible 
to navigate between the maxima using a modified nudged elastic band (NEB) 
model integrated in a machine learning NEB algorithm. These results provide 
a new understanding of the composition space being similar to an evolu-
tionary landscape. This provides a possible new search and design strategy for 
new catalysts in which the composition of known catalysts can be optimized 
by following ridges rather than exploring the whole alloy composition space.
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1. Introduction

The globe faces a grand challenge with increasing energy 
demand and global warming accelerated by greenhouse gases. 
An important part of transitioning to renewable energy sources 
is efficient energy conversion and storage.[1–3] Converting energy 
from renewable energy into chemical fuels, which, e.g., is pos-
sible via water splitting, will play an important part in the transi-
tion from fossil fuels.[1,4] A way to extract the energy is by the use 
of hydrogen fuel cells, where oxygen and hydrogen recombine to 
form water where the oxygen reduction reaction (ORR) plays a 
major role.[4,5] This reaction must be catalyzed, but today’s most 
used catalyst is platinum which is scarce and expensive,[1,5–7] and 

© 2022 The Authors. Advanced Energy Materials published by Wiley-VCH 
GmbH. This is an open access article under the terms of the Creative 
Commons Attribution License, which permits use, distribution and  
reproduction in any medium, provided the original work is properly cited.
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Being composed of noble metals, this HEA is expected to show 
superior corrosion resistance and therefore is a candidate that 
would make for easier comparison with experimental tests. The 
HEA is, however, at best expected to be meta-stable with surface 
segregation and surface dissolution being inevitable for pro-
longed experimental durations. Prediction of the meta-stability 
of the alloy surfaces has not been carried out in the current 
study as it is out of the scope of the presented analysis since 
even transitory surface compositions can be associated with a 
catalytic activity. However, meta-stability remains an interesting 
path of investigation for the field of HEA catalysis. Simula-
tion of the catalytic activity is achieved by applying a previously 
applied[16] kinetic model for each individual catalyst surface site, 
considering a face-centered cubic (fcc) (111) disordered surface 
of the HEA. Trained on hundreds of density functional theory 
(DFT) simulations, the model estimates adsorption energies of 
*OH and *O and outputs a measure of catalytic activity, the cur-
rent density, based on these. The adsorption energies of *OH 
and *O have been simulated relative to those of Pt(111) which 
has been found to bind *OH and *O about 0.1 and 0.2 eV too 
strongly compared to the optimal adsorption energy through 
tight collaboration between simulations and experiments.[22] 
In this way the adsorption energies of *OH and *O emerge 
as the most important descriptors for ORR catalytic activity on 
comparable alloy surfaces and many interface effects, such as 
adsorbate solvation can be eliminated in this comparison (see 
Section S1, Supporting Information). The model has previously 
been shown to have satisfactory predictive power in experi-
ments on the Ag-Ir-Pd-Pt-Ru composition space,[20] with mul-
tiple locally optimal compositions detected.[16] It is found that 
maxima of catalytic activity in composition space are indeed 
connected through ridges in this landscape and a new strategy 
for searching for catalysts is suggested in which already optimal 
catalyst in one composition space are optimized even further in 
another.

2. Results and Discussion

2.1. Connecting Maxima via Ridges

The concept of connecting points via ridges has been especially 
useful in the search for minimum energy pathways for chem-
ical reactions where the coordinates are expressed in terms of 
atomic configurations. One way to obtain the minimum energy 
pathway is with the nudged elastic band (NEB) algorithm[23,24] 
and its machine learning variants.[25,26] In the current work, a 
revised NEB algorithm was implemented to connect two com-
positions via ridges on the function for catalytic activity obtained 
with the kinetic model described above (see Section S2,  
Supporting Information).

The implemented NEB algorithm works by creating an 
elastic band which Is fastened at two end points, here two com-
positions. The band itself is defined by a set of points, tradi-
tionally called images, corresponding to a molar composition 
with springs between each image giving rise to the elasticity. 
The elastic band is nudged orthogonally to the gradients of the 
catalytic activity function to make it follow the ridges. These 
ridges thus correspond to the maximum activity pathways. 

The activity function which the NEB operates on, and which 
forms the activity landscape, is modelled using a Gaussian pro-
cess regressor (GPR) fitted to simulations of the catalytic ORR 
activity (see Section S3, Supporting Information). The compo-
sitions for these simulations were sampled on a uniform grid 
with a spacing of 5 at% of the Ag-Ir-Pd-Pt-Ru composition 
space. The GPR activity function has a 2% mean relative pre-
diction error and a coefficient of determination (R2 value) of 
0.996 compared to the results obtained with simulations (see 
Figure S3, Supporting Information). It has an absolute error of 
≈0.001 (arb. units), which is on the same order of magnitude 
as the standard deviation of the kinetic model.[16] By using the 
GPR activity function for the NEB algorithm rapid evaluations 
of the activity are enabled, while at the same time maintaining 
the same accuracy as if simulations from the model were called 
in series. The continuity and differentiability possessed by the 
smooth GPR activity function is reasonable to assume for the 
real activity function that would be produced in an experimental 
realization as well as the currently employed kinetic model. The 
reason is that a smoothly varying activity functions has previ-
ously been observed for the current HEA.[20]

All pure metals were connected in each of the 10 ternary sub-
spaces of Ag-Ir-Pd-Pt-Ru (see Figure S4, Supporting Informa-
tion), demonstrating that the NEB algorithm forms a path along 
a ridge, given there is any, between the chosen end points. If 
one combines these ternary composition spaces along their 
edges, it becomes apparent that the ridges connect when going 
to a different ternary composition space. Figure 1 is a result 
of this idea. Here, a known active binary catalyst,[16] namely 
Ir45Pt55, in the data is chosen as a starting point. The third ele-
ment to describe the initial ternary composition space is picked 
arbitrarily as Pd and it is chosen as the final point in the NEB 
algorithm. When the NEB algorithm has converged, it identi-
fies the maximum point on an opposite edge from the initial 
edge. Then, the element which is no longer in the composition 
gets substituted with a random new element that was not in the 
previous composition, thereby changing the composition space. 
Figure 1 shows the seven first ternary subspaces that the algo-
rithm went through, stitched together. The nonconnected red 

Figure 1.  Substituting elements through ternary subspaces starting at 
Ir45Pd55. The red dots are images, and the solid red line is an interpo-
lated path between the images. The contour plot shows the value of the 
catalytic activity function in arbitrary units from the regular 5 at% grid of 
simulations with the kinetic model.
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dots are the images going from the maximum edge image to 
the final image.

The simulation successfully manages to walk along the 
ridges through compositions to find the global maximum 
Ag17Pd83. Along this path it passes through all local maxima 
within the ternary compositions in the data, which we have 
found previously.[16] From this it thus seems that all maxima are 
indeed connected through ridges, at least in the ternary com-
position spaces. It also suggests the substitution of elements at 
edges as a possible new search strategy for optimizing already 
active catalysts even further.

Since the maxima are connected by ridges in the ternary 
composition spaces, it was investigated whether this also holds 
in higher dimensions. This hypothesis was tested by connecting 
two pure metals through the entire quinary composition space 
of Ag-Ir-Pd-Pt-Ru by doing multiple climbing images, which are 
images accelerated directly along the gradient (see Section S2,  
Supporting Information). With Ag as the initial image and Ir 
as the final image, it is seen in Figure 2a that the path does 
indeed go through several maxima. It actually goes through 
all four noticeable maxima found previously[16] with Bayesian  
optimization: Ag85Ru15, Ag17Pd83, Ir10Pd65Ru25, and Ir49Pt51.

2.2. Following Ridges by Sampling

The NEB algorithm requires many simulations of the catalytic 
activity of a given composition which is why it is run on the 
fitted GPR. However, were this to be used in an experimental 
application, the algorithm must be able to choose compositions 
by itself and find the same path without sampling the whole 
space. The machine learning (ML) NEB method attempts to 

solve this challenge by sampling the most uncertain image in 
each iteration until the path converges (see Section S4, Sup-
porting Information). In Figure 3, the converged ML NEB 
path is compared to the classic NEB path for Ag to Pd in the 
ternary Ag-Ir-Pd composition space. The found path clearly 
resembles the classic one with negligible deviation. The ML 
NEB used only 33 evaluations in this case. In comparison, the 
5  at% ternary grid contains 231 samples. All 10 ternary sub-
spaces connecting all metals with comparison to the classic 
NEB algorithm were equivalently evaluated, showing overall 
good agreement (see Figure S7, Supporting Information). The 
average number of samples for each ternary composition space 
was 50 and a standard deviation of 15 samples. The only way to 
get better results would be to draw more samples, which could 
lower the uncertainty. However, it would not ensure a different 
path found as there is limited exploration as it is constrained to 
the path. It should also be noted that in some of the cases with 
discrepancies, the ML NEB algorithm finds a seemingly more 
satisfactory path compared to the classic NEB algorithm (see, 
e.g., Ag-Ir-Ru (right column) in Figure S7, Supporting Informa-
tion). The convergence of the uncertainty of the ML NEB algo-
rithm with the number of samples varies between composition 
spaces, and in a very few cases the convergence criterion acts as 
an asymptote (see Figure S8, Supporting Information).

Figure 1 that was made with data from the classic NEB algo-
rithm was recreated using the ML NEB algorithm, and the 
two show almost identical ridges (see Figure S9, Supporting 
Information), making this a possible experimental strategy in 
practice. When starting on the ridge in the ternary composi-
tion space, the ML NEB in general converged with less sam-
ples than when connecting between pure metals (see Table S1,  
Supporting Information).

Figure 2.  Activity height profile of the converged NEB paths between Ag and Ir for the classic NEB algorithm using the GPR model trained on a uniform 
5 at% grid a), and for the ML NEB algorithm with convergence after 269 samples b). In the background the molar fractions are displayed and at the 
bottom is the uncertainty from the GPR prediction at each point.
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For the ML NEB algorithm to be more effective as an experi-
mental strategy it should be scalable in dimensions, i.e., with 
more elements. From Figure  2a, it seems that the NEB algo-
rithm is able to follow ridges between maxima in the quinary 
space. Moreover, by connecting Ag and Ir, several maxima, 
including the global maximum Ag17Pd83, were found. When 
using the ML NEB algorithm, nearly the same path through 
the composition space is found as for the NEB algorithm as 
shown in Figure 2b. However, the global maximum Ag17Pd83 is 
bypassed in this case. One possible explanation for this is that 
the ML NEB algorithm is missing gradient information to point 
it toward the optimal composition Ag17Pd83.

In general, it seems that for an increasing dimensionality of 
the composition space, it becomes increasingly more difficult 
for the GPR, via the ML NEB, to get an accurate prediction of 
the whole space. The fact that the Ag17Pd83 maximum is quite 
narrow in composition space, see for example Figure  3, sup-
ports this idea. To find this specific maximum, there must be 
samples close to it, which is the case when choosing Ag and Pd 
as initial and final compositions in quinary composition space 
as well as Ir and Pd (see Figure S10, Supporting Information). 
The reason is that the maximum is close to one of the end 
points of the ML NEB.

Traditionally for the ML NEB algorithm for atomic systems, 
gradient information is used in the GPR to increase the accu-
racy of the predicted function.[25,26] However, in the current 
work the surface is not an energy surface, and the gradient 
information cannot be directly extracted from the simula-
tions of the catalytic activity. Gradient information in the GPR 
would likely provide faster and more accurate convergence of 
the paths. The reason for Ag17Pd83 being difficult for the ML 
NEB to find could also in part be due to the shape of the ridge 
throughout the composition space. It seems like the ridge 
going toward Ag17Pd83 from the ridge path in Figure 2a is not a  
continuation of the ridge but rather a blind alley, since the molar 
fraction of the images before and after Ag17Pd83 (image index 9 
and 11 in Figure 2a) seem to represent the same path, indicating 
that the found pathway turns back around at Ag17Pd83.

In an attempt to understand the nature of the ridges in com-
position space and especially in higher dimensions where it 

cannot be plotted, a ridge detection algorithm was developed, 
which can determine if a given point is on a d-dimensional 
ridge directly from the trained GPR (see Section S5, Supporting 
Information). The ridge detection algorithm does confirm that 
the NEB indeed follows ridges, also in higher dimensions (see 
Figures S11–S14, Supporting Information). However, the ridge 
detection algorithm revealed potential problems with the GPR 
in the composition space. The reason is that ridges would be 
detected at unexpected locations, where in some cases this 
could be attributed to the way the GPR has learned the land-
scape of catalytic activity. This includes forming maxima of 
catalytic activity outside the simplex that is bounding the com-
position space (see Figure S15, Supporting Information). This 
is especially a problem for the shape of the 1D-ridges, i.e., 
one-dimensional curves that are maximized with respect to all 
directions that are orthogonal to the direction of the ridge itself, 
which are the ones of interest in higher dimensional composi-
tion spaces. The unphysical maxima that the GPR learns influ-
ence the shape of the 1D-ridges, making the combination of the 
GPR and ridge detection unsuitable to get a reliable trace of the 
ridges in higher dimensional composition space.

From the results using the NEB algorithm it is indeed pos-
sible to follow ridges between maxima on the activity func-
tion in composition space. The exact shape and interconnec-
tivity of these ridges in higher dimensions is still not perfectly 
understood and the GPR shows some limitations because it is 
bounded by a hyperdimensional simplex in composition space. 
It is also not entirely conclusive whether all local maxima are 
connected via ridges in higher dimensions. The fact that the 
classic NEB algorithm in the quinary composition space seems 
able to connect most maxima, without the height profile of the 
activity dropping to zero or near-zero between maxima (see, 
e.g., Figure 2a), indicates that the maxima are indeed still con-
nected via ridges in higher dimensional space.

To further investigate the nature of this activity landscape 
and the behavior of the model in general by studying an arbi-
trary activity function, randomly generated parameters for the 
kinetic model, corresponding to “artificial elements,” were 
chosen to model a different activity function (see Section S6, 
Supporting Information). Even though the activities were much 
smaller with the generated artificial elements, the activity land-
scape was still showing ridges and it was possible to navigate 
between the maxima using the element substitution strategy 
with ML NEB (see Figure S16, Supporting Information).

2.3. Directed Evolution to Follow Ridges

A downside of using a NEB algorithm is that the found path 
depends on the initial and final composition. To circumvent 
this and to further explore the analogy of the evolutionary 
landscape, a possible experimental strategy similar to directed 
evolution[27] (DE) is suggested (see Section S7, Supporting 
Information). Figure 4 shows the results of a DE simulation 
through ternary compositions. The DE was started at a com-
position, Ir50Pt50, with a relatively good activity to show how 
an already well-performing catalyst can be optimized further. 
The DE then progressed through several maxima by following 
the ridge. Interestingly the path seems to get “trapped” around 

Figure 3.  ML NEB compared to classic NEB. The converged ML NEB is 
shown clear while the path found from the classic NEB is faded. Same 
color scale for the contour plot as in Figure 1.
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palladium, circling around it along the ridge. Ridges around 
Pd is also visible in Figure S12 (Supporting Information). 
The selected points do not sample the exact maxima and are 
unlikely to do so, because of the relatively big and constant step 
length of 25 at% that was found to be appropriate for these sim-
ulations. To sample the maxima between the sampled points on 
the path, one could for example use Bayesian optimization in 
one dimension along the path or just simple intuition to pre-
dict where the maximum may lie. In Figure 4, the simulations 
on ternary composition spaces only are shown to visualize the 
concept in the activity landscape, but the strategy is scalable in 
dimensions.

As presented in this work, the evolutionary landscape 
only has one fitness parameter, namely the catalytic activity. 
Other fitness parameters to influence the landscape could be 
stability or simply the cost of the materials. To get an idea of 
how the scarcity of the constituent elements could influence 
the fitness landscape, the catalytic activity is plotted against 
a measure of the scarcity, the inverse of the production rates 
of the constituent elements normalized to the production 
rate of Pt, for all compositions on a uniform 5 at% grid of 
the Ag-Ir-Pd-Pt-Ru HEA composition space. The results are 
shown in Figure 5. The Pareto optima[28] are the points at 
which improving either the catalytic activity or alleviating the 
element scarcity necessarily leads to worsening of the other. 
Because Ag is produced in markedly larger proportions than 
the remaining elements, most of the Pareto front, i.e., the set 
of Pareto optima, essentially comes out as Ag-Pd binary alloys 
in various proportions.

By introducing the scarcity of the constituent elements, the 
interesting compositions are no longer just the ones with the 
highest catalytic activity, but also those that are composed of 
abundant elements. Had the element scarcity been introduced 
as a fitness parameter in the DE simulation, the path taken 
would likely have favored the Pareto optimal compositions. 
Thus, favoring compositions that have high concentrations of 
Ag.

Overall, the results show that the catalytic activity function 
indeed behaves comparatively to an evolutionary landscape in 
composition space. By making small “mutations” in the com-
position, the activity can be continuously altered. By moving 
along the ridges, the maxima can be reached. This has the 
implication that when experimentally looking for a new cata-
lyst, it is a feasible strategy to start from what is known to be 
a well-performing catalyst and then locating the ridges around 
it. The element substitution in Figures  1 and  4 are both sim-
ulations of this idea. To illustrate the differences between the 
presented classic NEB, the ML NEM, and the DE algorithms if 
applied in an experimental realization, two optimums, Ir50Pt50 
and Ag17Pd83 were connected through two ternary composi-
tion spaces, Ir-Pd-Pt and Ag-Ir-Pd. The cost of the methods 
was measured as the number of samples necessary to follow 
the ridge from one optimum to the other, because both experi-
mentally and computationally with our kinetic model, making 
and measuring a sample is the time limiting step. The NEB, 
ML NEB, and DE algorithms were found to need 4717, 112, and 
52 samples, respectively (Figure S18 and Table S2, Supporting 
Information). Thus, while all three algorithms are able to find a 
connecting ridge between the optima, it shows that the classic 
NEB approach is not practical when the composition space is 
not already known.

In terms of finding the global maximum within a larger com-
position space, Bayesian optimization[16] with its nonlocal sam-
pling may turn out to be the fastest strategy compared to the 
locally constrained ML NEB and DE algorithms. A combination 
with Bayesian optimization could be an even better strategy. 
Finding ridges could help the Bayesian optimization on to 
which directions to look and steer it away from uninteresting 
areas, which likely is the greater part of the vast composition 
space. The fact that there are ridges within the composition 
space could be exploited when designing catalyst. If one can 
design a catalyst so that when it starts decomposing, it will do 
so along a ridge, it could thereby theoretically lose less catalytic 
activity over time.

Figure 4.  Simulation of DE starting at Ir50Pt50 in the Ir-Pd-Pt composi-
tion space. The path taken through six ternary composition spaces plus 
the final selected mutation is shown. In this simulation the maximum 
mutation angle was set to 90°, i.e., the path was allowed to make turns 
of maximally 90°. This would limit the tendency to go back to an already 
discovered maximum. The number of mutations made in each step was 
13. The activities of the mutations are simulated with the kinetic model. 
The path is plotted on contour plots based on the 5 at% grid data.

Figure 5.  Pareto optima found from a 5 at% grid of all compositions of 
Ag-Ir-Pd-Pt-Ru. The Pareto efficient points are shown in red, the Pareto 
inefficient in blue. The shown plot is an excerpt of a full range plot (see 
Figure S17, Supporting Information). Production rates of the elements are 
obtained from ref. [29].

Adv. Energy Mater. 2023, 13, 2202962

 16146840, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aenm

.202202962 by U
niversität B

ern, W
iley O

nline L
ibrary on [09/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



www.advenergymat.dewww.advancedsciencenews.com

2202962  (6 of 6) © 2022 The Authors. Advanced Energy Materials published by Wiley-VCH GmbH

3. Conclusion

By modeling the composition space using a GPR and by modi-
fying the NEB algorithm, paths following ridges of catalytic 
activity in composition space were produced. Using a developed 
ridge detection algorithm on the GPR predicted activity function, 
it was shown that the maxima are indeed connected by ridges in 
ternary and quaternary compositions. Furthermore, an ML NEB 
algorithm was implemented, and for the ternary compositions the 
ML NEB was shown to make accurate predictions of the paths of 
maximum catalytic activity with relatively few calculations com-
pared to the classic NEB algorithm. In higher dimensions the per-
formance of the ML NEB was less robust in finding the maximum 
activity path that was found with the classical NEB algorithm.

A possible new strategy of following the ridges of catalytic 
activity to an edge in composition space followed by substi-
tution of one element with another has been suggested and 
simulated on ternary compositions. This strategy resembles an 
evolutionary landscape in which substitution of elements cor-
respond to mutations. By introducing more fitness parameters, 
the fitness landscape can be altered to find the Pareto efficient 
compositions in terms of the parameters. Thus, not limiting 
the search for just the most catalytically active compositions. 
The evolutionary behavior of the composition space may alter 
how this vast space is conceived and provides new ways of 
thinking when both searching for and designing new catalysts.
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