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Abstract: High entropy alloy (HEA) electrocatalysts offer a vast composition space that waits 

for exploration to identify interesting materials for energy conversion reactions. While first 

attempts have been made to explore the composition space of HEA thin film libraries and 

compare experimental and computational studies, no corresponding approaches exist for HEA 

nanoparticles. So far, catalytic investigations on HEA nanoparticles are limited to small sets of 

individual catalysts. Here, we report the experimental exploration of the composition space of 

carbon-supported Pt-Ru-Pd-Rh-Au nanoparticles for the H2/CO oxidation reaction by 

constructing a dataset using Bayesian optimization as guidance. Applying a surfactant-free 

synthesis platform, a dataset of 68 samples was investigated. Constructing machine learned 

models, the relationship between the concentrations of the constituent elements and the catalytic 

activity was analyzed and compared to density functional theory (DFT) calculations. The 

machine learned models confirm findings from previous studies concerning the role of Ru for 

the H2/CO oxidation reaction. This has been achieved starting from a random set of 

compositions and without any prior assumptions for the reaction mechanism nor any in-depth 

design of the active site. In addition, by comparing the trends of the computational and 

experimental studies, it is seen that the “onset potentials” across the compositions can be 

correlated with the adsorption energy of ∗OH. The best correlation between the computational 

and experimental data is obtained when considering 5 % of the most strongly *OH adsorbing 

sites.  
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1 Introduction 

Achieving a carbon neutral society through fossil fuel free technologies is one of the main 

challenges faced by mankind today. Within the scope of this challenge, the proton exchange 

membrane fuel cell has been developed.1–3 In this specific fuel cell, electrocatalysts carry out 

the hydrogen oxidation reaction (HOR) and the oxygen reduction reaction (ORR) to generate 

electricity. The ORR is a major topic for studies as it requires large overpotentials to take place.4 

On the other hand, the HOR is efficiently catalyzed by Pt with negligible overpotentials. 5 

However, Pt is highly susceptible to CO poisoning, i.e., the blocking of active sites for the HOR 

by adsorbed CO, whose traces are present in the hydrogen gas from the widely employed water 

gas shift reaction or potentially from on board methanol reformers.6–8 Therefore, it is still an 

ongoing quest to find HOR catalysts that show resilience towards CO poisoning.9 

A common strategy to increase the CO tolerance of Pt is to alloy it with Ru.10 This produces a 

bifunctional catalyst that can perform both the HOR and the CO oxidation at low 

overpotentials.11 The proposed mechanism for PtRu mediated catalysis is that ruthenium 

facilitates the formation of adsorbed OH species at lower potentials.12 These adsorbed OH 

species can oxidize the CO adsorbed on Pt which leads to the re-activation of the surface. In 

addition, it has been proposed that an electronic effect of Ru weakens the CO bond on Pt.13 

Studies on alloy catalysts are conventionally limited to bi- and trimetallic alloys. However, 

recently HEAs emerged as potential catalyst materials for electrocatalytic energy conversion 

reactions.14–18 HEAs contain five or more elements in a randomized order, which produces a 

surface with multiple different active sites.19 Further, the diversity of elements with different 

sizes distorts the crystal lattice which gives HEAs not only unique mechanical properties but 

also a tunable electronic structure.20 The statistical nature of the HEA surface compositions is 

not only expected to provide unique catalytic properties that have yet to be explored.21 

Furthermore, the comparison of activity trends in the HEA composition space observed in 
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experiment with results from computational investigations enables a unique approach for 

improved insight into catalytic reactions.  

Experimental investigations of HEAs form a major challenge due to the vast composition space. 

In a HEA containing five elements there are 99!/(95!4!) = 3,764,376 compositions possible 

when each elemental concentration is varied between 1 and 96 at.% (atomic percent) in steps 

of 1 at.%. Neither can this many compositions be investigated experimentally in a timely 

manner, nor can it be expected that the majority of compositions exhibit interesting catalytic 

properties. Consequently, new strategies to approach the study and discovery of relevant HEAs 

with dedicated properties are necessary.22,23 Currently, one approach is focused on constructing 

a methodology employing density functional theory (DFT) that enables prediction of highly 

active HEA compositions, which then are evaluated experimentally in the form of thin film 

libraries.24,25 Such investigations can be combined with machine learning tools to guide an 

efficient exploration of the composition space.26,27 In addition to the potential discovery of new 

materials of high activity, the comparison of activity trends in the computational model with 

trends observed in experiments potentially allows new approaches of understanding catalytic 

reactions. In contrast to thin film libraries that allow compositional gradients, studies with HEA 

nanoparticles are particular demanding. The compositions are discrete instead of continuous 

and not all compositions can necessarily be synthesized. Furthermore, catalysts employed in 

fuel cells typically need to be supported onto a high surface area carbon, which complicates the 

synthesis. For this reason, to the best of our knowledge so far, no studies have been reported 

for the machine learning guided exploration of the composition space of carbon-supported HEA 

nanoparticles for electrocatalytic reactions.   

Here we present an experimental strategy guided by Bayesian optimization to explore the 

composition space of carbon-supported HEA nanoparticles for electrocatalytic energy 

conversion reactions. The conceptual design of the study is summarized in Scheme 1. Using a 

surfactant-free synthesis platform28,29, carbon-supported Pt-Ru-Pd-Rh-Au nanoparticles are 
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prepared starting from a random set of compositions and experimentally tested for the 

electrocatalytic H2/CO oxidation reaction. The ratio of the precursor mixtures was used as the 

input parameter for a Bayesian optimization algorithm, whereas a defined CO oxidation “onset 

potential” in the presence of H2 served as the output parameter to describe the H2/CO oxidation 

activity. As the well-defined precursor mixtures not necessarily result in defined nanoparticle 

compositions, in a second part, machine learned models were constructed with a new input 

parameter, namely the compositions of the as-prepared nanoparticles determined from energy 

dispersive X-ray spectroscopy (EDS). Finally, the correlations were related to physical 

phenomena using DFT models. In a predictive model, we compared the trends in the observed 

“onset potentials” to the weighted sum of normally distributed *OH adsorption energies giving 

insight in the required number of active sites for CO oxidation site reaction in the HOR.   

 

Scheme 1. Schematic representation of the optimization loop and the analysis steps.  

 

2 Experimental 
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2.1 Catalyst Synthesis 

The solid precursors, H2PtCl6 (Sigma Aldrich, 99.9%) HAuCl3 (Alfa Aesar, 99.99%) RuCl3 

(Sigma Aldrich, ReagentPlus), PdCl2 (Sigma Aldrich, ReagentPlus, 99%), and RhCl3 (Sigma 

Aldrich, 99.98%) were dissolved in methanol (Merck, EMSURE) to produce 20 mM precursor 

solutions. A total of 1 mL of precursor solutions were added in stoichiometric ratios to 5.6 mL 

57 mM NaOH MeOH with 50 wt.% (metal to carbon) dispersed high surface area carbon 

support (Vulcan XC72R). The obtained solution was stirred for ten minutes at room temperature 

and stored overnight in a centrifuge tube. The following day, the suspensions were centrifuged, 

decanted and left to dry in air. Catalyst inks were prepared by adding isopropanol and H2O (3:1, 

v/v) to the dry catalyst powder to produce a 0.83 mg metal per mL ink. These inks were drop 

casted onto a glassy carbon RDE tip to produce a metal loading of 35 µg cm-2. 

2.2 Electrochemistry 

All experiments were carried out in a three electrode RDE setup. In between experiments, the 

electrochemical cell and all glass components were stored in 1 g mL−1 KMnO4 acidified with 

H2SO4. Before the experiments, this solution was removed and residual MnO2 was dissolved 

by adding a dilution of H2SO4 and H2O2. Following, the electrochemical cell and components 

were boiled three times in MilliQ water. 

All measurements were carried out with a Nordic Potentiostat EC200. As a reference electrode 

a trapped RHE electrode was employed. A platinum wire separated by a glass frit was used as 

a counter electrode. The electrolyte was 0.1 M H2SO4 (Merck Suprapur). The working electrode 

consisted of a Radiometer RDE which has a glassy carbon disk on which the catalyst containing 

ink was drop casted. This working electrode was put under controlled potential of 0.05 V vs. 

RHE into the solution. In the first 30 seconds CO gas (Air Liquide, Quality 37) was bubbled 

through the electrolyte which was followed by 10 cyclic voltammograms (CVs) between 0 and 

0.6 V vs. RHE at a scan speed of 100 mV s−1. After, the electrode was kept for 2 minutes longer 

at 0.05 V vs. RHE in CO atmosphere. Next, the solution was degassed for 20 minutes with H2 
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(ALPHAGAZ, 99.999%) and 2 CVs were recorded between 0 and 1.4 V vs. RHE at a scan 

speed of 10 mV s−1. 

2.3 EDS and TEM analysis 

The samples for EDS were prepared by dropcasting several times 10 µL of catalyst ink onto a 

copper foil to yield a thick catalyst film. The EDS measurement were performed in a 

GeminiSEM450 (Zeiss), operated with Smart SEM 6.05, using the EDS Photodetector Ultim 

max 65 (Oxford instruments), operated with AZTec 4.2. The EDS spectra were measured at 

four different locations with a size of 800 µm2 at a working distance of 8 mm and an accelerating 

voltage of 25 kV. The transmission electron microscopy (TEM) samples were prepared by 

dropcasting once the catalyst ink on a copper grid. TEM micrographs and their associated EDS 

spectra were acquired on a JEOL 2100 TEM operated at 200 kV. 

2.4 Machine learning 

2.4.1 Dataset construction 

The dataset for the different Pt-Ru-Rh-Pd-Au alloy compositions was constructed in a Bayesian 

manner similar to the research of Nugraha et al.26 The first 25 data points were selected 

randomly but they included the 5 “extreme” compositions that span the domain of interest.  

These “extreme” HEA compositions consisted of 96% of one element and 1% of each 

remaining element. The electrochemistry for the CO oxidation was evaluated using the HOR 

as a probe reaction. Subsequently, only particles that remained active for the HOR after the CO 

got oxidized were included into machine learning. This resulted in an initial dataset containing 

a total of 21 points. The input parameter for the machine learning models were the precursor 

ratios used in the synthesis as this is the most defined parameter. The output parameter was the 

CO oxidation “onset potential”. This potential was defined at a current increase of 1.5 mA mg−1 

on top of the capacitive current. For every synthesized alloy, 3 electrochemical experiments 

were carried out. 
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This obtained information was used to construct a random forest regression model using the 

python package scikit learn.30 The parameters, n estimatros, bootstrap, max depth, max features, 

min sample leaf, min sample split, criterion, were tuned using 500 Bayesian optimization cycles 

which optimized the k-fold cross validation score. All Bayesian Optimization loops made use 

of the GpyOpt library in python.31 The obtained random forest regression model was further 

used to find new alloy compositions of interest for investigation. It was optimized using 

Bayesian optimization, in which the first iteration consisted of the compositions that were used 

to train the model initially. This way, the Bayesian optimization constructed the prior 

probability distribution using the same data that were acquired from laboratory experiments. 

Following, the Bayesian optimization was continued for an additional 50 iterations, in which 

new compositions were suggested for evaluation. From these 50 compositions, 10 compositions 

were selected based on their Euclidian distance in space to other suggested or studied 

compositions and their predicted activity. Subsequently, these 10 samples were synthesized, 

evaluated, and added to the optimization. The expansion of the dataset was halted after 5 

optimization cycles, as the mean absolute error (MAE) of the leave one out cross validation 

(LOOCV) showed to reach a constant value around 13 mV. This suggested that an exponential 

amount of data is becoming necessary to improve the models. In addition, the target of finding 

the best performing alloy was reached in the first cycle. In the end, this resulted in a dataset of 

68 unique catalysts. The scripts used in this paper together with the final data set are available 

on https://github.com/vamints/Scripts_BayesOpt_PtRuPdRhAu_paper. 

After the catalysts were analyzed with EDS, new input parameters were obtained, which 

corresponded to elemental ratios observed by EDS. These allowed to construct a new random 

forest model, which used the same hyperparameter tuning script as the synthesis model. All 

random tree models were explained using the SHAP package.32  

2.4.2 Linear models 

file:///C:/Users/VLAD~1.MIN/AppData/Local/Temp/PtRuPdRhAu_Paper_Mints_Full.docx%23_bookmark53
file:///C:/Users/VLAD~1.MIN/AppData/Local/Temp/PtRuPdRhAu_Paper_Mints_Full.docx%23_bookmark54
https://github.com/vamints/Scripts_BayesOpt_PtRuPdRhAu_paper
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Linear models were constructed using the scikit learn package. Features were expanded to 

include also polynomial terms up to the second degree. The best Lasso Regression model was 

selected by using a custom loop that varied the lambda penalty until the change in lambda was 

less than 1%. The ternary contour plots were created by using the plotly library.33 The models 

were fitted using the entire dataset of 68 experimental points. Following these models were 

used to predict the values of a grid, that spanned the slice of the hyperspace that is shown in the 

contour plot. 

2.5 DFT calculations 

DFT calculations were done with the GPAW code34,35 version 19.8.1 and the revised Perdew- 

Burke-Ernzerhof (RPBE) exchange-correlation functional.36 Manipulation of atomic structures 

was performed with the Atomic Simulation Environment (ASE).37 Four-layered face- centered 

cubic (fcc) (111) surface slabs measuring 2x2 atoms laterally, and periodically repeated 

laterally from orthogonal unit cells, were constructed for each of the constituent elements Au, 

Pd, Pt, Rh, and Ru for ∗OH adsorption energy calculations. The surface slabs were constructed 

with fcc lattice constants that were obtained as the minimum energy lattice parameters for the 

pure fcc bulk constituents (see  

Table 1). 

 

Table 1: Fcc lattice constants and ∗OH adsorption free energies of the pure elements used 

Metal Au Pd Pt Rh Ru 

DFT fcc lattice 

constant (Å) 

4.2149 3.9814 3.9936 3.8648 3.8285 

DFT ∆G∗OH (eV) 1.30 0.80 0.76 0.44 0.04 

 

During structure relaxations all but the two top layers of the slab were fixed, and the ∗OH 

adsorbate was put at on-top positions with the oxygen atom constrained to move only 

file:///C:/Users/VLAD~1.MIN/AppData/Local/Temp/PtRuPdRhAu_Paper_Mints_Full.docx%23_bookmark57
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perpendicular to the surface. The slabs were constructed with a vacuum of 15 Å above and 

below the structure. The wave functions were expanded in plane waves with an energy cut-off 

of 500 eV, and sampling of the Brillouin zone was done on a Monhorst-pack grid of k-points 

sized 8x8x1. The structures were relaxed so that the maximum force on any atom did not exceed 

0.05 eV/ Å. For other parameters, the default parameters of GPAW were used. 

∗OH adsorption free energies were calculated relative to the ∗OH adsorption energy on Pt(111) 

which has been shown to adsorb ∗OH about 0.1 eV stronger38 than the maximum of the oxygen 

reduction reaction (ORR) activity volcano at 0.86 eV relative to H2O(l) and H2(g),39 i.e. setting 

the free energy of ∗OH adsorption on Pt(111) to about 0.76 eV. 

∆𝐺∗𝑂𝐻
= (𝐸∗𝑂𝐻

− 𝐸∗) − (𝐸∗𝑂𝐻

𝑃𝑡(111)
− 𝐸∗

𝑃𝑡(111)
) + 0.76 𝑒𝑉 

Here, ∆G∗OH is the free energy of ∗OH adsorption, E∗OH and E∗ are the DFT calculated energies 

of the surface slab with and without ∗OH adsorbed, respectively. The adsorption energies used 

in this work are given in  

Table 1. 

 

3. Results and Discussion 

To explore the composition space of HEA nanoparticles, we developed a simple and 

straightforward approach that was adopted from our surfactant-free colloidal synthesis method 

using alkaline mono-alcohols optimized for mono- and bimetallic nanomaterials.28,29,40,41 Here, 

we take advantage of the room temperature reduction of HAuCl4 in alkaline methanol42  to 

initiate the particle formation and the reduction of multicomponent precursor in solutions and 

in the presence of a high surface area carbon support. The alkaline methanol serves as reducing 

agent,42 whereas the presence of the carbon support limits the formation of macroscopic Au 

particles. Nevertheless, relatively large Au nanoparticles were formed (< 20 nm) when only a 

single Au precursor was used, whilst the presence of multiple precursors comprising elements 

file:///C:/Users/VLAD~1.MIN/AppData/Local/Temp/PtRuPdRhAu_Paper_Mints_Full.docx%23_bookmark61
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like Pt, Ir, Ru, Rh, and Pd, leads to a very fast reaction at room temperature, as demonstrated in 

Figure S1, and the formation of small, supported nanoparticles. Using a combination of TEM 

and EDS analysis, it is shown that the formed nanoparticles are ca. 3 nm in diameter and 

incorporate all the precursor metals, i.e., Pt, Ru, Pd, Rh, and Au, see Figure 1 and Figure S2. 

The particle size is only slightly larger than monometallic Pt or Ir nanoparticles obtained in 

alkaline methanol by heating28,43,44 and is ideal for achieving a high active surface area. On the 

other hand, the small particle size inhibits the verification of a single phase with random 

elemental composition by XRD or high-resolution STEM-EDX. 

 

 

Figure 1: a-b) TEM micrographs of the sample Pt12Ru38Pd8Rh41Au1. 

 

To explore and optimize the composition of the Pt-Ru-Pd-Rh-Au nanoparticles for the 

electrocatalytic H2/CO oxidation reaction, 25 samples were selected as starting point for the 

Bayesian optimization,26,27 whereof 20 were selected randomly and 5 were selected close corner 

points of the composition space. To obtain a well-defined output parameter as a measure for 

the H2/CO oxidation activity in the optimization process, a CO oxidation “onset potential” was 

defined. For this, first a saturated CO monolayer was deposited on the nanoparticles, which was 

subsequently electrochemically oxidized by a potential scan in an H2 rich environment using a 

rotating disk electrode (RDE) configuration. The HOR thereby amplified the potential at which 

the CO monolayer was oxidized by a rapid increase in current for the catalysts that are active 
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for the HOR. The CO “onset potential” was then defined as the potential where an increase of 

1.5 mA mg
PtRuPdRhAu
-1  on top of the capacitive current was measured, see Figures S3 and S4.  

 

Figure 2: a-c) Representation of the precursor mixtures that were used to synthesize the particles in 
each Bayesian optimization cycle. d) The experimentally determined CO oxidation onset potential for 
each data point in the investigated order. The dashed lines indicate the regions of each Bayesian 
optimization cycle. e) The change in the mean absolute error, obtained from the leave-one-out cross-
validation method of the synthesis random forest regression model with each Bayesian optimization 
cycle. 
 

Feeding the experimental results of the initial 25 samples to the Bayesian optimization process 

which was performed in conjunction with a random forest regression model, 10 new 

compositions were suggested, which were experimentally investigated and added to the dataset. 

This addition of 10 new samples concludes a single optimization cycle. In total five 

optimization cycles were carried out, which results are summarized in Figure 2. It can be 

observed that after the second optimization cycle, the computational methods start to select 
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samples with large Ru content. Figure 2d shows the average CO oxidation onset potentials for 

the investigated samples. It can be seen that the most active catalyst composition, with a 

precursor ratio of Pt16Ru46Pd2Rh34Au2, was found within the first optimization cycle at the 32nd 

entry. The actual composition of this alloy, determined by EDX, was Pt12Ru38Pd8Rh41Au1. In 

the subsequent 2nd, 3rd and 4th cycles the onset potentials mainly stay around 0.47 V vs. RHE. 

Furthermore, in the 3rd-5th cycle the Bayesian optimization suggests on average large Ru 

contents. Thus, it can be implied that Ru is playing a major role in the CO oxidation reaction. 

In the 5th cycle, several low performing compositions were selected for investigation, to 

explore further poorly represented regions. This exploration produced samples with low CO 

tolerance, in line with the prediction, and suggests that the optimization has already found the 

most active composition in the first cycle. Finally, the evolution of the synthesis random forest 

regression models can be studied in Figure 2e represented by the mean absolute error (MAE), 

which was calculated with leave-one-out cross-validation (LOOCV). The MAE shows an 

exponential decrease with increasing dataset size, the final synthesis model having a MAE of 

13 mV. 

While the precursor ratios serve as an excellent input parameter for the Bayesian optimizat ion 

procedure, they might poorly reflect the true catalyst compositions. Thus, the obtained 

correlations between the precursor ratios and the CO oxidation onset might not be as 

informative as required to understand in more depth the composition-activity relationship of 

the investigated catalysts. Therefore, all sampled catalysts were investigated with EDX to 

determine their actual composition. The results were used to construct two intrinsically different 

machine learned models, here referred to as EDX models.  



14 
 

 

Figure 3: a) SHAP analysis of the EDX random forest regression model. b) The coefficients of EDX 

Lasso regression model. 

 

The first model was a EDX random forest regression, which is highly flexible in its nature as it 

has no bias on the expected correlations. An interpretation of the model was achieved using 

SHapely Additive exPlanation (SHAP), the results of which are shown in Figure 3a.32,45 The 

SHAP value represents the perturbation of the CO oxidation “onset potential” by the element 

from the average onset potential. Hence negative SHAP values are associated with a decrease 

in overpotential for the CO oxidation. It turns out that of the investigated elements, Ru has the 

largest impact on the CO oxidation. In low quantities Ru exhibits a very large positive SHAP 

value and at large quantities a negative SHAP value. This is congruent with the already reported 

activity of Ru towards CO oxidation being much higher compared to the other investigated 

metals.46 The next elements that show to improve the CO oxidation in large quantities are Pt 

and Rh. These two metals have also been shown to oxidize the CO monolayer at higher 

potentials compared to Ru, however at lower potentials than Pd.47 In contrast to Ru, Pt, and Rh, 

large quantities of Pd showed to increase the CO oxidation onset potential, relative to the 

average, as shown in Figure 3a. Au, in comparison to the other elements, did not show to have 

a large impact on the H2/CO oxidation. This could be explained by a different mechanism for 

the formation of the CO monolayer on Au. While CO forms a stable chemisorbed monolayer 
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on Pt, Pd, Rh, and Ru, this not the case for Au in a CO deficient environment.48 In addition, Au 

is inactive for the HOR.49  

The second model is a more rigid linear model, which was limited to the first- and second-

degree polynomial terms to avoid overfitting with higher degree terms. The obtained 

coefficients were corrected to account for the statistical probability of finding a specific 

elemental arrangement at the surface. This model is outlined in Equation 1 and can be used for 

a discussion of the active surface sites for the H2/CO oxidation reaction. In equation 1, E(X) is 

the CO oxidation onset potential, f is the fraction of an element m in at.%, β is the fitted 

coefficient, P(X = m) is the probability of finding an element at the surface, P(X = m1m2) is the 

probability of finding two neighboring elements. Nevertheless, this model has a total of 21 

predictors, which would severely overfit the small dataset of 68 points by using the ordinary 

least squares regression. Therefore, to reduce the amount of predictors, the model was fitted 

using the lasso regression.50  

 

𝐸(𝑓𝑃𝑡 , 𝑓𝑅𝑢, 𝑓𝑃𝑑 , 𝑓𝑅ℎ , 𝑓𝐴𝑢) =  𝛽0 + ∑ 𝛽𝑚𝑖
𝑃(𝑋 = 𝑚𝑖) +

𝑖

∑ 𝛽𝑚𝑖𝑚𝑗
𝑃(𝑋 = 𝑚𝑖𝑚𝑗)

𝑖≥𝑗

 

𝑃(𝑋 = 𝑚𝑖) = 0.5𝑓𝑚𝑗
                                                                         (1) 

𝑃(𝑋 = 𝑚𝑖𝑚𝑗) =  {
𝑓𝑚𝑖

𝑓𝑚𝑗
                      if 𝑖 > 𝑗

0.5𝑓𝑚𝑖
𝑓𝑚𝑗

                if 𝑖 = 𝑗
     

 

The terms of the lasso regression with their coefficients can be observed in Figure 3b. Similar 

to the random forest model, the lasso regression shows that the term P(X = Ru) has the largest 

associated negative coefficient. Therefore, Ru has the biggest impact on reducing the onset 

potential. In addition, linear models show that P(X = RuRu) has a large associated positive 

coefficient. This suggests that there is an optimum amount of Ru in an alloy, i.e., too much Ru 

limits the activity for the H2/CO oxidation. The next term that improves the H2/CO oxidation is 
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P(X = PtPt), which is also in agreement with the random forest model. When the linear model 

is used to predict the performance for a Pt-Ru alloy, an optimum is found around the Ru52Pt48 

composition. This composition overlaps with previous studies that observed a similar maximum 

for this binary alloy.51,52 Finally, the lasso regression includes the terms: P(X = Rh), P(X = Au), 

P(X = RuRh), P(X = PdPd) in the fit. However, their coefficients are too small to draw a solid 

conclusion upon. 

 

 

Figure 4: a-b) The slice of the hyperspace spanned by Ru, Pt and Rh and c-d) the prediction of the 

LOOCV vs the experimental value of the models: a,c) EDX Random Forest Regression b,d) EDX Lasso 

Regression. 

 

The analysis of the SHAP values calculated on the EDX model concluded that among the 

investigated five elements Ru, Pt and Rh are lowering the CO oxidation “onset potential” the 

most. This allows a visualization of the activity of this hypothetical Ru-Pt-Rh ternary alloy. In 

Figure 4a and b, the CO oxidation onset potential of the Ru-Pt-Rh alloys are predicted using 
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the EDX random forest regression and EDX lasso regression respectively. Both models show 

that there is not a single most active alloy, but different composition regions which contain 

alloys that exhibit similar high H2/CO oxidation activities. The shapes of these regions differ 

between the two EDX models due to their intrinsic flexibility. The lasso regression assumes a 

quadratic relationship, which produces straight and smooth boundaries for the maximum 

domain. In comparison, the random forest regression has no prior bias, which produces domains 

with an irregular boundary. However, both models show relative broad composition regions of 

high activity facilitating the fast identification of active catalysts in the Bayesian optimization.  

Finally, the performance of the two EDX models was compared using the MAE of the LOOCV. 

This evaluation is shown in Figure 4c-d The EDX random forest regression model outperforms 

the lasso regression slightly with an MAE of 10 mV. This is highly correlated with the high 

flexibility of the model. On the other hand, the lasso regression has an MAE of 13 mV. It should 

be noted that the investigated compositions were selected using an optimization algorithm, 

which focused mainly on samples in the high-performance region. As observed, this region 

consists mostly of alloys with large concentrations of Ru. Therefore, the models in this study 

can predict the activity of catalysts that fall into the Pt-Ru-Pd-Rh-Au space with large Ru 

quantities. However, the error increases for alloys with little to no Ru content. 

To gain further physical understanding of the modelled composition-activity relationships, DFT 

simulations were conducted. The task of finding the limiting step of the reaction enabling HOR 

is formidable given that the surface structures of the nanoparticle catalysts are not well defined. 

Additionally, the many possible adsorption sites on the HEA nanoparticle surface contribute to 

an inherent complexity in the variation of active sites. This further hinders a successful and 

timely discovery of the responsible chemical step. Instead, we pursued a predictive model 

which could explain the trend in the observed onset potentials through electronic structure 

insights. The model considers the weighted sum of normally distributed *OH adsorption 

energies with means given by the pure metal constituents of the HEA and with standard 
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deviations set to 0.13 eV as observed previously for *OH adsorption energy distributions on a 

comparable HEA.19 The molar fractions of each element in the compositions found with EDX 

of each HEA constituted the weights of each of the normal distributions in the linear 

combination given by Equation 2. Here, P is the resulting distribution of ∗OH adsorption 

energies, ∆G∗OH, for a given HEA composition. fm is the molar fraction of metal m, µm is the 

adsorption energy obtained for the pure metal m, and σ = 0.13 eV is the spread in the adsorption 

energies. 

𝑃(∆𝐺∗𝑂𝐻
) = ∑ 𝑓𝑚𝑁(𝑚𝑒𝑡𝑎𝑙𝑠

𝑚 ∆𝐺∗𝑂𝐻
; 𝜇𝑚, 𝜎) =  ∑ 𝑓𝑚

1

√2𝜋𝜎
𝑒

−
1

2
(

∆𝐺∗𝑂𝐻
−𝜇𝑚

𝜎
)

2

 𝑚𝑒𝑡𝑎𝑙𝑠
𝑚        (2) 

 

 

Figure 5: Correlation of experimental onset potentials with the ∗OH adsorption energy at the 5 percentile 

of most strongly bound sites of the ∗OH adsorption energy distribution for the EDX-analyzed 

compositions. The inset shows an example of the modeled ∗OH adsorption energy distribution for an 

HEA sample. The 5 percentile ∗OH adsorption energy is found as the energy at which 5% of the area of 
the distribution is to the left. 

 

Figure 5 shows the overall predictive trend obtained by the computationally inexpensive model.  

The best fit between the experimentally obtained onset potential and the computational model 

is obtained using the adsorption energy at the 5 percentile of most strongly adsorbing sites in 

the modeled *OH adsorption energy distributions for each of the sampled HEA compositions , 

see the trend line in Figure 5. The 5 percentile of most strongly adsorbing sites was chosen 
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since it was found to constitute a minimum in the prediction error compared to other possible 

percentiles (see Figure S13).  

A somewhat linear relationship can be observed with a capability of predicting onset potentials 

with an MAE of 11 mV, comparable to the machine learning models. This observed trend 

indicates that the oxidation of water at the catalyst surface and subsequent formation of oxygen 

adsorbed intermediates are involved in the potential-limiting step. Although the ∗OH adsorption 

energy seems a good descriptor for the overall trend of the onset potential across a large span 

of ∗OH adsorption energies, there is a substantial variance for the sampled Ru-rich compositions 

with strong ∗OH adsorption at around -0.1 eV that is not explained by the simple model and 

calls for more in-depth investigations. In other words, this simple model is not able to predict 

the details of highly performing catalysts. In contrast to the experimental results, the simple 

model predict pure Ru as the most active catalyst. It is expected that a more advanced model 

needs to take into account the CO adsorption energy as well. Nevertheless, comparing the trends 

from experimental investigations and computational studies over a large composition space of 

supported multi-element nanoparticles indicates that a relatively small number of surface sites 

with high ∗OH adsorption energy is sufficient to determine the catalytic activity of the 

nanoparticle catalysts.  

 

4. Conclusions 

In this research, the composition space of Pt-Ru-Pd-Rh-Au nanoparticles was optimized for the 

H2/CO oxidation reaction using Bayesian optimization. Starting from a synthesis with a random 

set of precursor compositions and experimentally testing the electrocatalytic H2/CO oxidation 

activity, a guided search among the vast number of different compositions is achieved. The 

most active alloy was found within the first optimization cycle, after 32 experiments. 

Subsequent cycles provided mostly alloys within the high-performance region, with only 

several exploration points in the low performance region. The results are obtained without an 
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in-depth characterization of the samples that would have been very time consuming and 

difficult due to the very small particle size. Thus, it remains unresolved if all catalysts with high 

performance can be considered high entropy alloys.  

In a step further, the obtained dataset was used to scrutinize the composition-activity 

relationship of the H2/CO oxidation reaction. This was achieved by constructing a random forest 

regression and a lasso regression. In good agreement with previous studies, both models point 

out that Ru is the key element in the CO oxidation reaction. The models show that Ru should 

be present in the nanoparticle neither at too low nor at too high concentrations. Using the lasso 

regression to predict the performance for a bimetallic Pt-Ru alloy, a similar optimum in 

composition is found to what has been reported to be the best performing Pt-Ru catalyst. These 

results strongly indicate that the presented strategy of using a simple, surfactant-free synthesis 

as well as an optimization process with minimal characterization of the nanoparticle catalyst 

that relies mainly on well-defined synthesis variables and introduces a measure for the catalytic 

performance is an effective strategy to explore the vast composition space of HEA nanoparticle 

catalysts. This becomes in particular important when including further metals to the 

composition space. 

Last but not least, comparing the experimental results of the trend in onset potential with DFT 

calculations, the relationships were shown to correlate with the *OH adsorption energy. These 

are lowest for Ru. Therefore, within this composition space, sufficient amounts of Ru are 

obligatory for a high performing CO oxidation catalyst. The best fit between DFT calculations 

and experimental results is obtained when considering for each of the sampled HEA 

compositions the adsorption energy at the 5 percentile of most strongly adsorbing sites in the 

modeled *OH adsorption energy distributions. This indicates that a relative low number of 

strongly adsorbing *OH sites are sufficient for a rough prediction of the performance of a 

H2/CO oxidation catalyst. In conclusion, the presented study outlines an efficient and feasible  
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approach for the exploration of multidimensional composition spaces of carbon-supported, 

multi-component nanoparticles combining experimental and computational means. 

Supporting Information 

Synthesis procedure, TEM of particles, Data processing procedure, CVs from particles, MEA 

of DFT models at different at.% percentiles 
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