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Abstract 

The combination of operando small- and wide-angle X-ray scattering (SAXS, WAXS) is here 

presented to provide insights into the changes in mean particle sizes and phase fractions in fuel cell 

catalyst layers during accelerated stress tests (ASTs). As fuel cell catalyst, a bimodal Pt/C catalyst 

was chosen that consists of two distinguishable particle size populations. The presence of the two 

different sizes should favor and uncover electrochemical Ostwald ripening as degradation mechanism, 

i.e., the growth of larger particles in the Pt/C catalyst at the expense of the smaller particles via the 

formation of ionic metal species. However, instead of electrochemical Ostwald ripening, the results 

point toward classical Ostwald ripening via the local diffusion of metal atoms on the support. 

Furthermore, the grazing incidence mode provides insights into the catalyst layer depth-dependent 

degradation. While the larger particles show the same particle size changes close to the electrolyte-

catalyst interface and within the catalyst layer, the smaller Pt nanoparticles exhibit a slightly 

decreased size at the electrolyte-catalyst interface. During the AST, both size populations increase in 

size, independent of the depth. Their phase fraction, i.e., the ratio of smaller to larger size population, 

however, exhibits a depth-dependent behavior. While at the electrolyte-catalyst interface the phase 

fraction of the smaller size population decreases, it increases in the inner catalyst layer. The results 
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of a depth-dependent degradation suggest that employing a depth-dependent catalyst design can be 

used for future improvement of catalyst stability. 
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1. Introduction 

Proton exchange membrane fuel cells (PEMFCs) offer a sustainable alternative to conventional 

combustion engines.1 Highly active precious metal based catalysts are typically used as state-of-the-

art, e.g., PtCo catalysts in the Mirai vehicle from Toyota.2 The translation of new PEMFC catalysts 

into their “real-life” application requires not only a high activity but also sufficient long-term catalyst 

stability of the costly catalyst.3,4 Therefore, stability investigations and suitable degradation protocols 

to simulate realistic application conditions recently received increasing attention.5–9 To reduce the 

time needed to induce catalyst degradation, accelerated stress tests (ASTs) are performed in 

fundamental screening studies.10–13 The performed ASTs can induce different electrochemical 

degradation mechanisms that affect the nanoparticle (NP) size of the degrading catalyst: (1) migration 

of particles followed by coalescence, (2) metal dissolution, (3) electrochemical Ostwald ripening, and 

(4) particle detachment from the support.14,15 While the electrochemical Ostwald ripening results in 

larger particles at the expense of smaller ones via the diffusion and redeposition of metal ions,16–19 

“classical” Ostwald ripening in heterogeneous catalysis involves the surface diffusion of atomic 

species on the support material leading to particle growth.20–23 As a consequence, electrochemical 
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Ostwald ripening occurs at a macroscopic scale, whereas classical Ostwald ripening can be 

considered a local phenomenon. 

The particle size of fuel cell catalysts is commonly determined by (scanning) transmission electron 

microscopy ((S)TEM). To observe the change of some specific particles before and after the treatment, 

identical location (IL) (S)TEM is performed.24–32 In small-angle X-ray scattering (SAXS) studies the 

particle size change can be investigated in a larger catalyst volume comprising several thousands of 

nanoparticles as compared to the limited number of NPs and local characterization that is achieved 

by only (S)TEM.33–38 For example, ex situ SAXS was recently performed after applying AST 

protocols in a gas diffusion electrode (GDE) setup28,36,37 that eliminates mass transport limitations as 

compared to the rotating disk electrodes (RDEs) commonly used in fundamental research studies.39 

However, both (S)TEM and SAXS were not clearly demonstrating the degradation mechanism of 

electrochemical Ostwald ripening which has been considered as one of the main degradation 

mechanisms in membrane electrode assemblies (MEA).5,10,40  

In the present study, the depth-dependent (in the following also referred to as z-direction, see Figure 

S1) degradation within a catalyst layer was investigated by combining operando SAXS and wide-

angle X-ray scattering (WAXS). The aims were to reveal degradation phenomena such as 

electrochemical Ostwald ripening as well as to probe if the degradation is homogeneous within the 

catalyst layer. To generate a system that should favor electrochemical Ostwald ripening, a catalyst 

with two distinguishable Pt NP size distributions (bimodal catalyst) was prepared by mixing two 

commercial catalysts.41. Using an operando cell with grazing incidence configuration42 at the ID31 

beamline at the European Synchrotron Radiation Facility (ESRF) in Grenoble, load cycle conditions 

of PEMFCs were simulated as AST following a protocol recommended by the Fuel Cell 

Commercialization Conference of Japan (FCCJ).12,43 In the separate analysis of operando SAXS and 

WAXS data, both techniques revealed different limitations in studying the change in size distributions 

of the bimodal catalyst. However, combining both SAXS and WAXS enabled determining the mean 

particle sizes as well as the respective phase fractions of the two populations. The mean particle sizes 

of both size populations were determined by SAXS, and those values were used as input for the 

Rietveld refinement of the WAXS data. Studying the degradation mechanism responsible for the 

typically observed increase in particle size, the results suggest a phenomenon in line with local 

Ostwald ripening via atom diffusion. The analysis of the depth-dependent degradation reveals that 

the behavior of the phase fraction between the populations of smaller and larger particles is different 

at the electrolyte-catalyst interface than in the inner catalyst film. This indicates that a depth-

dependent design of catalyst layers could be an important strategy to improve catalyst stability.  
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2. Experimental section 

2.1. Chemicals, materials, and gases 

For the catalyst ink formation, ultrapure Milli-Q water (resistivity > 18.2 MΩ·cm, total organic 

carbon (TOC) < 5 ppb) from a Millipore system was used. Isopropanol (IPA, 99.7+ %, Alfa Aesar), 

commercial Pt/C catalysts (TEC10E20A (1-2 nm Pt/C, 19.4 wt% Pt) and TEC10E50E-HT (4-5 nm 

Pt/C, 50.6 wt% Pt), Tanaka kikinzoku kogyo), and Nafion dispersion (D1021, 10 wt. %, EW 1100, 

Fuel Cell Store) were used for the preparation of the catalyst ink. The working electrolyte (WE) was 

prepared using a gas diffusion layer (GDL) with a microporous layer (MPL) on top (Freudenberg 

H23C8, 0.230 μm thick). In the electrochemical measurements, diluted 70 % perchloric acid (HClO4, 

suprapur, Sigma Aldrich) as the electrolyte and argon gas (BIP ultrahigh purity, Air Liquide) were 

used. The two commercial Pt/C catalysts were dispersed in ethanol (absolute, VWR) and drop cast 

on holey C support film of Cu 300 mesh grids (Quantifoil). The spectrochemical cell was cleaned by 

briefly immersing it in diluted Caro’s acid at room temperature. 

 

2.2. Catalyst synthesis and ink formation 

The two commercial Pt/C catalysts (TEC10E20A and TEC10E50E-HT) were mixed in a Pt mass 

ratio of 0.4:0.6 to obtain the catalyst mixture with two size populations on different carbon (C) flakes 

(bimodal Pt/C catalyst). In the following, the two populations are referred to as the “smaller” and the 

“larger” size population, respectively. The catalyst mixture was dispersed in a mixture of Milli-Q 

water and IPA (water/IPA volume ratio of 3:1) to prepare about 5 mL of ink (Pt concentration of 0.5 

mg/mL). To generate a suitable dispersion for further use, the mixture was sonicated for 5 min in a 

sonication bath (Bioblock Scientific, T 310/H, 35 kHz). After adding 38.5 µL of Nafion 

(Nafion/carbon mass ratio of 1), the dispersion was again sonicated for 5 min in a sonication bath. 

 

2.3. Preparation of working electrode 

The Freudenberg GDL was placed between a glass funnel and a sand core filter in a vacuum filtration 

setup. As described by Yarlagadda et al.44 all this was placed on a collecting bottle. 4 mL of the 

prepared ink was diluted with 7 mL of Milli-Q water and 29 mL of IPA (water/IPA volume ratio of 

1:3, Pt concentration of 0.05 mg/L). After 1 min of sonication in a sonication bath, the diluted ink 

was filled in a funnel. The catalyst was deposited on top of the GDL using a diaphragm vacuum pump 

(Vacuubrand, MZ 2C, max. 1.7 m3/h and 9.0 mbar). The GDE was dried and stored in air. By this 

procedure, a nominal Pt loading of 0.208 mg/cm2
geo was generated. For the electrochemical 

measurement, the GDE after vacuum filtration was cut in circles with a diameter of 1 cm. 
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2.3.1. Electrochemical cell and measurement 

A transmission diffraction cell introduced before42 was used with Ar saturated 0.1 M HClO4 as 

electrolyte. The electrolyte was degassed in a bubbler before being introduced into the top of the cell, 

pumped out of the top of the cell, and recirculated back to the bubbler. 

Activation of the catalyst was done by 10 cyclic voltammograms (CVs) between 0.06 and 1.0 V 

versus reversible hydrogen electrode (VRHE) using a scan rate of 50 mV/s. ASTs applying potential 

steps between 0.6 and 1.0 VRHE (3 s holding per potential) were performed, simulating load-cycle 

conditions in a fuel cell vehicle. In between the AST cycles, two CVs between 0.06 and 1.0 VRHE 

were performed, see Table S1 for details of the measurement protocol. The decrease of the Hupd area 

was used as an in-situ tool for analyzing the level of degradation. However, the averaged Hupd of both 

populations of the bimodal catalyst does not help to distinguish the separate degradation of both 

populations. 

 

2.4. Transmission electron microscopy (TEM) 

TEM was performed with a Jeol 2100 microscope, operated at 200 kV. At least five different areas 

of the TEM grid were imaged at a minimum of three different magnifications. The NP diameter was 

determined by measuring at least 200 NPs with the imageJ software. The Pt/C catalysts were 

dispersed in ethanol and drop cast onto Quantifoil grids. 

 

2.5. Small-angle X-ray scattering (SAXS) 

The SAXS and WAXS pattern were collected with a 77.0 keV beam and reduced as described 

previously.45 The beam size was focused to approximately 5 x 2 µm (horizontal x vertical). In grazing-

incidence mode a depth profile was performed, see Figures S1 and S2 as an example. Three different 

depths were analyzed (referred to as depth 4, 8, and 12). Depth 4 was chosen as it is the first layer 

showing Pt pattern in WAXS, i.e., the layer closest to the electrolyte, and the SAXS pattern of depth 

4 was analyzed using depth 3 as background. Depth 8 shows the maximum intensity in the SAXS 

diffraction i.e., the layer in the middle of the catalyst layer, and was analyzed using depth 18 as 

background. Depth 12 is deeper inside the catalyst layer and was analyzed using depth 18 as 

background. 

After inserting electrolyte to the cell, the first scan was performed. To ensure that the surface of the 

particles was fully reduced, the cell was held at 0.6 VRHE during X-ray data collection. Details about 

the measurement protocol during AST can be found in the SI, see Table S1. 

The SAXS data analysis after background subtraction was performed as described previously35,37,46–

48 using a model of polydisperse spheres. The radially averaged intensity I(q) is expressed as a 
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function of the scattering vector q = 4π·sin(θ)/λ, where λ is the wavelength and 2θ is the scattering 

angle. The background-corrected scattering data were fitted using a model of one or two polydisperse 

spheres described by a total volume distributed (i.e., volume-weighted) log-normal distribution. A 

hard-sphere form factor F(R2,η2) was used.49 The scattering data are fitted to the following expression:  

I(q)= C1·∫Ps1 (q,R)V1(R)D1(R)dR +  C2·F(R2,η2) ∫Ps2(q,R)V2(R)D2(R)dR 

R is the particle radius, C1 and C2 are scaling constants, Ps1 and Ps2 the sphere form factors, V1 and 

V2 the particle volumes, and D1 and D2 the log-normal size distribution. The normalized sphere form 

factor is given by: 50,51 

 

and the log-normal distribution by: 

 

where σ is the variance and R0 (evaluated in Å) the geometric mean of the log-normal distribution. 

The fitting was done using a home-written MATLAB code (available on request). The free parameters 

in the model are C1, R1, σ1, C2, R2, σ2, η2. The values obtained for these parameters are reported in 

Table S2. To account for the two populations, the reported probability density functions were 

weighted by the relative surface contribution of the spheres (to point out the electrochemical 

contribution of the population) as detailed in the SI. Details about the determination of the mean 

particle sizes and deviation for the log-normal distributions are found in Table S2. 

 

2.6. Wide-angle X-ray scattering (WAXS) 

WAXS analysis was done by performing Rietveld refinement using GSAS-II,52 as previously 

described.42 The structural model used for refinement consisted of two platinum fcc phases (Fm-3m) 

of the same lattice constant a. The lattice constant was obtained from refinement with a single fcc 

phase (a = 3.9046(6)). The mean particle sizes obtained from SAXS were used as input parameters 

in the WAXS refinement as the volume-weighted average number of coherent scattering domains, 

which are calculated from the full-width-at-half-maximum of reflections refined with only Lorentzian 

line shapes.42 In this approach, we assume that no strain effects contribute to the broadening of 

reflections in the diffraction pattern. The contribution of the instrumental profile to the broadening of 

the Bragg peaks can be neglected based on the refinement of the CeO2 calibrant: For the ceria NIST 

standard (380 nm), the instrumental profile contributes less than 10 % to the width of the Bragg peaks. 

Therefore, no instrumental profile correction was included for the Rietveld refinement of the 

Ps q,R =  3
sin(qR)-qRcos(qR) 

 qR 3
 

2

 

D(R)=
1

Rσ 2π
exp  

-  ln  
R
R0

  

2σ2

2
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nanoparticles, as the effect is insignificant compared to the peak broadening from the platinum 

nanoparticles and a complex model is further needed to account for the cell geometry.22 The 

background was described by a diffraction pattern from the grazing incident scan with minimal 

platinum content (depth 3) to describe the carbon background correctly.   

The phase fraction is determined based on the crystallite sizes used as input values during the Rietveld 

refinement, which is not identical to the SAXS mean particle size. Therefore, we studied the influence 

of slight variations of the input values of the crystallite sizes. The input domain sizes were shifted by 

± 0.5 or ± 1.0 nm in three different ways in the WAXS refinement of the diffraction pattern of different 

depths, see Figures S7 and S8. First, the mean particle size of the larger size population is changed 

by ± 0.5 and ± 1.0 nm while the size of the smaller size population is kept constant. Second, the size 

of the larger size population is kept constant while the size of the smaller population is changed by ± 

0.5 nm. Third, the sizes of both populations are changed at the same time in the same direction by ± 

0.5 nm. The fractions obtained by varying the input domain sizes are found in Figure S7 and S8. 

These tests confirmed that the observed trend for the change in the two particle size population 

fractions is not an artifact of using the input of mean particle sizes from the SAXS fitting as the 

crystallite size. Details about the WAXS measurement protocol during AST are found in Table S1. 
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3. Results and discussion 

 

Figure 1. a) Calculated probability density function of the particle size of the bimodal catalyst after 

electrolyte insertion (black line) together with the probability densities of the separate size 

populations (dashed red and blue lines of the small and large size population, respectively) in a depth 

close to the electrolyte-catalyst interface derived from the SAXS data. b) TEM micrographs and size 

histograms of the two individual Pt/C catalysts that were mixed to obtain the bimodal Pt/C catalyst.  

 

The aim of this work is to investigate the depth-dependent degradation mechanism(s) within a Pt/C 

fuel cell catalyst layer subjected to simulated load-cycle conditions. As the main analytical tool, a 

combination of operando SAXS and WAXS was used to obtain precise information on the mean 

particle sizes and crystallite size fractions as a function of the duration of the AST protocol. To induce 

and uncover electrochemical Ostwald ripening, i.e., the growth of larger NPs at the expense of smaller 

ones via the formation of ionic metal species,16–19 a bimodal Pt/C catalyst obtained by mixing two 

different commercial Pt/C catalysts with distinguishable size populations , was studied, see Figure 1. 

The use of the bimodal catalyst prepared by mixing two catalysts enables us to distinguish between 

local and macroscopic Ostwald ripening. In local Ostwald ripening, mainly described for 

heterogeneous catalysis, atomic metal species are formed that diffuse on the support material.20–23 

The particle growth in this local phenomenon can only occur on individual or connected carbon flakes 

This is in contrast to macroscopic Ostwald ripening where ionic metal species are formed that can 

diffuse on a macroscopic scale, as proven by the detection of reduced metal special in the membrane 
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of MEAs53 or the detection of metal species in scanning flow cell measurements coupled to 

inductively coupled mass spectrometry (SFC ICP-MS).54 Furthermore, the here applied grazing-

incidence mode allows a straightforward selection not only of different spots at the same depth (same 

x-y planes) in the catalyst layer but additionally z-scans can be performed,55 to investigate if the 

degradation depends on the distance of the NPs to the electrolyte-catalyst interface. See Figure S1 for 

a scheme of the x-, y-, and z-direction relative to the electrolyte-catalyst interface.  

Before discussing the influence of the AST protocol on the catalyst particles, we first introduce the 

combination of SAXS and WAXS analysis based on the catalyst after inserting the electrolyte into 

the cell in a z-direction close to the electrolyte-catalyst interface, see grey scattering and diffraction 

data in Figure 2. Based on the fact that the bimodal Pt/C catalyst is the result of mixing two 

individually characterized Pt/C catalysts in a known metal ratio (0.4:0.6 based on metal weight 

percentage of the two catalysts), the determined mean particle sizes and phase fractions in the bimodal 

Pt/C catalysts can be compared to the expected values. The analysis shows that the mean particle size 

of both populations of the bimodal catalyst can be determined by SAXS data analysis with high 

accuracy. The particle diameters and their standard deviations retrieved from the log-normal 

distributions obtained from the SAXS data are 1.7 ± 0.5 and 5.5 ± 1.5 nm, see Figure 1a, Figure 3a, 

and Table S2 for details about the fitting parameters. Comparing the individual catalysts in Figure 1 

with the prepared bimodal catalyst, it is demonstrated that the SAXS results are in good agreement 

with the TEM data of ca. 2 and ca. 5 nm average size. However, a quantitative analysis of the relative 

number of NPs in the two size populations is difficult. Although the expected relative number of NPs 

in the two size populations could be fitted to the SAXS data as well, in simulations the fit is ambiguous 

in this respect, i.e., no one-to-one correspondence between the intensities of the two populations of 

the same scattering data is found. It is important to note that this is not the case for the mean particle 

sizes, which remain similar in simulations of different phase fractions of the two populations.  

To address this limitation, we took advantage of the WAXS data. The WAXS diffraction patterns 

clearly show the typical Bragg peaks of the platinum fcc phase which are convoluted with the signals 

of the carbon and polymer background at low 2θ angles, see Figure S2b. From an angular range of 

six 2θ onwards, the platinum reflections are virtually free of background and can readily be analyzed 

by Rietveld refinement.55 Simultaneously varying both the fraction and crystallite size of the two 

populations of Pt NPs in the Rietveld refinement of WAXS data was not feasible due to the 

intertwining of these variables, as only one population with an average coherent domain size was 

obtained. Therefore, we used the mean particle size of the two populations derived by the SAXS 

fitting as pre-defined input values in the Rietveld refinement of the WAXS data. Two platinum phases 

of different coherent domain sizes (input of SAXS mean particle sizes) were used as the structural 
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model in the Rietveld refinement. Although the mean particle size derived from the SAXS fitting is 

not identical with the coherent domain size in diffraction, the two parameters are closely related.42 In 

this way the fractions of the platinum phases, i.e., their mass ratios, can be determined for the two 

size populations of Pt NPs. A representative refinement showing the two platinum phases of the 

structural model with different crystallite sizes is depicted in Figure S6. The ratio of smaller to larger 

population of 0.44:0.56 in the sample after electrolyte insertion close to electrolyte-catalyst interface 

obtained from the combined SAXS and WAXS data analysis is in good agreement with the theoretical 

ratio of 0.4:0.6 expected from the sample preparation procedure, see Figure 3b. Thus, the combination 

of operando SAXS and WAXS data analysis allows to readily evaluate both the size evolution of the 

two size populations and the fractions of the two size platinum crystallite domains of the bimodal 

Pt/C catalyst. 

 

Figure 2. a) Background subtracted SAXS scattering data and b) WAXS diffractograms in an angular 

range from 5 to 15 ° 2 theta in the depth close to the electrolyte-catalyst interface: after electrolyte 

insertion (grey), after catalyst cleaning (black), after 2500 AST cycles (red), after 5000 AST cycles 

(blue). The increase of the height and narrowing of the peaks of the diffractogram during the AST 

protocol imply an increase in particle size, which is in agreement with the mean particle size results. 

The data in a) and b) are shown with a vertical offset to improve visibility of the different datasets. 

 

At the beginning of the measurements and before starting the AST protocol, the Pt/C catalysts were 

first electrochemically contacted and thereafter exposed to a short cycling of the electrode potential.  

This procedure serves to confirm electrochemical contact of the catalyst as well as to clean it, see 

experimental section for details. It can be seen that already before the electrochemical contact (after 

electrolyte insertion), the initial particle size of the small population close to the electrolyte-catalyst 

interface appears to be slightly smaller as compared to the particle size of the same population at the 
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two other catalyst depths closer to the substrate-catalyst interface. At the same time, the particle size 

of the larger population is comparable throughout the different depths (see Figure 3a). Comparing the 

scattering data at two different positions of the same depth in the middle of the catalyst layer in Figure 

S3, it is confirmed that these observations are representative for the macroscopic catalyst layer, i.e., 

the changes in particle size of the two populations are identical at both x-y positions in the layer.  

After applying cleaning CVs the fraction of the smaller NPs in the depth closest to the electrolyte -

catalyst interface increases from 0.44:0.56 to 0.48:0.52 with respect to the larger size population, see 

Figure 3b, while the mean particle sizes remain unaffected as can be seen from the SAXS fitting, see 

Figure 3a. In this context, it is important to point out that refinement of the diffraction pattern yields 

a relative and not an absolute number for both populations. Hence, the increase in the fraction of the 

smaller size population can also be explained by a loss of the larger particles. Pt dissolution upon 

establishing electrochemical contact has been described by Pizzutilo et al.8 by coupling scanning flow 

cells (SFC) with inductively coupled plasma mass spectrometry (ICP-MS). Our data suggest that this 

effect affects mostly the smaller Pt NPs that are located at the electrolyte-catalyst interface, whereas 

the larger size population seems not substantially affected. However, exposure of the catalyst to 

cleaning cycles seems to result in a particle loss phenomenon with a higher loss of NPs in the larger 

size population as evidenced by the change in phase fraction. A preferential detachment of the larger 

particles due to carbon corrosion would be in line with previous investigations by Mayrhofer et al.10 

and Hartl et al.24 who demonstrated particle loss for the same catalyst that constitutes the larger 

fraction in the present work. Stronger support-particle interaction of the larger particles due to the 

larger contact area with the support, as compared to smaller ones, could lead to less detachment of 

larger NPs from the support.56 However, the support-particle interaction is also determined by other 

factors, e.g., by the degree of graphitization of the carbon support that is difficult to rationalize for 

commercial catalysts.18,57  

In the following, we now concentrate on the effect of the AST treatment on the catalyst, which is 

analyzed first at a depth close to the electrolyte-catalyst interface. Representative operando SAXS 

and WAXS data of the Pt/C catalyst after electrolyte insertion into the cell, after catalyst cleaning, 

after 2500, and after 5000 AST cycles are shown in Figure 2. Based on the mean particle size changes 

obtained from the SAXS data (see Figures S4 and S5, Table S2) three main observations are made, 

see Figure 3a. First, both populations of the catalyst located in the catalyst layer close to the 

electrolyte-catalyst interface increase in size. Second, at the beginning of the AST, the increase in 

size per treatment cycle is more pronounced than at the end of the AST. Third, the increase in mean 

particle size of the population of the larger particles is less pronounced (from 5.48 ± 1.45 to 5.87 ± 

1.61 nm, size increase of around 7 %) than the size increase of the smaller particles (1.76 ± 0.48 to 
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2.42 ± 0.79, size increase of around 50 %), see Figure 3a. The observation of a more pronounced size 

increase at the beginning of the AST as compared to that during the AST is in line with previous 

findings.3,8,26 The shifting of the average particle size of the smaller size population to larger values 

clearly indicates a preferential dissolution of smaller Pt NPs within the smaller size population that 

could be explained either by a local or macroscopic Ostwald ripening. However, the broadening of 

the size distribution (SAXS probability density function) during the AST is in better agreement with 

the local phenomenon of Ostwald ripening and thus an atomic diffusion process on the support.  In 

the non-local Ostwald ripening, the re-deposition of Pt onto the larger size population should be 

highly favorable. The local, intra-population Ostwald ripening mechanism of the small population 

would be in agreement with atomic Pt species being mobile on the carbon support as previously 

proposed by Ferreira et al.5 It seems that the diffusion of the soluble ionic Pt species does not lead to 

re-deposition in the catalyst layer and thus no macroscopic Ostwald ripening. Instead, in an MEA 

environment, Pt precipitation into the membrane can occur due to hydrogen crossover. In 

electrochemical measurements with liquid electrolyte, the ionic Pt species diffuse into the electrolyte 

and can be detected by SFC ICP-MS.54 For the increase in average particle size of the larger size 

population, however, a distinction between either macroscopic or local Ostwald ripening, i.e., an 

inter- or intra-population particle growth is not feasible. Analyzing the change in phase fraction, it is 

seen that the phase fraction of the smaller size population decreases when applying the AST protocol. 

Such behavior is expected for several different degradation scenarios and therefore not interpreted 

further.  
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Figure 3. a) Mean particle size of the bimodal Pt NP/C catalyst (smaller and larger size population 

distinguished with smaller and larger circles) plotted together with the standard deviation of a log-

normal distribution applying load-cycles conditions as AST protocol in an operando cell after the 

AST cycles (empty circles) and after CVs (filled circles) close to the electrolyte (blue), in the middle 

depth (black), and deeper inside the catalyst layer (red). Phase fractions of the two size populations 

(small and large circles, for the smaller and larger size populations, respectively) obtained from 

Rietveld refinement of the different depth keeping the particle sizes determined via SAXS constant, 

b) close to the electrolyte (blue) and in the middle catalyst layer (black), c) in the middle (black, data 

from Figure 2) and deeper inside the catalyst layer (red) (the red filled circles are placed in front of 

the red circles, due to an overlap the black circles are sometimes covered). The data points recorded 

after electrolyte insertion (before performing the cleaning CVs) are given on the x-axis for a negative 

AST number.  

 

Trying to understand the depth dependence of the degradation, the changes of the particle size and 

the phase fraction were also analyzed in a “middle depth” of the catalyst layer, further away from the 
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electrolyte-catalyst interface. In Figure 3, it is seen that in both depths (close to the electrolyte-catalyst 

interface and in the middle catalyst depth) the mean particle size of both populations increases with 

the AST treatment. This confirms that the complete catalyst layer is electrochemically active and thus 

connected, see Figure 3a. Based on our observations, we can identify four common characteristics 

for the two depths analyzed. First, the particle size and the size change during the AST of the larger 

size population are similar in the two depths. Second, the particle size of the smaller size population 

increases in a more pronounced way than the particle size of the larger population (from 2.43 ± 0.67 

to 3.52 ± 0.68 nm (size increase of around 45 %) and from 5.50 ± 1.17 to 5.99 ± 1.15 nm (size increase 

of around 9 %) in the middle catalyst layer depth). Third, the relative size increases of both 

populations are comparable in the depth close to the electrolyte-catalyst interface (7 and 50 % for the 

smaller and larger size population, see blue circles in Figure 3a) or in the middle of the catalyst layer 

(9 and 45 %, see black circles). Fourth, the particle size change of the larger size population seems to 

be independent of the depth.  

As the width of the probability density of the smaller size population does not decrease, again no pure 

size-dependent Pt dissolution but the process of local Ostwald ripening occurs as described for the 

depth closer to the electrolyte-catalyst interface. However, there is also a distinct difference between 

the two depths. Comparing the depth-dependent phase fractions during the AST, it is seen that in the 

middle of the catalyst layer, the ratio of the smaller to the larger size population increases from the 

initial ratio of 0.51:0.49 measured after applying the cleaning procedure to reach a value of 0.6:0.4 at 

the end of treatment, see Figure 3b. Concomitantly, the particle sizes in both populations increase, 

see Figure 3a. This behavior of an increased phase fraction of the smaller in respect to the larger size 

population of the Pt/C catalyst in the middle of the catalyst layer is unexpected. It would be more 

intuitive to assume growth of the NPs and a decrease of the smaller NP fraction, as is observed at the 

electrolyte-catalyst interface. Therefore, we analyzed additional data obtained from a different z-

direction at a third depth closer to the GDL, i.e., deeper inside the catalyst layer. The analysis of the 

SAXS and WAXS data in the depth far away from the electrolyte-catalyst interface shows the same 

unexpected results in change of the mean particle sizes and the phase fractions as observed in the 

middle catalyst layer, see Figure 3a and c.  

To explain those observations, several scenarios can be considered. Enhanced dissolution of the larger 

particles seems to be unlikely. An increase of the amount of the smaller NPs in the catalyst layer 

further away from the electrolyte-catalyst due to carbon support corrosion and easier “travel through” 

the catalyst layer of the smaller NPs is also unlikely, as we found no indication of Pt NPs in the MPL 

during the AST, see Figure S2a. However, a preferential particle detachment as discussed above could 

explain the findings.  
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While it seems unlikely that a different degradation mechanism occurs inside the catalyst layer, it 

might be that only the ratio between the dissolution of the smaller size population and the particle 

detachment of the larger size population is changing. That is, while close to the electrolyte-catalyst 

interface the dissolution of the smaller population is more pronounced, deeper inside the catalyst layer 

the particle loss of the larger size population might be dominating. As a consequence, the phase 

fraction of the smaller size population decreases close to the electrolyte-catalyst interface, while it is 

increasing closer to the GDL, see Figure 4. The described degradation mechanism of Figure 4 might 

change in MEAs due to a membrane-catalyst interface (instead of the electrolyte-catalyst interface), 

however, the presented results point out the importance of depth-dependent degradation studies and 

the advantage of a bimodal catalyst.  

 

 

Figure 4. Scheme of the proposed depth-dependent degradation mechanism in the Pt/C catalyst. 

 

4. Conclusion 

The combination of operando SAXS and WAXS in grazing incidence configuration is used to 

investigate catalyst layer depth-dependent degradation of a fuel cell catalyst subjected to ASTs. A 

bimodal Pt/C catalyst was chosen that consists of two distinguishable particle size populations to 

maximize the chance to observe the expected electrochemical Ostwald ripening where the size of the 

larger particles in the Pt/C catalyst grows at the expense of the smaller particles via the deposition of 

metal ions. However, it is seen that the degradation mechanism is more complex. Establishing 

electrochemical contact inflicts the most pronounced degradation on smaller NPs close to the 
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electrolyte-catalyst interface. The initial cleaning cycles, by comparison, lead to particle detachment, 

a phenomenon particular pronounced one of the chosen heat-treated (the ‘HT’ from the commercial 

name implies a heat treatment (TEC10E50E-HT) which seems to lead to enhanced carbon corrosion 

at the NP-carbon interface) Pt/C catalysts with larger Pt NPs. The AST treatment, simulating load 

cycles, leads to features that can be associated with a preferential dissolution of smaller Pt particles 

and local Ostwald ripening via atomic Pt species mobile on the carbon support. The latter leads to 

intra-population particle growth. Concomitantly, the phase fraction between the smaller and the larger 

size population decreases at the electrolyte-catalyst interface, i.e., the number of NPs in the smaller 

fraction gets reduced with respect to the number of NPs in the larger fraction. Surprisingly, deeper in 

the catalyst layer the opposite trend is observed, i.e., the relative number of NPs in the smaller fraction 

increases. This indicates that deeper into the catalyst layer particle loss of the large fraction dominates. 

If one assumes that particle loss is equally likely throughout the catalyst layer, this would mean that 

dissolution and Ostwald ripening as well as other processes leading to intra-population particle 

growth is less pronounced in the catalyst layer than at the electrolyte-catalyst interface.  

 

Supporting information 
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