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Abstract 
Clinical prediction models are widely used in modern clinical practice. Such models are 

often developed using individual patient data (IPD) from a single study, but often there are IPD 

available from multiple studies. This allows using meta-analytical methods for developing 

prediction models, increasing power and precision. Different studies, however, often measure 

different sets of predictors, which may result to systematically missing predictors, i.e. when 

not all studies collect all predictors of interest. This situation poses challenges in model 

development. We hereby describe various approaches that can be used to develop prediction 

models for continuous outcomes in such situations. We compare four approaches: a “restrict 

predictors” approach, where the model is developed using only predictors measured in all 

studies; a multiple imputation approach that ignores study-level clustering; a multiple 

imputation approach that accounts for study-level clustering; and a new approach that develops 

a prediction model in each study separately using all predictors reported, and then synthesizes 

all predictions in a multi-study ensemble. We explore in simulations the performance of all 

approaches under various scenarios. We find that imputation methods and our new method 

outperform the restrict predictors approach. In several scenarios, our method outperformed 

imputation methods, especially for few studies, when predictor effects were small, and in case 

of large heterogeneity. We use a real dataset of 12 trials in psychotherapies for depression to 

illustrate all methods in practice, and we provide code in R. 
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1 Introduction 

Meta-analysis of individual patient data (IPD) is often used to synthesize patient-level data 

from multiple studies, when developing clinical prediction models1,2 or when estimating 

relative treatment effects.3,4 One practical problem that often comes up in such analyses is 

missing data. This is the case when we have predictors in some studies only partly reported, 

e.g. when some patients did not provide information on their BMI. We refer to this situation as 

‘sporadically missing’ data. A different missing data problem, which is relevant for meta-

analysis only, is ‘systematically missing’ predictors. This is when different studies measured 

different sets of predictors. Systematically missing predictors may pose practical problems in 

synthesizing data from multiple studies, e.g., when we want to fit the same model across studies 

and meta-analyze the corresponding coefficients. 

The most popular method for handling both types of missing data is multiple imputation.5,6 

Standard multiple imputation techniques6 can handle sporadically missing data, but they are 

not ideal for imputing systematically missing predictors. When analyzing IPD from multiple 

studies, multiple imputation should ideally take into account the multilevel structure (i.e. 

clustering of patients in the different studies) and allow for potential heterogeneity between the 

studies. Several methods for imputing systematically missing variables while accounting for 

study clustering have been recently proposed.7–9 However, applying these methods in practice 

may be difficult, because they require estimation of the variance-covariance matrix of random 

effects. This estimation uses studies with no systematically missing predictors, meaning that 

for valid inference, we need datasets with a large number of such studies;10 of course, this may 

not always be the case. 

This paper explores an alternative, generic method for addressing the systematically missing 

predictors’ problem when the aim is to use data from multiple studies in order to build a model 

to predict a continuous outcome in future individuals who will have all covariates observed. 

Instead of imputing systematically missing predictors, we propose to develop a separate 

prediction model in each study using only the predictors reported in that study, i.e. ignoring 

systematically missing variables. Then, we use these developed models for a new patient to 

make separate predictions, assuming that all covariates are collected for the new patient. In the 

end, we synthesize these predictions into a single forecast for the patient’s future outcome.  

We hereby compare in simulations the new approach with the restrict predictors approach 

where we exclude predictors that are systematically missing in some studies, the usual multiple 
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imputation approach ignoring between-study heterogeneity and the multiple imputation 

approach where we account for between-study heterogeneity. Finally, we use a real dataset of 

trials in depression to illustrate the use of all methods in practice. 

2 Illustrative example in depression 

We used a real dataset of 12 randomized trials in psychotherapies for depression comparing 

treatment as usual (TAU) versus internet-delivered cognitive behavioral therapy (iCBT). There 

were a total of 1633 patients randomized to TAU, 2072 to iCBT. The outcome of interest was 

Patient Health Questionnaire-9 scores (PHQ-9)11. This is a measure of depression symptoms 

ranging from 0 to 27, with larger values indicating more severe depression. PHQ-9 was 

sporadically missing across all studies. There were also eight predictors of interest, which we 

will use to illustrate our methods. Among them, two were continuous (baseline PHQ-9 scores 

and age) and six binary (sex, relationship status, comorbid anxiety, previous episodes, 

medication, and alcohol use). Only baseline and sex were collected in all trials (albeit with few 

sporadically missing values for sex); the remaining predictors were collected inconsistently 

across trials. Table 1 shows the systematically missing data patterns across trials. In Table 1 of 

the Appendix, we show the percentages of sporadically missing data for each study and each 

outcome and predictor. 
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Table 1 Overview of the systematically missing data for each study in the illustrative example.  

Study 

Baseline 

depression 

score 

Sex Age Relationship status Comorbid anxiety Previous episodes Medication Alcohol 

De Graaf 2009 ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ 

Farrer 2011 ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ 

Geraedts 2014 ✔ ✔ ✔ ✔ ✔ ✘ ✘ ✘ 

Gilbody 2015 ✔ ✔ ✘ ✔ ✘ ✘ ✘ ✘ 

Johansson 2012 ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✘ 

Kivi 2014 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

Klein 2016 (A) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

Klein 2016 (B) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

Meyer 2015 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ 

Montero-Marin 2016 ✔ ✔ ✔ ✔ ✔ ✘ ✘ ✘ 

Philips 2014 ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✘ 

Rosso 2016 ✔ ✔ ✔ ✘ ✔ ✔ ✔ ✘ 

✘ systematically missing in the study; ✔ available for at least some of the patients in the study 
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3 Methods 

3.1 Notation and general considerations 

We assume that we have IPD from 𝑁𝑁𝑆𝑆 studies. We assume that for patient 𝑖𝑖 in study 𝑗𝑗, we 

have information on several predictors of interest, included in a vector 𝒙𝒙𝒊𝒊, and that the observed 

outcome for this patient was 𝑦𝑦𝑖𝑖 , measured on a continuous scale. We assume that different 

studies reported different sets of predictors, i.e. different subsets from the full list of the 

predictors of interest. In case when patients in each study have been randomized to different 

treatments, we also have information on treatment 𝑡𝑡𝑖𝑖 the patient received (either control 𝑡𝑡𝑖𝑖 = 0, 

or active treatment 𝑡𝑡𝑖𝑖 = 1). 

Our aim is to build a model that will provide an accurate prediction of the outcome in new 

patients (possibly under different treatments). We will denote the predictors of a new patient as 

𝒙𝒙𝒏𝒏𝒏𝒏𝒏𝒏, and a prediction of this patient outcome as 𝑦𝑦�𝑛𝑛𝑛𝑛𝑛𝑛 (which will be a function of 𝒙𝒙𝒏𝒏𝒏𝒏𝒏𝒏, and 

maybe also of treatment). The focus will be on methods for handling systematically and 

sporadically missing predictors in the data. Of note, we will assume that all covariates will be 

collected for new patients.   

3.2 One-stage meta-analytical prediction models for fully observed data 

In case all studies report all predictors and we have no sporadically missing data, we can fit 

a one-stage meta-analytical prediction model. We assume the (continuous) outcome to be 

normally distributed, 𝑦𝑦𝑖𝑖~𝑁𝑁(𝜇𝜇𝑖𝑖,𝜎𝜎𝑖𝑖2) , where 𝜇𝜇𝑖𝑖  denotes the expected outcome of patient 𝑖𝑖 

(randomized in study 𝑗𝑗), and 𝜎𝜎𝑖𝑖2 refers to the residual variance of the outcome in each study. 𝜇𝜇𝑖𝑖 

can be any function of the predictors 𝒙𝒙𝒊𝒊, i.e. 𝜇𝜇𝑖𝑖 = 𝑓𝑓(𝒙𝒙𝒊𝒊). In the presence of treatment as a 

predictor, this function also includes 𝑡𝑡𝑖𝑖. The simplest prediction model we can build is one that 

does not account for study assignment, it assumes 𝜎𝜎𝑖𝑖2 = 𝜎𝜎 and 𝜇𝜇𝑖𝑖 only includes linear terms: 

𝜇𝜇𝑖𝑖 = 𝛼𝛼 + 𝜷𝜷 𝒙𝒙𝒊𝒊 (1) 

where 𝜷𝜷 denotes the regression coefficients of the predictors 𝒙𝒙𝒊𝒊. We can build a more advanced 

model by accounting for study assignment after including random effects in the intercept: 

𝜇𝜇𝑖𝑖 = 𝑎𝑎𝑗𝑗 + 𝜷𝜷 𝒙𝒙𝒊𝒊 

𝑎𝑎𝑗𝑗~𝑁𝑁(𝛼𝛼, 𝜏𝜏𝛼𝛼2) 
(2) 

In this formula, 𝑎𝑎𝑗𝑗 is the study-specific intercept, assumed to be normally distributed across 

studies with a mean 𝛼𝛼 and variance 𝜏𝜏𝛼𝛼2. 
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Often when meta-analyzing comparative studies, we include a treatment effect term and/or 

treatment-predictor interactions (“effect modifiers”). With these included, 𝜇𝜇𝑖𝑖 can be modelled 

as follows: 

𝜇𝜇𝑖𝑖 = 𝑎𝑎𝑗𝑗 + 𝜷𝜷 𝒙𝒙𝒊𝒊 + 𝜸𝜸 𝒙𝒙𝒊𝒊 𝑡𝑡𝑖𝑖 + 𝑑𝑑𝑗𝑗  𝑡𝑡𝑖𝑖 

𝑎𝑎𝑗𝑗~𝑁𝑁(𝛼𝛼, 𝜏𝜏𝛼𝛼2), 𝑑𝑑𝑗𝑗~𝑁𝑁(𝛿𝛿, 𝜏𝜏𝛿𝛿2) 
(3) 

In this formula, 𝜸𝜸 denotes the coefficients for treatment-predictor interactions and 𝑑𝑑𝑗𝑗  is the 

study-specific ‘baseline’ treatment effect (i.e. at 𝒙𝒙𝒊𝒊 = 𝟎𝟎), assumed to be normally distributed 

across studies with average 𝛿𝛿 and variance 𝜏𝜏𝛿𝛿2. 

After we fit any of the models described above, we can predict the outcome for a new patient 

with predictors 𝒙𝒙𝒏𝒏𝒏𝒏𝒏𝒏 using the estimated values for the parameters of the model. In case of 

model (2) we would have 

𝑦𝑦�𝑛𝑛𝑛𝑛𝑛𝑛 = 𝛼𝛼� + 𝜷𝜷� 𝒙𝒙𝒏𝒏𝒏𝒏𝒏𝒏 (4) 

In the case of analyzing comparative studies using model (3), predicted outcome would also be 

a function of treatment: 

𝑦𝑦�𝑛𝑛𝑛𝑛𝑛𝑛 = 𝛼𝛼� + 𝜷𝜷� 𝒙𝒙𝒏𝒏𝒏𝒏𝒏𝒏 + 𝜸𝜸� 𝒙𝒙𝒏𝒏𝒏𝒏𝒏𝒏 𝑡𝑡 + 𝛿𝛿 𝑡𝑡 (5) 

We can extend equations (4) or (5) by including non-linear terms and interactions between 

predictors, or by assuming exchangeable coefficients for main effects and treatment-predictor 

interactions across studies when fitting equations (2) or (3). Furthermore, all these models can 

be fit in a two-stage approach.12,13 All models described in this section are straightforward to 

fit when all studies report all predictors. Below, we discuss methods for fitting the models when 

some of the predictors are both systematically and sporadically missing. 

3.3 Methods for addressing missing predictors 

3.3.1 Restrict predictors method 

In this approach, we need all studies to report the same predictors (i.e. no systematically, but 

possibly sporadically missing data). When this is not the case, we drop from model development 

predictors that were not reported in one or more studies. Obviously, this approach can be 

wasteful, especially when the ignored predictors are important.14 Nonetheless, this is sometimes 

done when analyzing IPD.15 After removing systematically missing predictors, we need to 

impute the sporadically missing predictors. Ideally, this should be done via multi-level 

imputation techniques. This approach can impute sporadically missing data while accounting 

for between-study heterogeneity.6 Following this, we create 𝑚𝑚 fully observed datasets and we 
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use Equation (2) or (3) to develop a model in each one separately. Next, we need to pool results 

from these 𝑚𝑚 prediction models. There are two different ways to do this. One method is to pool 

regression coefficients using Rubin’s rules16 and make predictions using Equations (4) or (5). 

A second approach is the “pooled prediction” strategy17, where Rubin’s rules are applied on the 

predictions themselves. More specifically, given a new patient’s predictors, we use the model 

developed in the 𝑘𝑘-th imputed dataset (𝑘𝑘 = 1, 2 , …  𝑚𝑚) to obtain prediction 𝑦𝑦�𝑛𝑛𝑛𝑛𝑛𝑛,𝑘𝑘. Finally, we 

pool the 𝑚𝑚 predictions by simply taking the average:  

𝑦𝑦�𝑛𝑛𝑛𝑛𝑛𝑛 =
1
𝑚𝑚
�𝑦𝑦�𝑛𝑛𝑛𝑛𝑛𝑛,𝑘𝑘

𝑚𝑚

𝑘𝑘=1

 (6) 

The difference between two approaches is likely to be minor in practice, but the pooled 

prediction strategy may be preferable when the 𝑚𝑚 predictions differ significantly.17 Moreover, 

the pooled prediction strategy can be easily applied to any type of model, irrespective of the 

number of predictors or the structure of the model. We hereby follow this approach for the rest 

of the paper. 

3.3.2 Imputing missing predictors ignoring between-study heterogeneity 

Instead of dropping predictors as above, we can use multiple imputation methods to impute 

both sporadically as well as systematically missing predictors simultaneously and create 𝑚𝑚 

fully observed datasets which include all predictors for all studies. The easiest way to do the 

imputations is to combine data from the studies in a single dataset and impute ignoring 

stratification of patients in different studies. Once we have the imputed datasets, we can use 

again Equation (2) or (3) to develop the model in each imputed dataset separately and then pool 

results from the 𝑚𝑚 prediction models using Equation (6). Note that we are performing meta-

analysis first and then using Rubin’s rule to pool results.18 The advantage of this approach is 

that it is straightforward and computationally easy to perform. The disadvantage is that it 

ignores the fact that subjects were randomized in different studies and makes a (perhaps strong) 

assumption when imputing, that the associations between variables are homogeneous across 

studies.19 As it has been previously shown, however, this may lead to biased estimates20 or 

underestimation of standard errors.8 

3.3.3 Imputing systematically missing predictors accounting for between-study heterogeneity 

We already mentioned that standard multi-level imputation techniques based on linear mixed 

effects model can impute sporadically missing data while taking into account between-study 

heterogeneity.6 This approach, however, cannot impute systematically missing data, since it 

requires estimation of the variance-covariance matrix of the predictors within each study; when 
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for a study a predictor is systematically missing, this method fails.10 Recently, three new 

methods were proposed to perform multiple imputations for the case of systematically missing 

predictors, while properly accounting for stratification of patients in studies and also imputing 

sporadically missing data: the method by Resche-Rigon and White7, by Jolani et al.8, and by 

Quartagno and Carpenter.9 Audigier et al.10 compared these methods in simulations and found 

that the method by Quartagno and Carpenter9 may give biased results, when the number of 

studies is small. The other two methods provided more robust estimates when the number of 

studies was small. Audigier et al.10 further recommended the method by Resche-Rigon and 

White7 for relatively large sample sizes in the included studies. We follow this approach for the 

remaining of this paper. This method is a fully conditional specification imputation model, 

where a conditional distribution is defined for each incomplete variable.6 It is a frequentist 

method based on a two-stage estimator. One key aspect of this method is that it requires some 

of the studies in the dataset to have no systematically missing predictors, to be able to estimate 

the relationships between all predictors. Specifically, for each study without systematically 

missing data, the method estimates regression coefficients of the effect of predictors on the 

outcome, variance-covariance matrix of these regression coefficients, and residual variance of 

the outcome. Then, at the second stage, it performs a multivariate meta-analysis of these study-

specific estimates. Ultimately, using random draws from the estimated distribution of these 

parameters, the model imputes a value for all, systematically or sporadically, missing predictors. 

 One advantage of this method over the alternative two methods mentioned above (by Jolani 

et al.8, and by Quartagno and Carpenter9)  is the computational speed since this method utilizes 

two-stage estimator as opposed to the one-stage estimator used in the other two methods.10 A 

disadvantage is that with limited number of observations per study and large number of 

predictors, this method is more prone to overfitting.10 Another limitation of the method is that, 

as mentioned above, we need to have at least two studies with no systematically missing 

predictors. 

After using this method to impute missing data, we follow the steps described above, i.e. use 

Equation (2) or (3) to develop the model in each imputed dataset, and Equation (4) or (5) to 

make predictions; then, Equation (6) to combine predictions. 

3.3.4 Ensemble method 

Instead of imputing systematically missing predictors, we here present an alternative 

approach. Specifically, we propose fitting a different model in each study in the dataset, using 

only the predictors reported in that study, after only imputing sporadically missing data. This 
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circumvents the problem of having studies not measuring at all certain predictors, without 

having to impute them. More specifically, in each study we first impute sporadically missing 

data as usual, using common multiple imputation methods. Thus, we obtain 𝑚𝑚 full datasets for 

each study 𝑗𝑗. Next, we use each imputed dataset to fit a model using only the predictors that 

were reported in that study. The set of predictors we use for each study may be different, as 

some studies may not report some of the predictors. This means that, in principle, we may fit a 

different model in each study. 

Thus, for each study we create 𝑚𝑚 imputed datasets, and we fit the corresponding model there; 

at the end, for a new patient we have 𝑁𝑁𝑠𝑠 × 𝑚𝑚 different predictions. Let us denote prediction 

obtained from the 𝑘𝑘-th imputed dataset in study 𝑗𝑗 as 𝑦𝑦�𝑛𝑛𝑛𝑛𝑛𝑛,𝑘𝑘
(𝑗𝑗) . To obtain the final prediction, we 

need to first combine the 𝑚𝑚 predictions obtained from study 𝑗𝑗 into a single estimate, by just 

taking the average, i.e. 𝑦𝑦�𝑛𝑛𝑛𝑛𝑛𝑛
(𝑗𝑗) = 1

𝑚𝑚
∑ 𝑦𝑦�𝑛𝑛𝑛𝑛𝑛𝑛,𝑘𝑘

(𝑗𝑗)  𝑚𝑚
𝑘𝑘=1 . The variance of this estimate is given by the 

usual formula in multiple imputation16,21, i.e.  

𝑣𝑣𝑎𝑎𝑣𝑣(𝑦𝑦�𝑛𝑛𝑛𝑛𝑛𝑛
(𝑗𝑗) ) =

1
𝑚𝑚
�𝑣𝑣𝑎𝑎𝑣𝑣(𝑦𝑦�𝑛𝑛𝑛𝑛𝑛𝑛,𝑘𝑘

(𝑗𝑗) )
𝑚𝑚

𝑘𝑘=1

+
1 + 𝑚𝑚

𝑚𝑚(𝑚𝑚 − 1)
��𝑦𝑦�𝑛𝑛𝑛𝑛𝑛𝑛,𝑘𝑘

(𝑗𝑗) − 𝑦𝑦�𝑛𝑛𝑛𝑛𝑛𝑛
(𝑗𝑗) �

2
𝑚𝑚

𝑘𝑘=1

 (7) 

where 𝑣𝑣𝑎𝑎𝑣𝑣 �𝑦𝑦�𝑛𝑛𝑛𝑛𝑛𝑛,𝑘𝑘
(𝑗𝑗) � = �𝜎𝜎�𝑘𝑘

(𝑗𝑗)�
2

 (𝒙𝒙𝒏𝒏𝒏𝒏𝒏𝒏𝑻𝑻 �𝑿𝑿𝒌𝒌
(𝒋𝒋)𝑻𝑻𝑿𝑿𝒌𝒌

(𝒋𝒋)�
−1
𝒙𝒙𝒏𝒏𝒏𝒏𝒏𝒏 +  1) is the variance of the prediction 

of the outcome for the new patient using the model developed in the 𝑘𝑘-th imputed dataset in 

study 𝑗𝑗. The estimate 𝜎𝜎�𝑘𝑘
(𝑗𝑗) refers to the residual standard error of the outcome from the 𝑘𝑘-th 

imputed dataset for study 𝑗𝑗. Similarly, 𝑿𝑿𝒌𝒌
(𝒋𝒋)  refers to the matrix of covariates from the 𝑘𝑘-th 

imputed dataset for study 𝑗𝑗. 𝒙𝒙𝒏𝒏𝒏𝒏𝒏𝒏 refers to the matrix of covariates for the new patient. Finally, 

after having estimated 𝑦𝑦�𝑛𝑛𝑛𝑛𝑛𝑛
(𝑗𝑗)  and 𝑣𝑣𝑎𝑎𝑣𝑣(𝑦𝑦�𝑛𝑛𝑛𝑛𝑛𝑛

(𝑗𝑗) ) from each study 𝑗𝑗, we obtain our final prediction 

𝑦𝑦�𝑛𝑛𝑛𝑛𝑛𝑛 as the weighted average of the study-specific predictions: 

𝑦𝑦�𝑛𝑛𝑛𝑛𝑛𝑛 =
∑ 𝑤𝑤𝑛𝑛𝑛𝑛𝑛𝑛

(𝑗𝑗)  𝑦𝑦�𝑛𝑛𝑛𝑛𝑛𝑛
(𝑗𝑗)𝑁𝑁𝑠𝑠

𝑗𝑗=1

∑ 𝑤𝑤𝑛𝑛𝑛𝑛𝑛𝑛
(𝑗𝑗)𝑁𝑁𝑠𝑠

𝑗𝑗=1

 (8) 

where 𝑤𝑤𝑛𝑛𝑛𝑛𝑛𝑛
(𝑗𝑗) = 1/𝑣𝑣𝑎𝑎𝑣𝑣(𝑦𝑦�𝑛𝑛𝑛𝑛𝑛𝑛

(𝑗𝑗) ). The advantage of this method is that it takes fully into account 

stratification of patients in different studies, without requiring the existence of studies with no 

systematically missing predictors, as method of Section 3.3.3. 
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3.4 Measuring performance of meta-analytical prediction models 

After developing a prediction model, we want to measure its predictive performance. This 

may guide model selection (i.e. which of the four approaches described above, or which type 

of model should we employ when predicting outcomes for new patients?) or be used to gauge 

the usefulness of a model (i.e. is the model accurate enough?). Generally, assessing model 

performance is done by comparing model predictions with observations in a testing dataset. A 

usual measure of agreement between the two (for continuous outcomes) is the mean squared 

error (MSE): 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
�(𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)2
𝑖𝑖

 (9) 

where 𝑁𝑁 is the total number of patients in the testing dataset, 𝑦𝑦�𝑖𝑖 is the predicted and 𝑦𝑦𝑖𝑖 is the 

observed outcome for each patient 𝑖𝑖 . Another common measure is the coefficient of 

determination (R-squared), showing the percentage of variance explained by the model: 

𝑅𝑅2 = 1 −
𝑀𝑀𝑀𝑀𝑟𝑟𝑛𝑛𝑠𝑠
𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡

  

where 𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡 = ∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑖𝑖  is the total sum of squares, 𝑦𝑦� is the average observed outcome, and 

𝑀𝑀𝑀𝑀𝑟𝑟𝑛𝑛𝑠𝑠 = ∑ (𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑖𝑖  is the residual sum of squares. 

As a testing set, we can use the full dataset, i.e. the dataset that was also used to develop the 

model. This approach is usually called “internal validation”. Of note, internal validation may 

be prone to overfitting and subsequently optimism.22 Overfitting implies that the model will 

predict very well in the data it was developed, but fail to predict well for new subjects. In such 

cases, assessment of model performance in internal validation will be optimistic. Overfitting 

will be a problem particularly when sample sizes are small and models are complicated, i.e. 

including many predictors, higher-order terms of predictors, interactions of predictors etc. One 

way to obtain optimism-adjusted estimates of model performance is to use resampling methods, 

e.g. bootstrapping; for more details see the book by Steyerberg.22  

Another, potentially useful approach is the so-called “internal-external” validation method 

for assessing model performance.23 More specifically, since we are operating on a meta-

analytical level, we can use a type of internal-external cross-validation called leave-one-study-

out cross-validation (LOSO-CV) method.24 In this procedure, one study is left out of the data 

and the rest are used for model development. The fitted model is used to make predictions about 

patients of the left-out study. Next, we use these predictions and observed outcomes to measure 
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performance. The procedure is repeated after cycling through all studies, and measures of 

performance are summarized. This method allows us to also assess the transportability of the 

model, i.e. to obtain an insight on how well it is expected to perform to other populations and 

settings.2  

Systematically missing predictors, however, complicate both the internal validation and the 

LOSO-CV. The key point is that, to test a model in a dataset, we need to use patients with 

observations for all the predictors of the model, i.e. without imputing missing values. The 

reason is that, if we impute, the apparent performance of the model would be affected by the 

accuracy of the imputation process, while we are only interested in assessing the capacity of 

the model to predict outcomes for new patients in clinical practice (where we can collect all the 

required predictors). For the case of the restrict predictors method, where the model is 

developed and tested using the same variables measured in all trials, systematically missing 

data poses no problems. This means that we can readily use internal validation and LOSO-CV 

without any complications to test the restrict predictors method in all studies, using only patients 

with fully observed predictors.  

For the rest of the methods we described, however, things are not as straightforward. One 

simple way to address this issue is to limit testing to studies with no systematically missing data. 

This approach, however, might be problematic in practice if there are only few such studies. 

For the illustrative example, for internal validation we would be using all studies to develop the 

prediction models, but we would only be testing them in three, i.e. Kivi 2014, Klein 2016 (A) 

and Klein 2016 (B) (see Table 1), in patients with no sporadically missing predictors. For the 

LOSO-CV we would exclude Kivi 2014, use the rest of the studies to develop the models, and 

then test in that study; then, we would do the same for the remaining two studies (Klein 2016 

A and B), and summarize results.  

If we do not have enough studies with no systematically missing data, or if we want to use 

data from all studies when comparing the competing strategies described above, we need to use 

an alternative approach, i.e. we need to change the model we test in each study. More 

specifically, what we can do in order to test the two multiple imputation and ensemble 

approaches (Sections 3.3.2, 3.3.3 and 3.3.4) is use each study separately. For example, in the 

depression dataset, study De Graaf 2009 has a systematically missing predictor, history of 

medication (Table 1). In the two multiple imputation methods, all predictors can be used for 

imputing, but when developing the prediction model, we need to exclude history of medication. 

For internal validation we keep the data from De Graaf 2009 in the model-fitting process; for 
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LOSO-CV, we take De Graaf 2009 out, and fit the model using the remaining studies. In both 

cases, after developing the model we test it using the patients in De Graaf 2009; finally, we 

cycle through all studies. In the ensemble method, we keep only the predictors that are not 

systematically missing in both the study we test, and the study we develop the model. For 

instance, in the internal validation, when we test in De Graaf 2009 we use all studies to develop 

models. When we build a model using the Geraedts 2014 study, we use only the five predictors 

that these two studies have measured in common (i.e. baseline, sex, age, relationship status, and 

comorbid-anxiety). For LOSO-CV the only difference is that De Graaf 2009 should be excluded 

from model fitting.  

Obviously, this approach has drawbacks, most important being its complexity and the fact 

that the model we test may be different on each study we test it. However, it may serve as a 

rough guide for assessing the relative performance of the four approaches we described, when 

there are not enough studies with no systematically missing predictors.  

4 Simulation study 

4.1 Overview of scenarios explored 

We compared in simulations the performance of the four approaches described in the 

previous section for the prediction of a continuous outcome. We generated data under 64 

different scenarios, where for each scenario we simulated 100 independent datasets. In these 

scenarios we explored various configurations regarding the number of studies, number of 

predictors, probability of predictors to be systematically missing in the studies, magnitude of 

the predictors’ effects, and extent of heterogeneity. Since our focus was on methods for 

systematically missing predictors, and aiming to keep things relatively simple, we did not 

assume sporadically missing predictors. We explored the following configurations for the data-

generating mechanisms: 

• Number of studies: 2, 3, 5 or 10.  

• Number of predictors: 5 or 10; of which 2 predictors were always reported, the rest 

might be systematically missing in each study. 

• Probability of systematically missing for each predictor in each study: 0.1 or 0.3. 

• Mean magnitude of the predictor effects on the outcome: 0.2 or 0.5. 

• Standard deviation of the magnitude of the predictor effects on the outcome across 

studies: 0.1 or 0.3. 

Below we describe the procedure in more detail. 

 17592887, ja, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jrsm

.1625 by U
niversität B

ern, W
iley O

nline L
ibrary on [14/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



 
 

4.2 Data generating mechanism 

For each study in the dataset, we generated the number of patients by drawing from 

𝑈𝑈(150, 300). Predictors (𝒙𝒙𝒊𝒊) were generated from a multivariate normal distribution with first-

order autoregressive structure with homogeneous variances. The number of predictors was 

either 5 or 10 depending on the scenario. For 5 predictors, the predictors were generated from: 

(𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2, 𝑥𝑥𝑖𝑖3, 𝑥𝑥𝑖𝑖4, 𝑥𝑥𝑖𝑖5)~𝑀𝑀𝑀𝑀𝑁𝑁

⎝

⎜⎜
⎜
⎛
�𝜒𝜒𝑗𝑗1,𝜒𝜒𝑗𝑗2, 𝜒𝜒𝑗𝑗3,𝜒𝜒𝑗𝑗4,𝜒𝜒𝑗𝑗5�,𝜎𝜎𝑥𝑥2

⎣
⎢
⎢
⎢
⎢
⎡ 1 𝜌𝜌 𝜌𝜌2 𝜌𝜌3 𝜌𝜌4

𝜌𝜌 1 𝜌𝜌 𝜌𝜌2 𝜌𝜌3

𝜌𝜌2 𝜌𝜌 1 𝜌𝜌 𝜌𝜌2

𝜌𝜌3 𝜌𝜌2 𝜌𝜌 1 𝜌𝜌
𝜌𝜌4 𝜌𝜌3 𝜌𝜌2 𝜌𝜌 1 ⎦

⎥
⎥
⎥
⎥
⎤

⎠

⎟⎟
⎟
⎞

 

where �𝜒𝜒𝑗𝑗1,𝜒𝜒𝑗𝑗2, 𝜒𝜒𝑗𝑗3,𝜒𝜒𝑗𝑗4,𝜒𝜒𝑗𝑗5� are the overall study-specific means, 𝜎𝜎𝑥𝑥2 is the variance of the 

predictors across patients,  𝜌𝜌 is the correlation between adjacent predictors. We sampled all 𝝌𝝌𝒋𝒋 

randomly for each scenario by drawing from 𝑈𝑈(−1,1) and fixed 𝜌𝜌 = 0.2, 𝜎𝜎𝑥𝑥2 = 1. Scenarios 

with 10 predictors were generated similarly. To simulate binary predictors, we categorized 

some of the generated continuous predictors. More specifically, in scenarios with 5 predictors, 

we made two of the predictors (𝑥𝑥𝑖𝑖2 and 𝑥𝑥𝑖𝑖3) binary, by categorizing at thresholds 0 and 0.5 

respectively, e.g. if 𝑥𝑥𝑖𝑖2 > 0, we set 𝑥𝑥𝑖𝑖2 = 1, 0 otherwise. In scenarios with 10 predictors, we 

made five of them binary (𝑥𝑥𝑖𝑖2, 𝑥𝑥𝑖𝑖3, 𝑥𝑥𝑖𝑖8, 𝑥𝑥𝑖𝑖9, and 𝑥𝑥𝑖𝑖10), using thresholds at 0, 0, 0, 0.5, and 0.5 

respectively. 

The outcome was generated as 𝑦𝑦𝑖𝑖 = 𝑎𝑎𝑗𝑗 + 𝒃𝒃𝒋𝒋𝒙𝒙𝒊𝒊 + 𝑒𝑒𝑖𝑖 . 𝑎𝑎𝑗𝑗  is the study intercept, randomly 

generated for each study by drawing from 𝑈𝑈(0.5, 1.5). 𝒃𝒃𝒋𝒋 is the vector of study-specific effects 

of the predictors, simulated as 𝑏𝑏𝑗𝑗𝑘𝑘~𝑁𝑁(𝜇𝜇𝑏𝑏,𝜎𝜎𝑏𝑏2) , where 𝑘𝑘  refers to a distinct predictor, 𝜇𝜇𝑏𝑏 

corresponds to the mean magnitude of the effect (0.2 or 0.5, according to the scenario) and 𝜎𝜎𝑏𝑏 

corresponds to the standard deviation (0.1 or 0.3, according to the scenario). The random error 

was simulated for each patient separately as 𝑒𝑒𝑖𝑖~𝑁𝑁(0, 1).  

Finally, we assumed that the first 2 predictors (𝑥𝑥𝑖𝑖1 and 𝑥𝑥𝑖𝑖2) were always reported in all 

studies. The rest of predictors may be systematically missing in each study, with a fixed 

probability of missing. We explored scenarios where probability of missing was either 0.1 or 

0.3, and we generated missing status by drawing from a Bernoulli distribution. 

4.3 Models compared and assessing predictive performance 

After generating datasets as described above, we build prediction models following the four 

methods described in the previous section (i.e. restrict predictors method; multiple imputation 
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without accounting for heterogeneity; multiple imputation accounting for heterogeneity; 

ensemble method). We used the model of Equation (2) assuming 𝜎𝜎𝑖𝑖2 = 𝜎𝜎. 

After developing all prediction models, we generated 10 new studies using the same data 

generating mechanism, to be used as testing data. The predictors in these studies were fully 

observed (no systematically missing predictors). We used the developed models and the data 

of the 10 new studies to make predictions, and we calculated MSE and R-squared for each 

model. In summary, for every scenario (64 in total) we generated 100 datasets. Each one of 

these 6,400 datasets included 2, 3, 5 or 10 studies for developing the model (depending on the 

scenario), and 10 studies for testing the model. 

As discussed, some scenarios had small number of studies (2, 3, 5), aiming to simulate 

realistic situations of data availability. In such scenarios, the multiple imputation method that 

accounted for heterogeneity might not be always feasible to implement. This is because, one of 

the limitations of this method is that it requires the existence of at least two studies with no 

systematically missing data, to be able to estimate variance covariance matrix; when this is not 

the case, this method fails. In order to make a fair comparison among the methods, we needed 

to compare them in the same datasets, i.e. excluding datasets in which this method failed. At 

the same time, if for some scenarios this method failed very frequently, we would not have 

enough datasets to compare the rest of the models. Thus, we set a threshold of 20%. If for a 

specific scenario this method failed for less than 20% of the simulated datasets, we excluded 

these datasets from the analyses of all models. If it failed for more than 20%, we excluded this 

method from the analysis of this scenario. In addition, since we set a fixed probability that each 

predictor is systematically missing in each study, there might be datasets where one or more 

predictors were absent from all studies. In such datasets, all imputation methods will fail. Since 

such failures would be due to our data generating mechanism (and not due to a model’s 

limitation), we excluded these datasets from all comparisons. 

4.4 Additional simulations on the effect of shrinkage 

During the review process of our manuscript, one anonymous reviewer suggested exploring 

scenarios where the probability of a predictor to be reported in all studies (i.e. no systematically 

missingness) was related to the strength of the predictor. The same reviewer suggested to 

include in the simulations models that include shrinkage. Our new method, by omitting some 

covariates in some studies, does effectively perform a sort of shrinkage, so it is of interest to 

explore whether the possible advantages of this new method might be because of that, and 

whether these advantages would disappear if shrinkage methods were used. Thus, as additional 
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exploratory analyses we added several scenarios in our simulations, where the predictor effects 

were different depending on their systematic missingness, and where we used a ridge regression 

model, combined with the restrict predictors and the multiple imputation methods.25 More 

details are given in the Appendix.  

4.5 Implementation details 

All analyses were carried out in R27. We used the lme4 package28 to fit linear mixed effects 

model. We used glmnet package to fit shrinkage models for the additional analysis. When 

we performed multiple imputations, the imputation model included all the predictors and the 

outcome.29 As noted above, we did not generate sporadically missing predictors. Thus, for the 

restrict predictors and the ensemble method no imputation was required. For the method that 

ignores between-study heterogeneity, we used pmm method in the mice7 package. This 

implements predictive mean matching based on the method by van Buuren6. For the imputation 

method accounting for between-study heterogeneity, we used 2l.2stage.norm and 2l.2stage.bin 

methods in the micemd30 package depending on the type of the predictor to impute.7 For all 

imputations, we imputed the missing variables to create 𝑚𝑚 = 10 multiply imputed datasets. The 

R codes used for fitting all models are available at 

https://github.com/MikeJSeo/phd/tree/master/missing. Furthermore, the R package bipd31, 

which is available in CRAN, implements all multiple imputation methods discussed in this 

article in a user-friendly manner. The vignette for the package demonstrates how to use this 

package in practice. 

4.6 Results 

Table 3 in the Appendix show the detailed simulation results. First, we found that – not 

surprisingly – the restrict predictors method that excludes systematically missing predictors was 

overall the worst approach, giving the largest MSE and smallest R-squared. Second, we found 

that for many datasets, the multiple imputation method that accounts for heterogeneity failed 

due to the unavailability of at least two studies with fully observed data. This was particularly 

frequent for scenarios with only 2 or 3 studies, and scenarios with larger number of predictors. 

Third, we found that the two multiple imputation methods performed best for both MSE and R-

squared in scenarios with many studies (i.e. 10 studies), larger effect sizes of the predictors, and 

smaller heterogeneity of the effects. The difference between the two multiple imputation 

methods was trivial in most cases; however, the method that accounts for heterogeneity seemed 

to perform slightly better when the number of studies was large or when there was larger 

heterogeneity of the effects of the predictors. Conversely, we found that our new approach, the 
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ensemble method, outperformed all other methods in scenarios with fewer studies (i.e. 

especially 2, 3, or even at 5 studies), when the effect of the predictors was relatively small, and 

when heterogeneity was relatively large, i.e. at least a half of the mean predictor effect.  

Table 4 of the Appendix shows the additional simulations we performed, described in 

Section 4.4. The results again showed that even in situations where the effect of the predictor 

is related to its probability to be reported in the study, our new method usually outperformed 

other methods in scenarios where there was relatively large heterogeneity and small number of 

studies. Rather surprisingly, the new method performed better than other methods in scenarios 

when variables with systematically missingness had stronger effects than complete predictors 

(i.e. Scenarios R33-R48 in the Appendix), again especially for small number of studies. This 

might be due to the fact that performing wrong imputations can be detrimental when the 

predictor is strong, and using the ensemble method was preferable. When the reverse was true, 

i.e. when complete predictors were stronger (scenarios R49-R64), results were not as clear. 

Again, for small number of studies and large heterogeneity our new method was usually best, 

however in many cases differences in performance were very small. In addition, we saw that 

shrinkage did not provide much benefit in all simulations. This might have been because all 

predictors had at least moderate effect in predicting the outcome. Overall, the results of the 

additional simulations did not affect our conclusions.  

5 Analysis of the illustrative example 

5.1 Implementation details 

We used the data described in Section 2 to illustrate our methods. The data included a 

treatment indicator, several predictors, and a continuous outcome. We aimed at developing a 

model of the form 𝑦𝑦𝑖𝑖~𝑁𝑁(𝜇𝜇𝑖𝑖,𝜎𝜎2), i.e. assuming common 𝜎𝜎2 across studies, and 𝜇𝜇𝑖𝑖  given by 

Equation (3). Since predictors were both sporadically and systematically missing, we used the 

four different methods described in the previous section to develop the prediction model. 

Following the restrict predictors method (Section 3.3.1), we only included baseline PHQ-9 

score and sex as predictors in the analysis, since these were the only predictors with no 

systematically missing values in all studies. There were however some few sporadically missing 

data on sex. We imputed these using MI, while accounting for the clustering of patients in 

different studies. To do this we used 2l.pmm in the miceadds32 package in R, which 

generalizes predictive mean matching via linear mixed models.33 For the imputation method 

ignoring between-study heterogeneity, we used pmm method in mice7 package and for the 
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imputation method accounting for between-study heterogeneity, we used 2l.2stage.norm or 

2l.2stage.bin method in micemd30 depending on the type of the predictors to impute. For the 

ensemble method (Section 3.3.4), each study was used to develop an independent model, so 

multiple imputation did not need to be a multi-level procedure. Thus, we used pmm method in 

mice7 package. For all imputations, we created 𝑚𝑚 = 20 multiply imputed datasets. When 

imputing we used information from predictors, treatment, predictor-treatment interactions, and 

outcomes. Once multiply imputed datasets are created, we developed the prediction models 

after dropping patients with missing outcomes.  

Next, we performed an internal and an internal-external (leave-one-study-out) cross 

validation of the modelling procedure. We did this following the two methods described in 

Section 3.4, i.e. (A) using only studies with no systematically missing data; and (B) using all 

studies, after changing the model tested in each study as described in Section 3.4. For the 

internal validation we could not correct for optimism using bootstrapping, because some binary 

predictors were very rare in some of the studies (e.g. in one study there were only 2/301 patients 

reporting alcohol use; this means that bootstrapping sometimes resulted in samples with no 

patients on alcohol use). However, in this example we expected very low optimism, since 

overfitting was highly unlikely: the models included few predictors, the outcome was 

continuous, and the dataset was big. Finally note that for validation, we only used patients with 

complete data (i.e. no sporadically missing). 

5.2 Results 

Following the restrict predictors method, we found baseline to be a strong predictor, but with 

weak evidence of an interaction with treatment. There was no evidence that sex could predict 

the outcome. Next, we analyzed the data following the two multiple imputation methods, 

including all predictors after imputation. Looking at the estimated parameters from the models, 

we see again baseline to be the most important predictor. For the remaining predictors estimates 

were more uncertain. Tables 2 in the Appendix show the estimated coefficients of the models. 

For the ensemble method, we report the simple average of estimates across different models 

developed for each study. We report zero for studies where the variable was systematically 

missing. Similarly, we simply average the variances of coefficient for each study. 

In Table 2 we show the results from comparing the performance of the four different 

approaches using the internal cross validation and LOSO-CV. When we tested on the three 

studies with no systematically missing data, we saw that although all methods had similar 

performance, the restrict predictors method performed overall slightly better in terms of MSE 
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and R-squared, for both internal and LOSO-CV. Among the more advanced methods, the 

ensemble method performed marginally better. When we tested using all studies, we saw that 

all four methods again had almost identical performance. 

The reason why all methods led to similar results was most probably that in this example 

there was a dominant predictor (baseline severity) reported in all studies. Trying to include non-

predictive variables brought in mostly noise, adding little benefit to the predictions. 

Additionally, one reason why the multiple imputation method that accounted for heterogeneity 

did not perform so well here might be the fact that this method performs multivariate meta-

analysis using studies without systematically missing data. In this example, there were only 3 

studies with no systematically missing predictors. This means that only 3 studies were used to 

estimate variance-covariance matrix of the random effects. 
Table 2: Summary performance of the four different approaches for addressing missing data 

presented in this paper, using the depression dataset. Approach (A) used only the three studies with no 
systematically missing data; and (B) used all studies, after changing the model tested in each study 

(details in Section 3.4). MSE: mean squared error. MI: multiple imputation 

Validation 
method 

Performance 
measure 

Restrict 
predictors 

method 

MI ignoring 
heterogeneity 

MI accounting for 
heterogeneity 

Ensemble 
method 

Internal (A) 
MSE 18.0 18.2 18.1 18.0 

R-squared 0.08 0.07 0.07 0.08 
Internal-
external 

LOSO-CV 
(A) 

MSE 18.3 18.8 18.9 18.6 

R-squared 0.07 0.04 0.04 0.05 

Internal 
(B) 

MSE 26.1 26.1 26.2 26.2 

R-squared 0.18 0.19 0.18 0.18 
Internal-
external 

LOSO-CV 
(B) 

MSE 26.6 26.9 26.9 26.7 

R-squared 0.17 0.16 0.16 0.17 

6 Discussion 

This paper explored different methods for building prediction models when there are 

systematically missing predictors in individual patient data meta-analysis. Such models can 

then be used for predicting outcomes in future individuals with all covariates observed. We 

compared the performance of four methods (restrict predictors method, imputation method 

ignoring between-study heterogeneity, imputation method accounting for between-study 

heterogeneity, and our new ensemble-based approach). In the simulations, we investigated 

various scenarios for a different number of studies, number of predictors, probability of 

systematically missing studies for each predictor, and magnitude and heterogeneity of predictor 
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effects. We found that the restrict predictors method was overall the worse approach. We also 

found that the ensemble method performed best for a few studies and when the systematically 

missing predictors have moderate-to-small effects with large heterogeneity. Conversely, for 

many studies, larger predictor effects and small heterogeneity, multiple imputation methods 

performed better. Among the two multiple imputation approaches, we found the one accounting 

for heterogeneity to be marginally better. Furthermore, we applied all models to a clinical 

example in psychotherapies for depression, where we saw only small differences between the 

four approaches. This was probably because in this example, there was a single strong predictor 

(baseline symptoms severity), consistently reported in all studies. In such cases, the choice 

between the various methods will be of minimal importance, as all methods will give practically 

the same results. 

Our new method was inspired by the so-called ensemble learning models. This is a wide 

family of statistical and machine learning methods. In ensemble learning, multiple base models 

are combined to develop an overall prediction model. In many scenarios, this overall, ensemble 

model is expected to yield better predictive performance than each of its constituent parts.34,35 

Various combination techniques, such as the weighted average, can be employed for combining 

predictions from base-models. Despite their wide use, to the best of our knowledge, ensemble-

based methods have not been previously used for addressing the problem of systematically 

missing data in IPD meta-analysis. In this work we aimed to fill this gap, by describing how an 

ensemble method can be employed when developing prediction models using data from 

multiple studies. 

Several limitations of this work are worth mentioning. First, we did not explore the case of 

binary or time-to-event outcomes. This is an interesting area of future work, although there may 

be additional complications that need to be addressed36. Furthermore, in our simulations we 

only used simple data-generating mechanisms. Instead, we could have explored more 

complicated, and perhaps more realistic, mechanisms; for example, we could explore non-linear 

predictor-outcome associations when simulating data, or interactions between the predictors. 

Also, we could have included different types of statistical or machine learning prediction 

models, when assessing the performance of the methods for addressing the missing outcomes. 

For instance, although our simulation mechanism incorporated heterogeneity in coefficients for 

predictor effects, our analysis model used a linear model that assumed these coefficients to be 

common. Similar extensions could be pursued in future simulations. Furthermore, although we 

mentioned three alternative methods for imputing systematically missing variables while 
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accounting for study-level clustering7–9, we only used the method by Resche-Rigon and White7 

in our simulations. However, we did some exploratory simulations using the method by Jolani8, 

but we did not find big differences with the method by Resche-Rigon and White; so we did not 

pursue this any further. Lastly, the biggest limitation of our new ensemble approach is perhaps 

the extra level of complexity it entails. Moreover, this approach requires building a separate 

model for each study and this can be time-consuming, especially when the number of studies is 

very large and when complex modeling strategies are employed. However, we think that for 

common situations of data availability this will not pose such a big problem. 

In summary, in this paper we showed that more advanced methods may lead to better 

prediction models as compared to following the restrict predictors approach, in the presence of 

systematically missing data. These more advanced methods allow us to include additional 

predictors in our models, potentially increasing performance, or providing additional insight. 

In practice, we recommend researchers to select among the different methods after using both 

internal and internal-external cross-validation approaches. Finally, we think that the ensemble 

method offers a potentially powerful alternative to researchers, and that it might be especially 

useful in the common case of having IPD from only a handful of studies, reporting different 

sets of predictors.  
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Highlights 

What is already known? 

• Standard multiple imputation techniques can handle sporadically missing data, but 

they are not ideal for imputing systematically missing predictors. 

• Several methods for imputing systematically missing variables while accounting for 

study clustering have been recently proposed. 

What is new? 
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• We explore an alternative, generic method for addressing the systematically missing 

predictors’ problem when the aim is to build a prediction model for a continuous 

outcome, using data from multiple studies.  

• Instead of imputing systematically missing predictors, we propose to develop a 

separate prediction model in each study using only the predictors reported in that 

study, i.e. ignoring systematically missing variables. 

Potential impact for RSM readers outside the authors’ field 

• Imputation methods and ensemble method allow us to include additional predictors in 

our models, potentially increasing performance, or providing additional insight. 

• We think that the ensemble method offers a potentially powerful alternative to 

researchers, and that it might be especially useful in the common case of having IPD 

from only a handful of studies, reporting different sets of predictors. 
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