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Abstract

Clinical prediction models are widely used in modern clinical practice. Such
models are often developed using individual patient data (IPD) from a single
study, but often there are IPD available from multiple studies. This allows
using meta-analytical methods for developing prediction models, increasing
power and precision. Different studies, however, often measure different sets
of predictors, which may result to systematically missing predictors, that is,
when not all studies collect all predictors of interest. This situation poses chal-
lenges in model development. We hereby describe various approaches that can
be used to develop prediction models for continuous outcomes in such situa-
tions. We compare four approaches: a “restrict predictors” approach, where
the model is developed using only predictors measured in all studies; a multi-
ple imputation approach that ignores study-level clustering; a multiple imputa-
tion approach that accounts for study-level clustering; and a new approach
that develops a prediction model in each study separately using all predictors
reported, and then synthesizes all predictions in a multi-study ensemble. We
explore in simulations the performance of all approaches under various sce-
narios. We find that imputation methods and our new method outperform the
restrict predictors approach. In several scenarios, our method outperformed
imputation methods, especially for few studies, when predictor effects were
small, and in case of large heterogeneity. We use a real dataset of 12 trials in
psychotherapies for depression to illustrate all methods in practice, and we

provide code in R.

KEYWORDS

ensemble predictive modeling, individual patient data, meta-analysis, multilevel model,
prediction research

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2023 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd.

Res Syn Meth. 2023;14:455-467.

wileyonlinelibrary.com/journal/jrsm 455


https://orcid.org/0000-0002-5229-590X
https://orcid.org/0000-0003-2159-3776
https://orcid.org/0000-0002-0071-2599
https://orcid.org/0000-0002-0955-7572
mailto:swj8874@gmail.com
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/jrsm
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fjrsm.1625&domain=pdf&date_stamp=2023-02-23

as6 | WI LEY_Research

SEO ET AL.

Synthesis Methods

Highlights

What is new?

predictors.

1 | INTRODUCTION

Meta-analysis of individual patient data (IPD) is often used
to synthesize patient-level data from multiple studies,
when developing clinical prediction models"* or when
estimating relative treatment effects.>* One practical prob-
lem that often comes up in such analyses is missing data.
This is the case when we have predictors in some studies
only partly reported, for example, when some patients did
not provide information on their BMI. We refer to this sit-
uation as ‘sporadically missing’ data. A different missing
data problem, which is relevant for meta-analysis only, is
‘systematically missing’ predictors. This is when different
studies measured different sets of predictors. Systemati-
cally missing predictors may pose practical problems in
synthesizing data from multiple studies, for example,
when we want to fit the same model across studies and
meta-analyze the corresponding coefficients.

The most popular method for handling both types of
missing data is multiple imputation.>® Standard multiple
imputation techniques® can handle sporadically missing
data, but they are not ideal for imputing systematically
missing predictors. When analyzing IPD from multiple
studies, multiple imputation should ideally take into
account the multilevel structure (i.e., clustering of
patients in the different studies) and allow for potential

What is already known?

« Standard multiple imputation techniques can handle sporadically missing
data, but they are not ideal for imputing systematically missing predictors.

« Several methods for imputing systematically missing variables while
accounting for study clustering have been recently proposed.

« We explore an alternative, generic method for addressing the systematically
missing predictors’ problem when the aim is to build a prediction model for
a continuous outcome, using data from multiple studies.

« Instead of imputing systematically missing predictors, we propose to develop
a separate prediction model in each study using only the predictors reported
in that study, that is, ignoring systematically missing variables.

Potential impact for RSM readers outside the authors’ field

« Imputation methods and ensemble method allow us to include additional
predictors in our models, potentially increasing performance, or providing
additional insight.

« We think that the ensemble method offers a potentially powerful alternative
to researchers, and that it might be especially useful in the common case of
having IPD from only a handful of studies, reporting different sets of

heterogeneity between the studies. Several methods for
imputing systematically missing variables while account-
ing for study clustering have been recently proposed.””
However, applying these methods in practice may be dif-
ficult, because they require estimation of the variance-
covariance matrix of random effects. This estimation uses
studies with no systematically missing predictors, mean-
ing that for valid inference, we need datasets with a large
number of such studies'’; of course, this may not always
be the case.

This paper explores an alternative, generic method
for addressing the systematically missing predictors'
problem when the aim is to use data from multiple stud-
ies in order to build a model to predict a continuous out-
come in future individuals who will have all covariates
observed. Instead of imputing systematically missing pre-
dictors, we propose to develop a separate prediction
model in each study using only the predictors reported in
that study, that is, ignoring systematically missing vari-
ables. Then, we use these developed models for a new
patient to make separate predictions, assuming that all
covariates are collected for the new patient. In the end,
we synthesize these predictions into a single forecast for
the patient's future outcome.

We hereby compare in simulations the new approach
with the restrict predictors approach where we exclude
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predictors that are systematically missing in some stud-
ies, the usual multiple imputation approach ignoring
between-study heterogeneity and the multiple imputation
approach where we account for between-study heteroge-
neity. Finally, we use a real dataset of trials in depression
to illustrate the use of all methods in practice.

2 | ILLUSTRATIVE EXAMPLE IN
DEPRESSION

We used a real dataset of 12 randomized trials in psycho-
therapies for depression comparing treatment as usual
(TAU) versus internet-delivered cognitive behavioral
therapy (iCBT). There were a total of 1633 patients ran-
domized to TAU, 2072 to iCBT. The outcome of interest
was Patient Health Questionnaire-9 scores (PHQ-9)."*
This is a measure of depression symptoms ranging from
0 to 27, with larger values indicating more severe depres-
sion. PHQ-9 was sporadically missing across all studies.
There were also eight predictors of interest, which we
will use to illustrate our methods. Among them, two were
continuous (baseline PHQ-9 scores and age) and six
binary (sex, relationship status, comorbid anxiety, previ-
ous episodes, medication, and alcohol use). Only baseline
and sex were collected in all trials (albeit with few spo-
radically missing values for sex); the remaining predictors
were collected inconsistently across trials. Table 1 shows
the systematically missing data patterns across trials. In
Table S1 of the Data S1, we show the percentages of spo-
radically missing data for each study and each outcome
and predictor.

Synthesis Methods— YV LEY_|
3 | METHODS

3.1 | Notation and general
considerations

We assume that we have IPD from Ng studies. We
assume that for patient i in study j, we have information
on several predictors of interest, included in a vector x;,
and that the observed outcome for this patient was y;,
measured on a continuous scale. We assume that differ-
ent studies reported different sets of predictors, that is,
different subsets from the full list of the predictors of
interest. In case when patients in each study have been
randomized to different treatments, we also have infor-
mation on treatment ¢; the patient received (either con-
trol t; =0, or active treatment t; = 1).

Our aim is to build a model that will provide an accu-
rate prediction of the outcome in new patients (possibly
under different treatments). We will denote the predic-
tors of a new patient as Xpew, and a prediction of this
patient outcome as J,., (which will be a function of
Xnew> and maybe also of treatment). The focus will be on
methods for handling systematically and sporadically
missing predictors in the data. Of note, we will assume
that all covariates will be collected for new patients.

3.2 | One-stage meta-analytical
prediction models for fully observed data

In case all studies report all predictors and we have no
sporadically missing data, we can fit a one-stage meta-

TABLE 1 Overview of the systematically missing data for each study in the illustrative example.
Baseline depression Relationship Comorbid  Previous
Study score Sex Age status anxiety episodes Medication Alcohol
De Graaf 2009 v v v v v v x v
Farrer 2011 v v v v v v x v
Geraedts 2014 v v v v v x x X
Gilbody 2015 v v X v X x x x
Johansson 2012 v v v v v x v x
Kivi 2014 v v v v v v v v
Klein 2016 (A) v v v v v v v v
Klein 2016 (B) v v v v v v v v
Meyer 2015 v v v v v v v x
Montero-Marin v v v v v X x x
2016
Philips 2014 v v v v X v v X
Rosso 2016 v v v x v v v X

Note: x, systematically missing in the study; v/, available for at least some of the patients in the study.
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analytical prediction model. We assume the (continuous)
outcome to be normally distributed, y; ~ N (u;,67), where
u; denotes the expected outcome of patient i (randomized
in study j), and o7 refers to the residual variance of the
outcome in each study. u; can be any function of the pre-
dictors x;, that is, g; =f(x;). In the presence of treatment
as a predictor, this function also includes ¢;. The simplest
prediction model we can build is one that does not
account for study assignment, it assumes o7 =¢ and y;
only includes linear terms:

Hi :a+ﬂXi, (1)

where f# denotes the regression coefficients of the predic-
tors x;. We can build a more advanced model by account-
ing for study assignment after including random effects
in the intercept:

Hi=a;+px; 5
4~ N(a2) .

In this formula, a; is the study-specific intercept,
assumed to be normally distributed across studies with a
mean a and variance 72.

Often when meta-analyzing comparative studies, we
include a treatment effect term and/or treatment-
predictor interactions (“effect modifiers”). With these
included, y; can be modeled as follows:

ui:aj+ﬂxi+yx,-ti+djti 3
4~ N(a2).d~N(5.5) ®

In this formula, y denotes the coefficients for treatment-
predictor interactions and d; is the study-specific ‘baseline’
treatment effect (i.e., at x; =0), assumed to be normally
distributed across studies with average § and variance 72.

After we fit any of the models described above, we
can predict the outcome for a new patient with predictors
Xnew Using the estimated values for the parameters of the
model. In case of model (2) we would have

ynew:a+ﬂxnew- (4)

In the case of analyzing comparative studies using
model (3), predicted outcome would also be a function of
treatment:

?new:a+ﬁxnew+/};xnew[+/5\[. (5)

We can extend Equations (4) or (5) by including non-
linear terms and interactions between predictors, or by
assuming exchangeable coefficients for main effects and

treatment-predictor interactions across studies when fit-
ting Equations (2) or (3). Furthermore, all these models
can be fit in a two-stage approach.'>'* All models
described in this section are straightforward to fit when
all studies report all predictors. Below, we discuss
methods for fitting the models when some of the predic-
tors are both systematically and sporadically missing.

3.3 | Methods for addressing missing
predictors
3.3.1 | Restrict predictors method

In this approach, we need all studies to report the
same predictors (i.e., no systematically, but possibly
sporadically missing data). When this is not the case,
we drop from model development predictors that were
not reported in one or more studies. Obviously, this
approach can be wasteful, especially when the ignored
predictors are important.'* Nonetheless, this is some-
times done when analyzing IPD."> After removing sys-
tematically missing predictors, we need to impute the
sporadically missing predictors. Ideally, this should be
done via multi-level imputation techniques. This
approach can impute sporadically missing data while
accounting for between-study heterogeneity.® Follow-
ing this, we create m fully observed datasets and we
use Equation (2) or (3) to develop a model in each one
separately. Next, we need to pool results from these m
prediction models. There are two different ways to do
this. One method is to pool regression coefficients using
Rubin’s rules'® and make predictions using Equations (4)
or (5). A second approach is the “pooled prediction”
strategy,"” where Rubin's rules are applied on the pre-
dictions themselves. More specifically, given a new
patient's predictors, we use the model developed in the
k-th imputed dataset (k=1,2,..m) to obtain prediction
Ynewk- Finally, we pool the m predictions by simply tak-
ing the average:

~ 1 Na
Ynew :_Zynew,k' (6)
m k=1

The difference between two approaches is likely to be
minor in practice, but the pooled prediction strategy may
be preferable when the m predictions differ signifi-
cantly.’” Moreover, the pooled prediction strategy can be
easily applied to any type of model, irrespective of the
number of predictors or the structure of the model. We
hereby follow this approach for the rest of the paper.
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3.3.2 | Imputing missing predictors ignoring
between-study heterogeneity

Instead of dropping predictors as above, we can use mul-
tiple imputation methods to impute both sporadically as
well as systematically missing predictors simultaneously
and create m fully observed datasets which include all
predictors for all studies. The easiest way to do the impu-
tations is to combine data from the studies in a single
dataset and impute ignoring stratification of patients in
different studies. Once we have the imputed datasets, we
can use again Equation (2) or (3) to develop the model in
each imputed dataset separately and then pool results
from the m prediction models using Equation (6). Note
that we are performing meta-analysis first and then using
Rubin's rule to pool results.'”® The advantage of this
approach is that it is straightforward and computationally
easy to perform. The disadvantage is that it ignores the
fact that subjects were randomized in different studies
and makes a (perhaps strong) assumption when imput-
ing, that the associations between variables are homoge-
neous across studies.'® As it has been previously shown,
however, this may lead to biased estimates® or underesti-
mation of standard errors.®

3.3.3 | Imputing systematically missing
predictors accounting for between-study
heterogeneity

We already mentioned that standard multi-level imputa-
tion techniques based on linear mixed effects model can
impute sporadically missing data while taking into
account between-study heterogeneity.® This approach,
however, cannot impute systematically missing data,
since it requires estimation of the variance-covariance
matrix of the predictors within each study; when for a
study a predictor is systematically missing, this method
fails."® Recently, three new methods were proposed to
perform multiple imputations for the case of systemati-
cally missing predictors, while properly accounting for
stratification of patients in studies and also imputing spo-
radically missing data: the method by Resche-Rigon and
White,” by Jolani et al.,* and by Quartagno and Carpen-
ter.” Audigier et al.’® compared these methods in simula-
tions and found that the method by Quartagno and
Carpenter’ may give biased results, when the number of
studies is small. The other two methods provided more
robust estimates when the number of studies was small.
Audigier et al.'’ further recommended the method by
Resche-Rigon and White” for relatively large sample
sizes in the included studies. We follow this approach for
the remaining of this paper. This method is a fully

Synthesis Methods—YV1 LEY_L *

conditional specification imputation model, where a con-
ditional distribution is defined for each incomplete vari-
able.’ It is a frequentist method based on a two-stage
estimator. One key aspect of this method is that it requires
some of the studies in the dataset to have no systematically
missing predictors, to be able to estimate the relationships
between all predictors. Specifically, for each study without
systematically missing data, the method estimates regres-
sion coefficients of the effect of predictors on the outcome,
variance-covariance matrix of these regression coeffi-
cients, and residual variance of the outcome. Then, at the
second stage, it performs a multivariate meta-analysis of
these study-specific estimates. Ultimately, using random
draws from the estimated distribution of these parameters,
the model imputes a value for all, systematically or sporad-
ically, missing predictors.

One advantage of this method over the alternative two
methods mentioned above (by Jolani et al.,* and by Quar-
tagno and Carpenter’) is the computational speed since
this method utilizes two-stage estimator as opposed to the
one-stage estimator used in the other two methods.'® A
disadvantage is that with limited number of observations
per study and large number of predictors, this method is
more prone to overfitting.'® Another limitation of the
method is that, as mentioned above, we need to have at
least two studies with no systematically missing predictors.

After using this method to impute missing data, we
follow the steps described above, that is, use Equation (2)
or (3) to develop the model in each imputed dataset, and
Equation (4) or (5) to make predictions; then,
Equation (6) to combine predictions.

3.34 | Ensemble method
Instead of imputing systematically missing predictors, we
here present an alternative approach. Specifically, we
propose fitting a different model in each study in the
dataset, using only the predictors reported in that study,
after only imputing sporadically missing data. This cir-
cumvents the problem of having studies not measuring at
all certain predictors, without having to impute them.
More specifically, in each study we first impute sporadi-
cally missing data as usual, using common multiple
imputation methods. Thus, we obtain m full datasets for
each study j. Next, we use each imputed dataset to fit a
model using only the predictors that were reported in
that study. The set of predictors we use for each study
may be different, as some studies may not report some of
the predictors. This means that, in principle, we may fit a
different model in each study.

Thus, for each study we create m imputed datasets,
and we fit the corresponding model there; at the end, for
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a new patient we have N x m different predictions. Let
us denote prediction obtained from the k-th imputed
dataset in study j as ﬁfiw’k.
we need to first combine the m predictions obtained from

study j into a single estimate, by just taking the average,

To obtain the final prediction,

that is, V)

V=< Z yneW - The variance of this estimate is

given by the usual formula in multiple imputation,'®*!

that is

var (?ggw) = 1 Em: var (?f{iw,k)

m
1+m Z(ynewk ynew)z’ (7)

k:l

S\ 2
where Var<§ge>wk) (8,({”) ( Sew (Xm X(’ ) xnew+1)
is the variance of the prediction of the outcome for the
new patient using the model developed in the k-th

imputed dataset in study j. The estimate ¢ U) refers to the
residual standard error of the outcome from the k-th

imputed dataset for study j. Similarly, X,((i) refers to the
matrix of covariates from the k-th imputed dataset for
study j. Xnew refers to the matrix of covariates for the new

Finally, after having estimated 3V

hew  and

patient.
var (Afl’ew) from each study j, we obtain our final predic-

tion y,., as the weighted average of the study-specific
predictions:

Ny . .
Z Wge)w Y r(llg.w
~ j=1
Vnew = R, (8)
Z Wnew

where wggw =1/var ygzw . The advantage of this method

is that it takes fully into account stratification of patients
in different studies, without requiring the existence of
studies with no systematically missing predictors, as
method of Section 3.3.3.

3.4 | Measuring performance of meta-
analytical prediction models

After developing a prediction model, we want to measure
its predictive performance. This may guide model selec-
tion (i.e., which of the four approaches described above,
or which type of model should we employ when predict-
ing outcomes for new patients?) or be used to gauge the
usefulness of a model (i.e., is the model accurate

enough?). Generally, assessing model performance is
done by comparing model predictions with observations
in a testing dataset. A usual measure of agreement
between the two (for continuous outcomes) is the mean
squared error (MSE):

MSE :%Zi@i -3’ (9)

where N is the total number of patients in the testing
dataset, y; is the predicted and y; is the observed outcome
for each patient i. Another common measure is the coeffi-
cient of determination (R-squared), showing the percent-
age of variance explained by the model:

SSres

R=1-_-,
SSiot

where SSioi = > (y;—¥)” is the total sum of squares, y is
the average obéerved outcome, and SSyes = 3 (3, —y;)° is
the residual sum of squares. !

As a testing set, we can use the full dataset, that is,
the dataset that was also used to develop the model. This
approach is usually called “internal validation”. Of note,
internal validation may be prone to overfitting and subse-
quently optimism.** Overfitting implies that the model
will predict very well in the data it was developed, but fail
to predict well for new subjects. In such cases, assessment
of model performance in internal validation will be opti-
mistic. Overfitting will be a problem particularly when
sample sizes are small and models are complicated, that
is, including many predictors, higher-order terms of pre-
dictors, interactions of predictors, and so forth. One way
to obtain optimism-adjusted estimates of model perfor-
mance is to use resampling methods, for example, boot-
strapping; for more details see the book by Steyerberg.*

Another, potentially useful approach is the so-called
“internal-external” validation method for assessing model
performance.>® More specifically, since we are operating
on a meta-analytical level, we can use a type of internal-
external cross-validation called leave-one-study-out cross-
validation (LOSO-CV) method.** In this procedure, one
study is left out of the data and the rest are used for
model development. The fitted model is used to make pre-
dictions about patients of the left-out study. Next, we use
these predictions and observed outcomes to measure per-
formance. The procedure is repeated after cycling through
all studies, and measures of performance are summarized.
This method allows us to also assess the transportability
of the model, that is, to obtain an insight on how well it is
expected to perform to other populations and settings.?

Systematically missing predictors, however, compli-
cate both the internal validation and the LOSO-CV. The
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key point is that, to test a model in a dataset, we need to
use patients with observations for all the predictors of the
model, that is, without imputing missing values. The rea-
son is that, if we impute, the apparent performance of
the model would be affected by the accuracy of the impu-
tation process, while we are only interested in assessing
the capacity of the model to predict outcomes for new
patients in clinical practice (where we can collect all the
required predictors). For the case of the restrict predictors
method, where the model is developed and tested using
the same variables measured in all trials, systematically
missing data poses no problems. This means that we
can readily use internal validation and LOSO-CV without
any complications to test the restrict predictors method
in all studies, using only patients with fully observed
predictors.

For the rest of the methods we described, however,
things are not as straightforward. One simple way to
address this issue is to limit testing to studies with no sys-
tematically missing data. This approach, however, might
be problematic in practice if there are only few such stud-
ies. For the illustrative example, for internal validation
we would be using all studies to develop the prediction
models, but we would only be testing them in three, that
is, Kivi 2014, Klein 2016 (A) and Klein 2016 (B) (see
Table 1), in patients with no sporadically missing predic-
tors. For the LOSO-CV we would exclude Kivi 2014, use
the rest of the studies to develop the models, and then
test in that study; then, we would do the same for the
remaining two studies (Klein 2016 A and B), and summa-
rize results.

If we do not have enough studies with no systemati-
cally missing data, or if we want to use data from all stud-
ies when comparing the competing strategies described
above, we need to use an alternative approach, that is, we
need to change the model we test in each study. More spe-
cifically, what we can do in order to test the two multiple
imputation and ensemble approaches (Sections 3.3.2, 3.3.3,
and 3.3.4) is use each study separately. For example, in the
depression dataset, study De Graaf 2009 has a systemati-
cally missing predictor, history of medication (Table 1). In
the two multiple imputation methods, all predictors can
be used for imputing, but when developing the prediction
model, we need to exclude history of medication. For
internal validation we keep the data from De Graaf 2009
in the model-fitting process; for LOSO-CV, we take De
Graaf 2009 out, and fit the model using the remaining
studies. In both cases, after developing the model we test it
using the patients in De Graaf 2009; finally, we cycle
through all studies. In the ensemble method, we keep
only the predictors that are not systematically missing in
both the study we test, and the study we develop the
model. For instance, in the internal validation, when we

Synthesis Methods—YV1 LEY_L

test in De Graaf 2009 we use all studies to develop models.
When we build a model using the Geraedts 2014 study, we
use only the five predictors that these two studies have
measured in common (i.e., baseline, sex, age, relationship
status, and comorbid-anxiety). For LOSO-CV the only dif-
ference is that De Graaf 2009 should be excluded from
model fitting.

Obviously, this approach has drawbacks, most impor-
tant being its complexity and the fact that the model we
test may be different on each study we test it. However, it
may serve as a rough guide for assessing the relative per-
formance of the four approaches we described, when
there are not enough studies with no systematically miss-
ing predictors.

4 | SIMULATION STUDY

4.1 | Overview of scenarios explored

We compared in simulations the performance of the four
approaches described in the previous section for the pre-
diction of a continuous outcome. We generated data
under 64 different scenarios, where for each scenario we
simulated 100 independent datasets. In these scenarios
we explored various configurations regarding the number
of studies, number of predictors, probability of predictors
to be systematically missing in the studies, magnitude
of the predictors’ effects, and extent of heterogeneity.
Since our focus was on methods for systematically miss-
ing predictors, and aiming to keep things relatively sim-
ple, we did not assume sporadically missing predictors.
We explored the following configurations for the data-
generating mechanisms:

1. Number of studies: 2, 3, 5 or 10.

2. Number of predictors: 5 or 10; of which 2 predictors
were always reported, the rest might be systematically
missing in each study.

3. Probability of systematically missing for each predic-
tor in each study: 0.1 or 0.3.

4. Mean magnitude of the predictor effects on the out-
come: 0.2 or 0.5.

5. Standard deviation of the magnitude of the predictor
effects on the outcome across studies: 0.1 or 0.3.

Below we describe the procedure in more detail.

4.2 | Data generating mechanism

For each study in the dataset, we generated the number
of patients by drawing from U(150,300). Predictors (x;)
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were generated from a multivariate normal distribution
with first-order autoregressive structure with homoge-
neous variances. The number of predictors was either
5 or 10 depending on the scenario. For 5 predictors, the
predictors were generated from:

(xilaxiZaxi3’xi4’xi5)NMVN (){j]y}(jb){ﬁ:){]ny)(js)a O-)ZC ,02 P 1 P ,02 5

where ()(11, XiosXj3sXjas ;(js) are the overall study-specific

means, o2 is the variance of the predictors across patients,
p is the correlation between adjacent predictors. We sam-
pled all y; randomly for each scenario by drawing from
U(-1,1) and fixed p =0.2, 62 =1. Scenarios with 10 pre-
dictors were generated similarly. To simulate binary pre-
dictors, we categorized some of the generated continuous
predictors. More specifically, in scenarios with 5 predic-
tors, we made two of the predictors (x;; and x;;) binary,
by categorizing at thresholds 0 and 0.5 respectively, for
example, if x;; >0, we set x;, =1, 0 otherwise. In scenar-
ios with 10 predictors, we made five of them binary (x;,,
Xi3,» Xi8, Xi9, and X;0), using thresholds at 0, 0, 0, 0.5, and
0.5 respectively.

The outcome was generated as y; = a; + bjx; +e;. q; is
the study intercept, randomly generated for each study
by drawing from U(0.5,1.5). b; is the vector of study-spe-
cific effects of the predictors, simulated as by ~ N (,ub,ai),
where k refers to a distinct predictor, y, corresponds to
the mean magnitude of the effect (0.2 or 0.5, according to
the scenario) and o} corresponds to the standard devia-
tion (0.1 or 0.3, according to the scenario). The random
error was simulated for each patient separately
ase; ~N(0,1).

Finally, we assumed that the first 2 predictors (x; and
X;;) were always reported in all studies. The rest of pre-
dictors may be systematically missing in each study, with
a fixed probability of missing. We explored scenarios
where probability of missing was either 0.1 or 0.3, and we
generated missing status by drawing from a Bernoulli
distribution.

4.3 | Models compared and assessing
predictive performance

After generating datasets as described above, we build pre-
diction models following the four methods described in the

(1 p 0 P p*]
p 1 ppp

P 1op

Lot PP e 1]

previous section (i.e., restrict predictors method; multiple
imputation without accounting for heterogeneity; multiple
imputation accounting for heterogeneity; ensemble method).
We used the model of Equation (2) assuming 67 = o.

After developing all prediction models, we generated
10 new studies using the same data generating mecha-
nism, to be used as testing data. The predictors in these
studies were fully observed (no systematically missing
predictors). We used the developed models and the data
of the 10 new studies to make predictions, and we calcu-
lated MSE and R-squared for each model. In summary,
for every scenario (64 in total) we generated 100 datasets.
Each one of these 6400 datasets included 2, 3, 5 or
10 studies for developing the model (depending on the
scenario), and 10 studies for testing the model.

As discussed, some scenarios had small number of
studies (2, 3, 5), aiming to simulate realistic situations of
data availability. In such scenarios, the multiple imputa-
tion method that accounted for heterogeneity might not
be always feasible to implement. This is because, one of
the limitations of this method is that it requires the exis-
tence of at least two studies with no systematically missing
data, to be able to estimate variance covariance matrix;
when this is not the case, this method fails. In order to
make a fair comparison among the methods, we needed to
compare them in the same datasets, that is, excluding
datasets in which this method failed. At the same time, if
for some scenarios this method failed very frequently, we
would not have enough datasets to compare the rest of the
models. Thus, we set a threshold of 20%. If for a specific
scenario this method failed for less than 20% of the simu-
lated datasets, we excluded these datasets from the
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analyses of all models. If it failed for more than 20%, we
excluded this method from the analysis of this scenario. In
addition, since we set a fixed probability that each predic-
tor is systematically missing in each study, there might be
datasets where one or more predictors were absent from
all studies. In such datasets, all imputation methods will
fail. Since such failures would be due to our data generat-
ing mechanism (and not due to a model's limitation), we
excluded these datasets from all comparisons.

44 | Additional simulations on the
effect of shrinkage

During the review process of our manuscript, one anony-
mous reviewer suggested exploring scenarios where the
probability of a predictor to be reported in all studies
(i.e., no systematically missingness) was related to the
strength of the predictor. The same reviewer suggested to
include in the simulations models that include shrinkage.
Our new method, by omitting some covariates in some
studies, does effectively perform a sort of shrinkage, so it
is of interest to explore whether the possible advantages
of this new method might be because of that, and
whether these advantages would disappear if shrinkage
methods were used. Thus, as additional exploratory ana-
lyses we added several scenarios in our simulations,
where the predictor effects were different depending on
their systematic missingness, and where we used a ridge
regression model, combined with the restrict predictors
and the multiple imputation methods.>> More details are
given in the Data S1.

4.5 | Implementation details

All analyses were carried out in R.*® We used the Ime4
package” to fit linear mixed effects model. We used
glmnet package to fit shrinkage models for the additional
analysis. When we performed multiple imputations, the
imputation model included all the predictors and the out-
come.”® As noted above, we did not generate sporadically
missing predictors. Thus, for the restrict predictors and the
ensemble method no imputation was required. For the
method that ignores between-study heterogeneity, we used
pmm method in the mice’ package. This implements pre-
dictive mean matching based on the method by van Buu-
ren.® For the imputation method accounting for between-
study heterogeneity, we used 2L.2stage.norm and 2l.2stage.
bin methods in the micemd® package depending on the
type of the predictor to impute.” For all imputations, we
imputed the missing variables to create m =10 multiply
imputed datasets. The R codes used for fitting all models
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are available at https://github.com/MikeJSeo/phd/tree/
master/missing. Furthermore, the R package bipd,
which is available in CRAN, implements all multiple
imputation methods discussed in this article in a user-
friendly manner. The vignette for the package demon-
strates how to use this package in practice.

4.6 | Results

Table S3 in the Data S1 show the detailed simulation
results. First, we found that—not surprisingly—the
restrict predictors method that excludes systematically
missing predictors was overall the worst approach, giving
the largest MSE and smallest R-squared. Second, we
found that for many datasets, the multiple imputation
method that accounts for heterogeneity failed due to the
unavailability of at least two studies with fully observed
data. This was particularly frequent for scenarios with only
2 or 3 studies, and scenarios with larger number of predic-
tors. Third, we found that the two multiple imputation
methods performed best for both MSE and R-squared in
scenarios with many studies (i.e., 10 studies), larger effect
sizes of the predictors, and smaller heterogeneity of the
effects. The difference between the two multiple imputa-
tion methods was trivial in most cases; however, the
method that accounts for heterogeneity seemed to perform
slightly better when the number of studies was large or
when there was larger heterogeneity of the effects of the
predictors. Conversely, we found that our new approach,
the ensemble method, outperformed all other methods in
scenarios with fewer studies (i.e., especially 2, 3, or even at
5 studies), when the effect of the predictors was relatively
small, and when heterogeneity was relatively large, that is,
at least a half of the mean predictor effect.

Table S4 of the Data S1 shows the additional simula-
tions we performed, described in Section 4.4. The results
again showed that even in situations where the effect of
the predictor is related to its probability to be reported in
the study, our new method usually outperformed other
methods in scenarios where there was relatively large het-
erogeneity and small number of studies. Rather surpris-
ingly, the new method performed better than other
methods in scenarios when variables with systematically
missingness had stronger effects than complete predictors
(i.e., Scenarios R33-R48 in the Data S1), again especially
for small number of studies. This might be due to the fact
that performing wrong imputations can be detrimental
when the predictor is strong, and using the ensemble
method was preferable. When the reverse was true, that is,
when complete predictors were stronger (scenarios R49-
R64), results were not as clear. Again, for small number of
studies and large heterogeneity our new method was
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usually best, however in many cases differences in perfor-
mance were very small. In addition, we saw that shrinkage
did not provide much benefit in all simulations. This might
have been because all predictors had at least moderate
effect in predicting the outcome. Overall, the results of the
additional simulations did not affect our conclusions.

5 | ANALYSIS OF THE
ILLUSTRATIVE EXAMPLE
5.1 | Implementation details

We used the data described in Section 2 to illustrate our
methods. The data included a treatment indicator, several
predictors, and a continuous outcome. We aimed at
developing a model of the form y;~N(u;,0?), that is,
assuming common o2 across studies, and p; given by
Equation (3). Since predictors were both sporadically and
systematically missing, we wused the four different
methods described in the previous section to develop the
prediction model.

Following the restrict predictors method (Section 3.3.1),
we only included baseline PHQ-9 score and sex as predic-
tors in the analysis, since these were the only predictors
with no systematically missing values in all studies. There
were however some few sporadically missing data on sex.
We imputed these using MI, while accounting for the clus-
tering of patients in different studies. To do this we used 2L
pmm in the miceadds™ package in R, which generalizes
predictive mean matching via linear mixed models.** For
the imputation method ignoring between-study heterogene-
ity, we used pmm method in mice’ package and for the
imputation method accounting for between-study heteroge-
neity, we used 2l2stage.norm or 2l2stage.bin method in

TABLE 2
depression dataset.

Performance Restrict predictors
Validation method measure method
Internal (A) MSE 18.0
R-squared 0.08
Internal-external MSE 18.3
LOSO-CV (A) R-squared 0.07
Internal (B) MSE 26.1
R-squared 0.18
Internal-external MSE 26.6
LOSO-CV (B) R-squared 0.17

micemd® depending on the type of the predictors to
impute. For the ensemble method (Section 3.3.4), each
study was used to develop an independent model, so multi-
ple imputation did not need to be a multi-level procedure.
Thus, we used pmm method in mice’ package. For all
imputations, we created m = 20 multiply imputed datasets.
When imputing we used information from predictors,
treatment, predictor-treatment interactions, and out-
comes. Once multiply imputed datasets are created, we
developed the prediction models after dropping patients
with missing outcomes.

Next, we performed an internal and an internal-
external (leave-one-study-out) cross validation of the
modeling procedure. We did this following the two
methods described in Section 3.4, that is, (A) using only
studies with no systematically missing data; and
(B) using all studies, after changing the model tested in
each study as described in Section 3.4. For the internal
validation we could not correct for optimism using boot-
strapping, because some binary predictors were very rare
in some of the studies (e.g., in one study there were only
2/301 patients reporting alcohol use; this means that
bootstrapping sometimes resulted in samples with no
patients on alcohol use). However, in this example we
expected very low optimism, since overfitting was highly
unlikely: the models included few predictors, the out-
come was continuous, and the dataset was big. Finally
note that for validation, we only used patients with com-
plete data (i.e., no sporadically missing).

5.2 | Results

Following the restrict predictors method, we found base-
line to be a strong predictor, but with weak evidence of

Summary performance of the four different approaches for addressing missing data presented in this paper, using the

MI ignoring MI accounting for Ensemble
heterogeneity heterogeneity method
18.2 18.1 18.0

0.07 0.07 0.08
18.8 18.9 18.6

0.04 0.04 0.05
26.1 26.2 26.2

0.19 0.18 0.18
26.9 26.9 26.7

0.16 0.16 0.17

Note: Approach (A) used only the three studies with no systematically missing data; and (B) used all studies, after changing the model tested in each study

(details in Section 3.4).
Abbreviations: MI, multiple imputation; MSE, mean squared error.
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an interaction with treatment. There was no evidence
that sex could predict the outcome. Next, we analyzed
the data following the two multiple imputation methods,
including all predictors after imputation. Looking at the
estimated parameters from the models, we see again
baseline to be the most important predictor. For the
remaining predictors estimates were more uncertain.
Table S2 in the Data S1 show the estimated coefficients
of the models. For the ensemble method, we report the
simple average of estimates across different models devel-
oped for each study. We report zero for studies where the
variable was systematically missing. Similarly, we simply
average the variances of coefficient for each study.

In Table 2 we show the results from comparing the
performance of the four different approaches using the
internal cross validation and LOSO-CV. When we tested
on the three studies with no systematically missing data,
we saw that although all methods had similar perfor-
mance, the restrict predictors method performed overall
slightly better in terms of MSE and R-squared, for both
internal and LOSO-CV. Among the more advanced
methods, the ensemble method performed marginally
better. When we tested using all studies, we saw that all
four methods again had almost identical performance.

The reason why all methods led to similar results was
most probably that in this example there was a dominant
predictor (baseline severity) reported in all studies. Try-
ing to include non-predictive variables brought in mostly
noise, adding little benefit to the predictions. Addition-
ally, one reason why the multiple imputation method
that accounted for heterogeneity did not perform so well
here might be the fact that this method performs multi-
variate meta-analysis using studies without systematically
missing data. In this example, there were only three stud-
ies with no systematically missing predictors. This means
that only three studies were used to estimate variance-
covariance matrix of the random effects.

6 | DISCUSSION

This paper explored different methods for building pre-
diction models when there are systematically missing
predictors in individual patient data meta-analysis.
Such models can then be used for predicting outcomes
in future individuals with all covariates observed. We
compared the performance of four methods (restrict pre-
dictors method, imputation method ignoring between-
study heterogeneity, imputation method accounting for
between-study heterogeneity, and our new ensemble-
based approach). In the simulations, we investigated vari-
ous scenarios for a different number of studies, number
of predictors, probability of systematically missing studies
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for each predictor, and magnitude and heterogeneity of
predictor effects. We found that the restrict predictors
method was overall the worse approach. We also found
that the ensemble method performed best for a few stud-
ies and when the systematically missing predictors have
moderate-to-small effects with large heterogeneity. Con-
versely, for many studies, larger predictor effects and
small heterogeneity, multiple imputation methods per-
formed better. Among the two multiple imputation
approaches, we found the one accounting for heterogene-
ity to be marginally better. Furthermore, we applied all
models to a clinical example in psychotherapies for
depression, where we saw only small differences between
the four approaches. This was probably because in this
example, there was a single strong predictor (baseline
symptoms severity), consistently reported in all studies.
In such cases, the choice between the various methods
will be of minimal importance, as all methods will give
practically the same results.

Our new method was inspired by the so-called ensem-
ble learning models. This is a wide family of statistical and
machine learning methods. In ensemble learning, multiple
base models are combined to develop an overall prediction
model. In many scenarios, this overall, ensemble model is
expected to yield better predictive performance than each
of its constituent parts.**** Various combination tech-
niques, such as the weighted average, can be employed for
combining predictions from base-models. Despite their
wide use, to the best of our knowledge, ensemble-based
methods have not been previously used for addressing the
problem of systematically missing data in IPD meta-analy-
sis. In this work we aimed to fill this gap, by describing
how an ensemble method can be employed when develop-
ing prediction models using data from multiple studies.

Several limitations of this work are worth mention-
ing. First, we did not explore the case of binary or time-
to-event outcomes. This is an interesting area of future
work, although there may be additional complications
that need to be addressed.>* Furthermore, in our simula-
tions we only used simple data-generating mechanisms.
Instead, we could have explored more complicated, and
perhaps more realistic, mechanisms; for example, we
could explore non-linear predictor-outcome associations
when simulating data, or interactions between the pre-
dictors. Also, we could have included different types of
statistical or machine learning prediction models, when
assessing the performance of the methods for addressing
the missing outcomes. For instance, although our simula-
tion mechanism incorporated heterogeneity in coeffi-
cients for predictor effects, our analysis model used a
linear model that assumed these coefficients to be
common. Similar extensions could be pursued in future
simulations. Furthermore, although we mentioned three
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alternative methods for imputing systematically missing
variables while accounting for study-level clustering,””
we only used the method by Resche-Rigon and White” in
our simulations. However, we did some exploratory sim-
ulations using the method by Jolani,® but we did not find
big differences with the method by Resche-Rigon and
White; so we did not pursue this any further. Lastly, the
biggest limitation of our new ensemble approach is per-
haps the extra level of complexity it entails. Moreover,
this approach requires building a separate model for each
study and this can be time-consuming, especially when
the number of studies is very large and when complex
modeling strategies are employed. However, we think
that for common situations of data availability this will
not pose such a big problem.

In summary, in this paper we showed that more
advanced methods may lead to better prediction models
as compared to following the restrict predictors approach,
in the presence of systematically missing data. These
more advanced methods allow us to include additional
predictors in our models, potentially increasing perfor-
mance, or providing additional insight. In practice, we
recommend researchers to select among the different
methods after using both internal and internal-external
cross-validation approaches. Finally, we think that the
ensemble method offers a potentially powerful alterna-
tive to researchers, and that it might be especially useful
in the common case of having IPD from only a handful
of studies, reporting different sets of predictors.

AUTHOR CONTRIBUTIONS

Michael Seo programmed the analysis, performed the
simulation study, and analyzed thedata. Michael Seo
wrote the first draft of the manuscript and all authorscri-
tically edited it. All authors approved thefinal submitted
version of the manuscript.

ACKNOWLEDGMENTS

The authors disclosed receipt of the following financial
support for the research, authorship, and/or publication
of this article: M.S. and O.E. were supported by the Swiss
National Science Foundation (Ambizione grant number
180083). Open access funding provided by Universi-
tat Bern.

DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new
data were created in this study.

ORCID

Michael Seo ‘® https://orcid.org/0000-0002-5229-590X
Toshi A. Furukawa "® https://orcid.org/0000-0003-2159-
3776

Eirini Karyotaki ‘® https://orcid.org/0000-0002-0071-2599
Orestis Efthimiou ‘© https://orcid.org/0000-0002-0955-
7572

REFERENCES

1. Steyerberg E, Nieboer D, Debray T, van Houwelingen H. Meta-
analysis of prediction models. Handbook of Meta-Analysis.
CRC Press; 2020. doi:10.1201/9781315119403-22

2. de Jong VMT, Moons KGM, Eijkemans MIJC, Riley RD,
Debray TPA. Developing more generalizable prediction models
from pooled studies and large clustered data sets. Stat Med.
2021;40(15):3533-3559. doi:10.1002/sim.8981

3. Riley RD, Lambert PC, Abo-Zaid G. Meta-analysis of individual
participant data: rationale, conduct, and reporting. BMJ. 2010;
340:c221. doi:10.1136/bmj.c221

4. Debray TPA, Moons KGM, van Valkenhoef G, et al. Get real in
individual participant data (IPD) meta-analysis: a review of the
methodology. Res Synth Methods. 2015;6(4):293-309. doi:10.
1002/jrsm.1160

5. Rubin DB. Multiple imputation after 184 years. J Am Stat
Assoc. 1996;91(434):473-489. doi:10.2307/2291635

6. van Buuren S. Flexible Imputation of Missing Data. 2nd ed.
Chapman and Hall/CRC; 2018.

7. Resche-Rigon M, White IR. Multiple imputation by chained
equations for systematically and sporadically missing multile-
vel data. Stat Methods Med Res. 2018;27(6):1634-1649. doi:10.
1177/0962280216666564

8. Jolani S. Hierarchical imputation of systematically and sporadi-
cally missing data: an approximate Bayesian approach using
chained equations. Biom J. 2018;60(2):333-351. d0i:10.1002/
bim;j.201600220

9. Quartagno M, Carpenter JR. Multiple imputation for IPD
meta-analysis: allowing for heterogeneity and studies with
missing covariates. Stat Med. 2016;35(17):2938-2954. doi:10.
1002/sim.6837

10. Audigier V, White I, Jolani S, et al. Multiple imputation for
multilevel data with continuous and binary variables. Stat Sci.
2018;33(2):160-183. d0i:10.1214/18-STS646

11. Furukawa TA, Suganuma A, Ostinelli EG, et al. Dismantling,
optimising, and personalising internet cognitive behavioural
therapy for depression: a systematic review and component
network meta-analysis using individual participant data. Lan-
cet Psychiatry. 2021;8(6):500-511. doi:10.1016/S2215-0366(21)
00077-8

12. Debray TPA, Moons KGM, Abo-Zaid GMA, Koffijberg H,
Riley RD. Individual participant data meta-analysis for a binary
outcome: one-stage or two-stage? PLoS One. 2013;8(4):e60650.
doi:10.1371/journal.pone.0060650

13. Riley RD, Debray TP, Fisher D, et al. Individual participant data
meta-analysis to examine interactions between treatment effect
and participant-level covariates: statistical recommendations for
conduct and planning. Stat Med. 2020;39(15):2115-2137.

14. Jolani S, Debray TPA, Koffijberg H, van Buuren S,
Moons KGM. Imputation of systematically missing predictors
in an individual participant data meta-analysis: a generalized
approach using MICE. Stat Med. 2015;34(11):1841-1863. doi:10.
1002/sim.6451

15. Jackson D, White I, Kostis JB, et al. Systematically missing con-
founders in individual participant data meta-analysis of

85UBD 17 SUOWWOD BAReR1D) 3|edldde BU Aq pauRA0B 88 S3OIMe YO ‘88N JO S9N 404 Akeuq| T 8UIUO A1V, UO (SUOIPUOO-PUR-SLLBY WD A3 | 1M ARe.q) 18U |UO//SANY) SUORIPUOD PUe WS L 8U3 39S *[£202/50/60] U0 AriqiTauliuo A8 (1M ‘uieg RIS RAIUN AG GZ9T WSII/Z00T 0T/I0P/ W00 A3 1M Afeiq1BUI|UO//SANY WO} papeo|umoq ‘¢ ‘€202 ‘288265LT


https://orcid.org/0000-0002-5229-590X
https://orcid.org/0000-0002-5229-590X
https://orcid.org/0000-0003-2159-3776
https://orcid.org/0000-0003-2159-3776
https://orcid.org/0000-0003-2159-3776
https://orcid.org/0000-0002-0071-2599
https://orcid.org/0000-0002-0071-2599
https://orcid.org/0000-0002-0955-7572
https://orcid.org/0000-0002-0955-7572
https://orcid.org/0000-0002-0955-7572
info:doi/10.1201/9781315119403-22
info:doi/10.1002/sim.8981
info:doi/10.1136/bmj.c221
info:doi/10.1002/jrsm.1160
info:doi/10.1002/jrsm.1160
info:doi/10.2307/2291635
info:doi/10.1177/0962280216666564
info:doi/10.1177/0962280216666564
info:doi/10.1002/bimj.201600220
info:doi/10.1002/bimj.201600220
info:doi/10.1002/sim.6837
info:doi/10.1002/sim.6837
info:doi/10.1214/18-STS646
info:doi/10.1016/S2215-0366(21)00077-8
info:doi/10.1016/S2215-0366(21)00077-8
info:doi/10.1371/journal.pone.0060650
info:doi/10.1002/sim.6451
info:doi/10.1002/sim.6451

SEO ET AL.

Research

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

observational cohort studies. Stat Med. 2009;28(8):1218-1237.
doi:10.1002/sim.3540

Rubin DB. Multiple Imputation for Nonresponse in Surveys.
John Wiley &Sons; 1987.

Wood AM, Royston P, White IR. The estimation and use of pre-
dictions for the assessment of model performance using large
samples with multiply imputed data. Biom J. 2015;57(4):614-
632. doi:10.1002/bimj.201400004

Burgess S, White IR, Resche-Rigon M, Wood AM. Combining
multiple imputation and meta-analysis with individual partici-
pant data. Stat Med. 2013;32(26):4499-4514. d0i:10.1002/sim.
5844

Resche-Rigon M, White IR, Bartlett JW, Peters SAE,
Thompson SG, PROG-IMT Study Group. Multiple imputation
for handling systematically missing confounders in meta-
analysis of individual participant data. Stat Med. 2013;32(28):
4890-4905. doi:10.1002/sim.5894

Reiter J, Raghunathan T, Kinney S. The importance of model-
ing the sampling design in multiple imputation for missing
data. Survey Methodol. 2006;32(2), 143-150.

Marshall A, Altman DG, Holder RL, Royston P. Combining
estimates of interest in prognostic modelling studies after mul-
tiple imputation: current practice and guidelines. BMC Med Res
Methodol. 2009;9(1):57. doi:10.1186/1471-2288-9-57

Steyerberg EW. Clinical Prediction Models. 2nd ed. Springer;
20109.

Steyerberg EW, Harrell FE Jr. Prediction models need appro-
priate internal, internal-external, and external validation.
J Clin Epidemiol. 2016;69:245-247. d0i:10.1016/j.jclinepi.2015.
04.005

Debray TPA, Moons KGM, Ahmed I, Koffijberg H, Riley RD. A
framework for developing, implementing, and evaluating clini-
cal prediction models in an individual participant data meta-
analysis. Stat Med. 2013;32(18):3158-3180. doi:10.1002/sim.
5732

Hoerl A, Kennard R. Ridge regression: biased estimation for
nonorthogonal problems. Dent Tech. 2012;12:55-67. doi:10.
1080/00401706.1970.10488634

R Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing; 2018.
https://www.R-project.org/

27.

28.

29.

30.

31.

32.

33.

34.

Synthesis Methods—YV1 LEY_L

Bates D, Méchler M, Bolker B, Walker S. Fitting linear mixed-
effects models using Ime4. J Stat Softw. 2015;67(1):1-48. doi:10.
18637/jss.v067.101

White IR, Royston P, Wood AM. Multiple imputation using
chained equations: issues and guidance for practice. Stat Med.
2011;30(4):377-399. d0i:10.1002/sim.4067

Audigier V, Resche-Rigon M. micemd: Multiple Imputation by
Chained Equations with Multilevel Data; 2018. https://CRAN.
R-project.org/package=micemd

Robitzsch A, Grund S. Miceadds: Some Additional Multiple
Imputation Functions, Especially for “Mice”; 2021. https://
CRAN.R-project.org/package=miceadds

Snijders T, Bosker R. Multilevel Analysis: An Introduction to
Basic and Advanced Multilevel Modeling. Sage; 1999.

Polikar R. Ensemble based systems in decision making. IEEE
Circuits Syst Mag. 2006;6(3):21-45. doi:10.1109/MCAS.2006.
1688199

Gashler M, Giraud-Carrier C, Martinez T. Decision tree ensem-
ble: small heterogeneous is better than large homogeneous.
2008 Seventh International Conference on Machine Learning
and Applications; 1EEE, 2008:900-905. doi:10.1109/ICMLA.
2008.154

Pavlou M, Ambler G, Seaman S, Omar RZ. A note on obtaining
correct marginal predictions from a random intercepts model
for binary outcomes. BMC Med Res Methodol. 2015;15(1):1-6.
doi:10.1186/512874-015-0046-6

SUPPORTING INFORMATION
Additional supporting information can be found online

in

the Supporting Information section at the end of this

article.

How to cite this article: Seo M, Furukawa TA,
Karyotaki E, Efthimiou O. Developing prediction
models when there are systematically missing
predictors in individual patient data meta-analysis.
Res Syn Meth. 2023;14(3):455-467. doi:10.1002/
jrsm.1625

85UB017 SUOWILLOD 3A 81D 3cedldde ay3 Ag peusenob ke o VO ‘88N o sejn. 1o} ArIqi]8UIIUO 431N UO (SUOIPUOD-PUR-SWBIA0D A8 | AZeIq 1[I |UO//STNY) SUORIPUOD PUe SWB | 81 88S *[£202/50/60] Uo ARiqiTauliuo /8|1 ‘uled e1seAlun Aq GZ9T Ws1{/Z00T 0T/10p/wod"As | Areiqijeutjuo//sdiy woiy pepeojumod ‘€ ‘€202 ‘/882652T


info:doi/10.1002/sim.3540
info:doi/10.1002/bimj.201400004
info:doi/10.1002/sim.5844
info:doi/10.1002/sim.5844
info:doi/10.1002/sim.5894
info:doi/10.1186/1471-2288-9-57
info:doi/10.1016/j.jclinepi.2015.04.005
info:doi/10.1016/j.jclinepi.2015.04.005
info:doi/10.1002/sim.5732
info:doi/10.1002/sim.5732
info:doi/10.1080/00401706.1970.10488634
info:doi/10.1080/00401706.1970.10488634
https://www.r-project.org/
info:doi/10.18637/jss.v067.i01
info:doi/10.18637/jss.v067.i01
info:doi/10.1002/sim.4067
https://cran.r-project.org/package=micemd
https://cran.r-project.org/package=micemd
https://cran.r-project.org/package=miceadds
https://cran.r-project.org/package=miceadds
info:doi/10.1109/MCAS.2006.1688199
info:doi/10.1109/MCAS.2006.1688199
info:doi/10.1109/ICMLA.2008.154
info:doi/10.1109/ICMLA.2008.154
info:doi/10.1186/s12874-015-0046-6
info:doi/10.1002/jrsm.1625
info:doi/10.1002/jrsm.1625

	Developing prediction models when there are systematically missing predictors in individual patient data meta-analysis
	1  INTRODUCTION
	2  ILLUSTRATIVE EXAMPLE IN DEPRESSION
	3  METHODS
	3.1  Notation and general considerations
	3.2  One-stage meta-analytical prediction models for fully observed data
	3.3  Methods for addressing missing predictors
	3.3.1  Restrict predictors method
	3.3.2  Imputing missing predictors ignoring between-study heterogeneity
	3.3.3  Imputing systematically missing predictors accounting for between-study heterogeneity
	3.3.4  Ensemble method

	3.4  Measuring performance of meta-analytical prediction models

	4  SIMULATION STUDY
	4.1  Overview of scenarios explored
	4.2  Data generating mechanism
	4.3  Models compared and assessing predictive performance
	4.4  Additional simulations on the effect of shrinkage
	4.5  Implementation details
	4.6  Results

	5  ANALYSIS OF THE ILLUSTRATIVE EXAMPLE
	5.1  Implementation details
	5.2  Results

	6  DISCUSSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	DATA AVAILABILITY STATEMENT

	REFERENCES


