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Abstract 

 

Study Objectives:  Inter-scorer variability in scoring polysomnograms is a well-known 

problem. Most of the existing automated sleep scoring systems are trained using labels 

annotated by a single scorer, whose subjective evaluation is transferred to the model. When 

annotations from two or more scorers are available, the scoring models are usually trained 

on the scorer consensus. The averaged scorer’s subjectivity is transferred into the model, 

losing information about the internal variability among different scorers. In this study, we aim 

to insert the multiple-knowledge of the different physicians into the training procedure. The 

goal is to optimize a model training, exploiting the full information that can be extracted from 

the consensus of a group of scorers. 

 

Methods: We train two lightweight deep learning based models on three different multi-

scored databases. We exploit the label smoothing technique together with a soft-consensus 

(LSSC) distribution to insert the multiple-knowledge in the training procedure of the model. 

We introduce the averaged cosine similarity metric (   ) to quantify the similarity between 

the hypnodensity-graph generated by the models with-LSSC and the hypnodensity-graph 

generated by the scorer consensus. 

 

Results: The performance of the models improves on all the databases when we train the 

models with our LSSC. We found an increase in     (up to 6.4%) between the hypnodensity-

graph generated by the models trained with-LSSC and the hypnodensity-graph generated by 

the consensus. 
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Conclusion:  Our approach definitely enables a model to better adapt to the consensus of 

the group of scorers. Future work will focus on further investigations on different scoring 

architectures and hopefully large-scale-heterogeneous multi-scored datasets. 

 

Keywords: automatic sleep stage classification, machine learning, deep learning, multi-

scored sleep databases. 
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Graphical abstract 
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Statement of Significance 

Visual scoring of polysomnography is a highly subjective procedure. Several  studies consistently 

reported the poor agreement between different physicians scoring the same whole-night 

recording. Existing sleep scoring algorithms, trained on multi-scored databases, overlook to encode 

in their models the variability among the scorers. We propose a technique to wholly insert the 

multiple-knowledge of the different physicians into the training procedure of a scoring algorithm. 

Our approach enables the model to better adapt to the consensus of the group of scorers. 

Whenever multi-scored databases are available, future researchers should train their models 

considering the annotations of all the physicians at the same time, rather than averaging their 

labels and training their algorithm on the averaged consensus. 
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Introduction 

Sleep disorders represent a significant public health problem that affects millions of people 

worldwide [1]. Since the late 1950s, the polysomnography (PSG) exam has been the gold standard to 

study sleep and to identify sleep disorders. It monitors electrophysiological signals such as 

electroencephalogram (EEG), electrooculogram (EOG), electromyogram (EMG) and 

electrocardiogram (ECG). The physicians visually extract sleep cycle information from these signals. 

The whole-night recording is divided in 30-second epochs, and each epoch is classified into one of 

the five sleep stages (i.e., wakefulness W, stage N1, stage N2, stage N3, and stage REM) according to 

the AASM guidelines [2]. Worst case scenario, an eight-hour PSG may require up to two hours of 

tedious repetitive and time-consuming work to be scored. In addition, this manual procedure is 

highly affected by a low inter-rater scoring agreement (i.e., the agreement between different 

physicians scoring the same whole-night recording). The inter-rater scoring agreement value ranges 

from 70% up to slightly more than 80% [3-5]. In [3] the averaged inter-rater agreement of about 83% 

results from a study conducted on the AASM Inter-scorer reliability dataset, by using sleep stages 

annotated from more than 2,500 sleep scorers. The agreement was higher than 84% for awake, N2 

and REM stages, but it dropped to 63% and 67% for N1 and N3 stages respectively. In fact, the inter-

rater agreement varies among sleep stages, patients, sleep disorders and across sleep centers [3], 

[6].  

 

Since 1960 many different approaches and algorithms have been proposed to automate this time-

consuming scoring procedure. Mainly, two different approaches emerged: sleep scoring algorithms 

learning from well defined features extracted from the knowledge of the experts (shallow learning), 

and sleep scoring algorithms learning directly from the raw data (deep learning). Thorough reviews 

about feature based [7-8] and deep learning based [9-10] sleep scoring algorithms can be found in 

literature. Although the latter algorithms emerged only five years ago, their impressive results have 
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never been reached with the previous conventional feature based approaches. Autoencoders [11], 

deep neural networks [12], convolutional neural networks [13-20], recurrent neural networks [21-

23] and different combinations of them [24-30] have been all proposed only in these last five years.  

Almost all of the above algorithms have been trained on recordings scored by a single expert 

physician. The first remarkable exception comes from [27], where they consider recordings scored 

by six different physicians [31]. The scoring algorithm was trained on the six-scorer consensus (i.e., 

based on the majority vote weighted by the degree of consensus from each physician). In [23] the 

Dreem group introduced two publicly-available datasets scored by five sleep physicians. Similarly, 

they used the scorer consensus to train their automated scoring system. It has been shown that the 

performance of an automated sleep scoring system is on-par with the scorer consensus  [23,27], and 

mainly that their best scoring algorithm is better than the best human scorer - i.e., the scorer with 

the higher consensus among all the physicians in the group. Although they both considered the 

knowledge from the multiple scorers - by averaging their labels and by training their algorithm on 

the averaged consensus - they still trained the algorithm on a single one-hot encoded label. 

Indirectly, they are still transferring the best scorer’s subjectivity into the model, and they are not 

explicitly training the model to adapt to the consensus of the group of scorers. 

 

In this work, we train two existing lightweight deep learning-based sleep staging algorithms, our 

DeepSleepNet-Lite (DSN-L) [32] and SimpleSleepNet (SSN) [23], on three open-access multi-scored 

sleep datasets. First, we assess the performance of both scoring algorithms trained with the labels 

given by scorer consensus (i.e., majority vote among the different scorers) and compare it to the 

performance of the individual scorer-experts. Then we propose to exploit label smoothing along 

with the soft-consensus distribution (base+LSSC) to insert the multiple-knowledge into the training 

procedure of the models and to better calibrate the scoring architectures. For the first time in sleep 

scoring, we are considering the multiple-labels in the training procedure, the annotations of all the 
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scorers are taken into account at the same time. We finally assess the performance and we quantify 

the similarity between the hypnodensity-graph generated by the models - trained with and without 

label smoothing - and the hypnodensity-graph generated by the scorer consensus. 

 

In the present work we investigate a different approach in exploiting multi-scored database 

information. In particular:  (1) we demonstrate the efficiency of label smoothing along with the soft-

consensus distribution in both calibrating and enhancing the performance of both DSN-L and SSN; (2) 

we show how the model can better resemble the scorer group consensus, leading to a similarity 

increase between the hypnodensity-graph generated by the model and the hypnodensity-graph 

generated by the scorer consensus. 

Methods 

In this section we first present the three publicly available databases used in this study: IS-RC (Inter-

scorer Reliability Cohort) [31]; DOD-H (Dreem Open Dataset - Healthy) and DOD-O (Dreem Open 

Dataset - Obstructive) [23]. We then briefly describe the architectures of the two deep learning-

based scoring algorithms DSN-L [32] and SSN [23]. Next, we show how to compute the consensus in 

a multi-scored dataset, i.e., how to compute the label among multiple-scorers so as to train our 

baseline algorithms and to be able to evaluate their performance. In Label smoothing with soft-

consensus subsection we describe in detail how to compute the soft-consensus distribution, and 

how to exploit it along with the label smoothing technique during the training procedure. The aim is 

to show how to insert the multiple-labels of the different scorers into the training procedure of our 

algorithms. We finally report all the experiments conducted on both DSN-L and SSN algorithms, i.e., 

base, base+LSU and base+LSSC models, and the metrics exploited to evaluate their performance.  
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Datasets 

IS-RC. The dataset contains 70 recordings (0 males and 70 females) from patients with sleep-

disordered breathing aged from 40 to 57. The recordings were collected at the University of 

Pennsylvania. Each recording includes the EEG derivations C3-M2, C4-M1, O1-M2, O2-M1, one EMG 

channel, left/right EOG channels, one ECG channel, nasal airway pressure, oronasal thermistor, body 

position, oxygen saturation and abdominal excursion. The recordings are sampled at 128 Hz.  

We only consider the single-channel EEG C4-M1 to train our DSN-L architecture, and we use multi-

channel EEG, EOG, EMG and ECG to train the SSN architecture. A band-pass Chebyshev IIR filter is 

applied between [0.3, 35] Hz. Each recording is scored by six clinicians from five different sleep 

centers (i.e., University of Pennsylvania, University of Wisconsin at Madison, St. Luke’s Hospital 

(Chesterfield), Stanford University and Harvard University) according to the AASM rules [2].  

The dataset contains the following annotations  ,   ,   ,   ,  , and   , where    is a not 

classified epoch. Some epochs are not scored by all the six physicians, and even for some of them we 

don't have any annotation (i.e   ). We decided to remove the epochs classified by all the scorers as 

  . Epochs with less than six annotations are equally taken into account to avoid excessive data 

loss. 

 

DOD-H. The dataset contains 25 recordings (19 males and 6 females) from healthy adult volunteers 

aged from 18 to 65 years. The recordings were collected at the French Armed Forces Biomedical 

Research Institute’s (IRBA) Fatigue and Vigilance Unit (Bretigny-Sur-Orge, France). Each recording 

includes the EEG derivations C3-M2, C4-M1, F3-F4, F3-M2, F3-O1, F4-O2, O1-M2, O2-M1, one EMG 

channel, left/right EOG channels and one ECG channel. The recordings are sampled at 512 Hz. 

DOD-O. The dataset contains 55 recordings (35 males and 20 females) from patients suffering from 

obstructive sleep apnea (OSA) aged from 39 to 62 years. The recordings were collected at the 

Stanford Sleep Medicine Center. Each recording includes the EEG derivations C3-M2, C4-M1, F4-M1, 
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F3-F4, F3-M2, F3-O1, F4-O2, FP1-F3, FP1-M2, FP1-O1, FP2-F4, FP2-M1, FP2-O2, one EMG channel, 

left/right EOG channels and one ECG channel. The recordings are sampled at 250 Hz. 

We only consider the single-channel EEG C4-M1 to train our DSN-L architecture, and we use all the 

available channels to train SSN architecture, on both DOD-H and DOD-O. As in [23], a band-pass 

Butterworth IIR filter is applied between [0.4, 18] Hz to remove residual PSG noise, and the signals 

are resampled at 100 Hz. The signals are then clipped and divided by 500 to remove extreme values. 

The recordings from both DOD-H and DOD-O datasets are scored by five physicians from three 

different sleep centers according to the AASM rules [2]. 

DOD-H and DOD-O contain the following annotations  ,   ,   ,   ,  , and   , where    is a not 

classified epoch. All the scorers agree about the    epochs (100% of agreement). Therefore, all of 

them are removed from the data. Unlike the previous IS-RC database, for each epoch five 

annotations are always available. 

In Table 1 we report a summary of the total number and percentage of the epochs per sleep stage 

for the DOD-H, DOD-O and IS-RC datasets. 

Deep learning-based scoring architectures 

DSN-L [32] is a simplified feed-forward version of the original DeepSleepNet by [24]. Unlike the 

original network, in [32] we proposed to employ only the first representation learning block, and we 

proposed to simply train it with a sequence-to-epoch learning approach. The architecture receives in 

input a sequence of 90-second epochs, and it predicts the corresponding target of the central epoch 

of the sequence, i.e., many-to-one or sequence-to-epoch classification scheme. The representation 

learning architecture consists of two parallel convolutional neural networks (CNNs) branches, with 

small           and large           filters at the first layer. The principle is to extract high-time 

resolution patterns with the small filters, and to extract high-frequency resolution patterns with the 

large ones. This idea comes from the way the signal processing experts define the trade-off between 
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temporal and frequency precision in the feature extraction procedure [33]. Each CNN branch 

consists of four convolutional layers and two max-pooling layers. Each convolutional layer executes 

three basic operations: 1-Dimensional convolution of the filters with the sequential input; batch 

normalization [34]; element-wise rectified linear unit (ReLU) activation function. Then the pooling 

layers are used to downsample the input. In Figure 1 we report an overview of the architecture, with 

details about the filter size, the number of filters and the stride size of each convolutional layer. The 

pooling size and the stride size for each pooling layer are also specified. 

 

SSN [23] consists of two main parts as shown in Figure 2: (i) The epoch encoder part, inspired by [22], 

or what we refer to as epoch processing block (EPB), is designed to process 30-second multi-channel 

EEG epochs, and it aims at learning epoch-wise features. (ii) The sequence encoder part,  inspired by 

[24], or what we refer to as sequence processing block (SPB), is designed to process sequences of 

epochs, and it aims to encode the temporal information (e.g., stage transition rules). The SPB block 

consists of two layers of bidirectional gated recurrent unit (GRU) with skip-connections (SkipGRU) 

and the final classification layer. The architecture receives in input a sequence of PSG epochs, 

specifically temporal context is set to twenty-one, and it outputs the corresponding sequences of 

sleep stages at once, i.e., many-to-many or sequence-to-sequence classification scheme. 

 

In both, DSN-L and SSN, the softmax function and the cross-entropy loss function   (see 

Supplementary Analyses) are used to train the models to output the probabilities  ̂    for the five 

mutually exclusive classes  , that correspond to the five sleep stages. The cross-entropy loss 

quantify the agreement between the prediction    and the target    (i.e., sleep stage label) for each 

sleep epoch. The aim is to minimize the cross-entropy loss function  , i.e., minimize the distance 

between the prediction     and the target   . 

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/advance-article/doi/10.1093/sleep/zsad028/7034145 by guest on 13 February 2023



Acc
ep

ted
 M

an
us

cri
pt

 

The models are trained end-to-end via backpropagation, using mini-batch Adam gradient-based 

optimizer [35], with a learning rate   . The training procedure runs up to a maximum number of 

iterations (e.g., 100 iterations), as long as the break early stopping condition is satisfied (i.e., the 

validation F1-score stopped improving after more than a certain epochs; the model with the best 

validation F1-score is used at test time). All the training parameters (e.g., adam-optimizer 

parameters beta1 and beta2, mini-batch size, learning rate etc.) are all set as recommended in [32] 

and [23].  

 

In Supplementary Analyses we also report additional mathematical details about both the scoring 

architectures. 

Consensus in multi-scored datasets 

Inspired by [23,27], we evaluate the performance of the sleep scoring architectures, as well as the 

performance of each physician, using the consensus among the five/six different scorers. The 

majority vote from the scorers has been computed - i.e., we assign to each 30-second epoch the 

most voted sleep stage among the physicians. In case of ties, we consider the label from the most 

reliable scorer. The most reliable scorer is the one that is frequently in agreement with all the 

others. We use the     -          metric proposed in [23] to rank the reliability of each 

physician, and to finally define the most reliable scorer.  

We denote with   the total number of scorers and with   the single-scorer. The one-hot encoded 

sleep stages given by the scorer    are:   ̂           , where   is the number of classes, i.e.,     

sleep stages,  and   is the total number of epochs. The probabilistic consensus  ̂  among the      

scorers (  excluded) is computed using the following:  
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 ̂  
∑ 

     ̂    

    ∑
 
     ̂    

                     (1) 

where   is the  -   epoch of   epochs and   ̂          , i.e.,   is assigned to a stage if it matches 

the majority or if it is involved in a tie. The     -          is then computed across all the   

epochs as:  

 

    -            
 

 
 ∑ 

    ̂       (2) 

where  ̂      denotes the probabilistic consensus of the sleep stage chosen by the scorer   for the  -

   epoch.     -                 , where the zero value is assigned if the scorer   systematically 

scores all the annotations incorrectly compared to the others, whilst   is assigned if the scorer   is 

always involved in tie cases or in the majority vote. The     -          is computed for all the 

scorers, and the values are sorted from the highest - high reliability - to the lowest - low reliability.  

The     -          is computed for each patient, i.e., the scorers are ranked for each patient, 

and in case of a tie the top-1 physician will be the one used for that patient. 

Label smoothing with soft-consensus 

The predicted sleep stage for each 30-second epoch is associated to a probability value  ̂  , which 

should mirror its ground truth correctness likelihood. When this happens, we can state that the 

model is well calibrated, or that the model provides a calibrated confidence measure along with its 

prediction [36]. Consider, for example, a model trained to classify images as either containing a dog 

or not; out of ten test set images it outputs the probability of there being a dog as 0.60 for every 

image. The model is perfectly calibrated if six dog images are present in the test set. Label smoothing 

[37] has been shown to be a suitable technique to improve the calibration of the model.  
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By default, the cross-entropy loss function   is computed between the prediction    and the target 

   (i.e., the one-hot encoded sleep stages,   for the correct class and   for all the other classes). 

Whenever a model is trained with the label smoothing technique, the hard target is usually 

smoothed with the standard uniform distribution     (3). Thus, the cross-entropy loss function (4) is 

minimized by using the weighted mixture of the target     
   . 

 

    
                      (3) 

            ∑ 
        

          ̂      (4) 

 

where   is the smoothing parameter,   the number of sleep stages,     
    the weighted mixture of 

the target and  ̂    the output of the model with the predicted probability values.  

 

In our study, we exploit the label smoothing technique to improve the insertion of the knowledge 

from the multiple-scorers in the learning process. We propose to use the     -          (5) as our 

new distribution to smooth the hard target      .    

 

    -           
  (           )

 
   (5) 

 

where    is the set of observations - i.e., annotations given by the different physicians - for the  -   

epoch,   is the class index,   is the number of observations and   is the cardinality of the set 
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(           ). In simple words, the probability value for each sleep stage   is computed as the sum 

of its occurrences divided by the total number of observations.  

    -                       is the one-dimensional vector that we use to smooth the hard target 

(6), and then minimize the cross-entropy loss function (7).  

 

    
                      -             (6) 

 

            ∑ 
        

           ̂      (7) 

 

To make it clearer, we report a practical example on how to compute the soft-consensus 

distribution, and how to exploit it to smooth our labels. Consider the following set of observations 

                   given by five different physicians for the same  -   epoch.  

 We can calculate the                consensus as following: 

 

    -                                                                  

    -                                  

 

By applying (5) and (6) we obtain the following     
     smoothed hard-target with      : 

 

    
                      -                                
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that corresponds to the one-hot encoded target:  

 

                                           

 

We perform a simple grid-search to set the smoothing hyperparameter  . When the model is 

trained with the labels smoothed by the uniform distribution the   value ranges between         

with step    . Extreme values are not considered as for     the model is trained using the 

standard hot-encoding vector; whilst for values higher than    , e.g.,    , the model would be 

trained using mainly/only the uniform distribution     for each sleep stage. When the model is 

trained with the labels smoothed by the     -          distribution the   value ranges between 

      with step    . In the latter case we also investigate  an   value equal to   to evaluate the full 

impact of the consensus distribution on the learning procedure. 

Experimental design 

We evaluate DSN-L and SSN using the  -fold cross-validation scheme. We set   equal to    for IS-RC, 

   for DOD-H (leave-one-out evaluation procedure) and    for DOD-O datasets, consistent with 

what was done in [23].  

In Table 2 we summarize the data split for each dataset. 

The following experiments are conducted on both DSN-L and SSN models for each dataset: 

● base. The models are trained without label smoothing.  
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● base+LSU. The models are trained with label smoothing using the standard     uniform 

distribution - i.e., the hard targets (scorer consensus) are weighted with the uniform 

distribution. 

● base+LSSC. The models are trained with label smoothing using the proposed soft-consensus - 

i.e., the hard targets (scorer consensus) are weighted with the soft-consensus distribution. 

These models, differently trained, have been evaluated with and without MC dropout ensemble 

technique. In Table 4, Table 5 and Table 6 section Results we present the results obtained for each 

experiment on both DSN-L and SSN evaluated on IS-RC, DOD-H and DOD-O datasets.  

Metrics 

Performance. 

The per-class F1-score, the overall accuracy (Acc.), the macro-averaging F1-score, the weighted-

averaging F1-score (i.e., the metric is weighted by the number of true instances for each label, so as 

to consider the high imbalance between the sleep stages) and the Cohen’s kappa have been 

computed per-subject from the predicted sleep stages from all the folds to evaluate the 

performance of our model [38, 39]. 

Hypnodensity graph.  

The hypnodensity-graph is an efficient visualization tool introduced in [27] to plot the probability 

distribution over each sleep stage for each 30-second epoch over the whole night. Unlike the 

standard hypnogram sleep cycle visualization tool, the hypnodensity-graph shows the probability of 

occurrence of each sleep stage for each 30-second epoch; so it is not limited to the discrete sleep 

stage value (see Figure 3).  

In our study we have used the hypnodensity-graph to display both the model output - i.e., the 

probability vectors   ̂    - and the multi-scorer     -             probability distributions. 
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The Averaged Cosine Similarity (   ) is used to quantify the similarity between the hypnodensity-

graph generated by the model and the hypnodensity-graph generated by the     -          . The 

    has been computed as follows: 

 

      
 

 
∑ 

   
                      ̂   

 ||                   ||    ||  ̂    ||
  (8) 

 

where   is the number of epochs in the whole night, || || is the norm computed for the predicted 

probability vector   ̂    and the     -             ground-truth vector for the  -   epoch. Thus, the 

cosine-similarity is averaged across all the epochs   to obtain our averaged     unique score of 

similarity. The cosine-similarity values may range between   i.e., high dissimilarity and    i.e., high 

similarity between the vectors. 

Calibration. 

The calibration of the model is evaluated by using the expected calibration error (   ) metric 

proposed in [40]. By       we compute the difference in expectation between the accuracy     

and the      (i.e., the softmax output probabilities) values. More in detail, the predictions are 

divided into   equally spaced bins (with size    ), then we compute the accuracy         and the 

average predicted probability value          for each bin as follows:  

 

          
 

|  |
  ∑    

    ̂        (9) 

         
 

|  |
 ∑    

 ̂    (10) 
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where    is the true label and   ̂            ̂      is the predicted label for the  -    epoch;    is 

the group of samples whose predicted probability values fall in       
   

 
 
 

 
   and   ̂  

       ̂      is the predicted probability value for sample the  -    30-second epoch. Finally, the     

value is computed as the weighted average  of the difference between the     and the      among 

the   bins:  

 

    ∑ 
   

|  |

  
 |                | (11) 

 

where    is the number of samples in each bin. Perfectly calibrated models have        

         for all   {       }, resulting in      . 

Results 

In Table 3 we first report for all the multi-scored databases IS-RC, DOD-H and DOD-O, the overall 

scorers performance and their                (  ), i.e., the agreement of each scorer with the 

consensus among the physicians. On IS-RC we have on average a lower inter-scorer agreement (   

equal to 0.69, with an F1-score 69.7%) compared to both DOD-H and DOD-O (   equal to 0.89 and 

0.88, with an F1-score 88.1% and 86.4% respectively). Consequently, we expect a higher efficiency of 

our label smoothing with the soft-consensus approach (base+LSSC) on the experiments conducted on 

the IS-RC database. The lower the inter-scorer agreement, the lower should be the performance of a 

model trained with the one-hot encoded labels (i.e., the majority vote weighted by the degree of 

consensus from each physician).  
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In Table 4 and Table 5 we report the overall performance, the calibration measure and the 

hypnodensity similarity measure of the three different DSN-L and SSN models on the three 

databases IS-RC, DOD-H and DOD-O. The performance of the DSN-L base models are higher 

compared to the performance averaged among the scorers on the IS-RC database, but not on the 

DOD-H and DOD-O databases. In contrast, the performance of the SSN base models are always 

higher than the performance averaged among the scorers on all the databases. We highlight that the 

results we report for SSN on DOD-H and DOD-O are slightly different compared to the one reported 

in [23]. We decided to not compute a weight (from 0 to 1) for each epoch, based on how many 

scorers voted for the consensus. We do not balance the importance of each epoch when we 

compute the above mentioned metrics. We think it is unfair to constrain any metrics based on the 

amount of voting physicians. Overall, the results show an improvement in performance on all the 

databases (i.e overall accuracy, MF1-score, Cohen's kappa ( ), and F1-score) from the baseline 

(base) and the label smoothing with the uniform distribution (base+LSU) models, to the ones trained 

with label smoothing along with the proposed soft-consensus distribution (ie. base+LSSC).  

The     is the metric that best quantifies the ability of the model in adapting to the consensus of 

the group of scorers. A higher     value means a higher similarity between the hypnodensity-graph 

generated by the model and the hypnodensity-graph generated by the soft-consensus (i.e., the 

model better adapts to the consensus of the group of physicians). As all the other metrics the     

value is computed per subject, but here we report the mean and also the standard deviation across 

subjects       . We found a significant improvement in the     value from the base and the 

base+LSU models to the base+LSSC models on all the databases and on both DSN-L (p-values < 0.01) 

and SSN (p-values < 0.05).  Hence, our approach enables both DSN-L and SSN architectures to 

significantly adapt to the group consensus on all the multi-scored datasets. 

 

We could easily infer that the SSN architecture is better (i.e., higher performance) compared to our 
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DSN-L architecture. The purpose of our study is not to highlight whether one architecture is better 

than the other, but we can not fail to notice the high values of confidence (the      value is the 

average of the softmax output max-probabilities) obtained on the SSN based models. High values of 

confidence still persist despite smoothing the labels (with both uniform and soft-consensus 

distributions) during the training procedure. The SSN architecture is not highly responsive to the 

changes in probability values we implemented on the one-hot encoded labels. It always rely/overfit 

on the     probability value given for each epoch, i.e., the consensus among the five/six different 

scorers. Indeed, on the IS-RC, which is the database with the lower inter-scorer agreement, the SSN 

base+LSSC model reaches a higher value of F1-score, i.e., 81.6%, compared to our DSN-L base+LSSC 

model, i.e., 75.9% , but a lower value of     (0.817 on SSN and 0.836 on DSN-L, with a p-value < 

0.01). The SSN model overfit to the majority vote or the     probability value given for each epoch, 

whilst the DSN-L better adapts to the consensus of the group of scorers (i.e., better encodes the 

variability among the physicians). 

 

The last statement is also strengthened by the Supplementary Figure S1 and Figure S2. For DSN-L 

and SSN we report the     values across all the experimented   values, on both the base+LSU and 

the base+LSSC models tested on the three databases. As expected, the DSN-L model shows a high 

sensitivity in     values to changes in α-hyperparameter across all databases. This sensitivity is not 

as strong with the SSN model. 

 

Moreover, we want to stress that the standard uniform distribution is not as efficient as the 

proposed soft-consensus distribution in encoding the scorer’s variability. By using the uniform 

distribution we are not able to learn as well the complexity of the degree of agreement between the 

different physicians. Indeed, in Supplementary Figure S1, on the DSN-L model, we clearly show how 

the     value proportionally increases with the α-hyperparameter only by using the proposed soft-
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consensus distribution. In Figure 4 we also show, on a patient from the DOD-O dataset, how we 

achieve a higher     value with the proposed base+LSSC model with the soft-consensus distribution, 

compared to base+LSU  model with the standard uniform distribution. The graph clearly highlights 

the differences between the output probabilities predicted by the different models. The 

probabilities predicted using our approach base+LSSC (d) are closer to the ground-truth (a) compared 

to  the ones predicted from the other models (e.g. refer to min. 300 and to the probabilities 

associated with the sleep stage N3). 

Discussion 

Many deep learning based approaches are available and from a technical point of view there is not 

that much that is left to be done to improve their performance. It is not reasonable to reach a 

performance higher than the gold standard that is used to train the architectures. Infact, the real 

limitation is the low inter-rater agreement due to subjective interpretation. 

Therefore in this paper we focus on how to better integrate the inter-rater agreement information 

into the automated sleep scoring algorithms. Presently, information about the variability is not 

completely exploited. The algorithms are trained on the majority vote consensus, leading to 

overfitting on the majority vote weighted by the degree of consensus from each physician.  

 

We introduce a more complete methodology to integrate scorer’s variability in the training 

procedure. We demonstrate the efficiency of label smoothing along with the soft-consensus 

distribution in encoding the scorers’s variability into the training procedure of both DSN-L and SSN 

scoring algorithms. The results show an improvement in overall performance from the base models 

to the ones trained with base+LSSC. We introduce the averaged cosine similarity metric to better 

quantify the similarity between the probability distribution predicted by the models and the ones 

generated by the scorer consensus. We obtain a significant improvement in the     values from the 

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/advance-article/doi/10.1093/sleep/zsad028/7034145 by guest on 13 February 2023



Acc
ep

ted
 M

an
us

cri
pt

base models to the base+LSSC models on both DSN-L and SSN architectures. Based on the reported 

high confidence values, we found that SSN tends to overfit on each dataset. Specifically, it tends to 

overfit on the majority vote weighted by the degree of consensus from each physician, but does not 

encode as well their variability.  

 

To our knowledge, our work is the first attempt to transfer the variability, the uncertainty and the 

noise among multiple-scorers to an automated sleep scoring system.   

We have proved the strength of our approach and especially the use of the soft-consensus 

distribution by comparing it with the base models and the implemented models trained with label 

smoothing but using the uniform distribution. We clearly show on all the experiments the higher 

overall performance and     values achieved with the soft-consensus distribution.  

 

In order to generalize our approach, there are two big limitations. The first is that a far bigger 

datasets, highly heterogeneous (with different diagnosis, age range, gender etc.) scored by multiple 

scorers would be necessary. The second is that the recordings exploited in this study are not labeled 

by a homogeneous group of board certified sleep scorers. Further studies should be carried out to 

better quantify the resilience and the reproducibility of the proposed approach. To achieve a high-

performance sleep scoring algorithm, we must take into account both the variability of the 

recordings and the variability between the different sleep scorers. We should train our sleep scoring 

models on PSG recordings from different large-scale-heterogeneous data cohorts, and ideally with 

each recording scored by multiple physicians.  
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In summary, the possibility of exploiting the full set of information that is hidden in a multi-scored 

dataset would certainly enhance automated deep learning algorithms performance. The present 

approach enables us to better adapt to the consensus of the group of scorers, and, as a 

consequence, to better quantify the disagreement we have between the different scorers. The 

proposed approach results quite effective in encoding the complexity of the scorers’ consensus 

within the classification algorithm, whose importance is often underestimated. 
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Figure Captions 

Figure 1. DeepSleepNet-Lite architecture. 

An overview of the representation learning architecture from [24], with our sequence-to-epoch 

training approach. 

 

Figure 2. SimpleSleepNet architecture. 

An overview of the SimpleSleepNet architecture from [23].          
  represent the hidden states of 

the GRU layers from the previous epoch of the sequence and          
  the hidden states of the 

GRU layers from the next epoch of the sequence.    is the embedding of the current epoch. 

 

Figure 3. Hypnogram and hypnodensity-graph from the scorers labels.  

Example of hypnogram and hypnodensity-graph for a subject from the DOD-H with the highest 

percentage 14% of N1 sleep stages. For each 30-second epoch we report on top the hypnogram, i.e., 

the discrete sleep stage values (majority vote from the scorers labels); on bottom the hypnodensity-

graph, i.e., the cumulative probabilities of each sleep stage ( soft- consensus computed from the 

scorers labels). The hypnodensity-graph allows us to better appreciate the low level of agreement of 

a specific sleep stage among the different scorers. In this example, the sleep stages N1 are often 

associated with a high percentage of residual probability in awake or N2, thus at the transitions from 

one sleep stage to another. 

 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/advance-article/doi/10.1093/sleep/zsad028/7034145 by guest on 13 February 2023



Acc
ep

ted
 M

an
us

cri
pt

Figure 4. Hypnodensity-graphs from the scorers labels and from the predicted probabilities from the 

experimented models. 

Example of hypnodensity-graphs for a subject from the DOD-O. (a) Soft-consensus computed from 

the scorers labels; (b) DSN-L base model; (c)  DSN-L base+LSU; (d) DSN-L base+LSSC . We also report 

the ACS value computed between the hypodensity-graph associated to soft-consensus and the ones 

generated from the predicted probabilities of each model. We reach a higher     value with the 

proposed base+LSSC model with the soft-consensus distribution (d), compared to the baseline (b) and 

the base+LSU model with the standard uniform distribution (c). 
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Tables 

Table 1 

Number and percentage of 30-second epochs per sleep stage for the IS-RC, DOD-H and DOD-O 

datasets. 

 W N1 N2 N3 R Total 

IS-RC 
24517 

(29.1%) 

3773 

(4.5%) 

40867 

(48.5%) 

3699 

(4.4%) 

11475 

(13.6%) 
84331 

DOD-H 
3075 

(12.5%) 

1463 

(5.9%) 

12000 

(48.7%) 

3442 

(14.0%) 

4685 

(19.0%) 
24665 

DOD-O 
10520 

(19.8%) 

2739 

(5.1%) 

26213 

(49.2%) 

5617 

(10.6%) 

8147 

(15.3%) 
53236 
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Table 2 

Data split on the IS-RC, DOD-H and DOD-O datasets. 

 Size 
Experimental 

Setup 

Held-out 

Validation Set 

Held-out 

Test Set 

IS-RC 70 10-fold CV 13 subjects 7 subject 

DOD-H 25 25-fold CV 6 subjects 1 subjects 

DOD-O 55 10-fold CV 12 subjects 6 subjects 
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Table 3 

Scorers performance on IS-RC, DOD-H and DOD-O datasets with                (  ), overall 

accuracy (%Acc.), macro F1-score (%MF1), Cohen’s Kappa (k), weighted-averaging F1-score (%F1) 

and % per-class F1-score. The scorer with the best performance (i.e., high agreement with the 

consensus among the different physicians) is indicated in bold. 

 Overall Metrics Per-Class F1-Score 

 Scorers SA Acc. MF1 k F1 W N1 N2 N3 R 

IS-RC 

Scorer-1 0.79 83.0 69.5 0.72 83.8 83.1 47.2 87.3  48.0 82.1 

Scorer-2 0.81 89.4 72.8 0.82 89.2 91.3 57.6 92.5 32.9 89.8 

Scorer-3 0.53 40.7 26.5 0.11 40.8 29.8 14.7 54.5 17.9 15.6 

Scorer-4 0.52 38.9 26.1 0.12 40.5 28.6 14.7 54.2 15.4 17.5 

Scorer-5 0.70 73.7 61.6 0.63 75.8 88.7 36.9 70.2 25.8 86.2 

Scorer-6 0.79 87.2 77.2 0.81 88.2 92.5 54.6 89.4 59.8 89.5 

Average 0.69 68.7 55.5 0.53 69.7 68.9 37.6 74.7 33.3 63.5 

DOD-H 

Scorer-1 0.88 87.0 81.5 0.81 87.4 87.5 60.0 89.4 84.8 85.7 

Scorer-2 0.91 89.3 84.1 0.84 89.7 87.4 65.1 91.6 84.3 92.2 

Scorer-3 0.92 90.6  84.5 0.86 90.4 89.9 67.5 92.1 77.9 95.3 

Scorer-4 0.84 82.6 76.7 0.75 83.1 76.5 49.1 85.4 80.7 92.0 

Scorer-5 0.92 89.9 83.6 0.85 89.9 86.7 66.0 92.1 81.0 92.2 

Average 0.89 87.9 82.1 0.82 88.1 85.5 61.5 90.0 81.7 91.5 

DOD-O Scorer-1 0.87 85.0 75.1 0.77 84.6 90.0 49.5 85.2 67.6 83.3 
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Scorer-2 0.87 85.0 78.2 0.78 86.0 89.3 58.4 85.4 69.1 88.6 

Scorer-3 0.88 86.0 75.0 0.78 84.6 91.0 54.3 86.5 56.1 87.0  

Scorer-4 0.88 86.7 77.7 0.80 87.2 91.2 59.3 89.4 62.9 85.8 

Scorer-5 0.91 89.9 82.3 0.84 90.0 93.7 68.3 90.7 70.5 88.2 

Average 0.88 86.5 77.6 0.79 86.4 91.0 58.0 87.3 65.2 86.5 
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Table 4 

Overall metrics, per-class F1-score, calibration and     hypnodensity graph similarity measures of 

the DSN-L models obtained from 10-fold cross-validation on IS-RC dataset, from 25-fold cross-

validation on DOD-H dataset, and from 10-fold cross-validation on DOD-O dataset. Best shown in 

bold. 

 Overall Metrics Per-Class F1-Score Calibration Hypn. 

 Models   Acc. MF1 k F1 W N1 N2 N3 R ECE           

IS-RC 

base - 69.6 50.6 0.56 70.0 81.6 11.8 71.9 27.2 60.7 0.096 79.0 0.772   0.075 

base+LSU 0.4 74.8 57.0 0.63 75.8 83.3 24.3 79.0 30.6 67.7 0.296 45.2 0.806   0.042 

base+LSSC 0.6 75.8 56.5 0.69 75.9 83.5 19.5 79.7 33.3 66.4 0.190 56.7 0.836   0.041 

DOD-H 

base - 76.9 70.0 0.68 77.2 79.7 39.5 78.8 76.5 75.2 0.163 92.7 0.817   0.097 

base+LSU 0.2 75.3 68.7 0.66 75.2 78.8 40.0 75.9 72.0 76.8 0.059 68.9 0.829   0.068 

base+LSSC 0.8 80.2 72.4 0.72 80.4 80.4 42.3 83.4 77.6 78.8 0.016 81.4 0.873   0.053 

DOD-O 

base - 77.3 67.8 0.66 78.0 80.7 41.2 81.0 68.1 68.3 0.131 90.2 0.840   0.073 

base+LSU 0.1 77.5 68.0 0.67 78.2 80.8 41.9 80.4 68.4 68.7 0.009 78.4 0.859   0.072 

base+LSSC 1 79.4 69.6 0.69 79.9 80.4 43.8 83.5 72.5 68.1 0.009 78.3 0.878   0.061 
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Table 5 

Overall metrics, per-class F1-score, calibration and     hypnodensity graph similarity measures of 

the SSN models obtained from 10-fold cross-validation on IS-RC dataset, from 25-fold cross-

validation on DOD-H dataset, and from 10-fold cross-validation on DOD-O dataset. Best shown in 

bold. 

 Overall Metrics Per-Class F1-Score Calibration Hypn. 

 Models   Acc. MF1 k F1 W N1 N2 N3 R ECE           

IS-RC 

base - 81.8 60.8 0.72 80.8 86.3 29.9 85.3 24.3 78.1 0.174 99.4 0.806   0.052 

base+LSU 0.3 82.5 59.8 0.72 81.1 86.5 28.8 86.5 18.7 78.7 0.169 99.3 0.811   0.058 

base+LSSC 0.7 83.1 60.2 0.73 81.6 86.7 27.6 86.8 20.1 79.8 0.162 99.2 0.817   0.047 

DOD-H 

base - 87.1 80.2 0.81 87.1 83.6 55.5 90.0 83.3 89.0 0.126 99.7 0.890   0.047 

base+LSU 0.4 87.6 81.0 0.81 87.5 85.5 57.3 90.2 82.1 90.3 0.120 99.5 0.899   0.034 

base+LSSC 0.5 88.8 82.3 0.83 88.7 86.4 58.8 90.9 83.2 92.1 0.108 99.6 0.907   0.039 

DOD-O 

base - 85.3 75.9 0.77 85.2 88.2 50.4 87.1 65.9 88.0 0.145 99.7 0.889   0.056 

base+LSU 0.1 85.6 75.8 0.78 85.2 88.2 51.2 87.3 64.3 88.4 0.141 99.6 0.893   0.052 

base+LSSC 1 86.8 77.7 0.79 86.7 89.0 51.0 88.3 69.3 91.1 0.125 99.2 0.906   0.043 
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Table 6 

Overall metrics and     hypnodensity graph similarity measures on the DSN-L and SSN base+LSSC 

models, obtained from 10-fold cross-validation on IS-RC dataset, from 25-fold cross-validation on 

DOD-H dataset, and from 10-fold cross-validation on DOD-O dataset with and without MC. Best 

shown in bold. 

 Overall Metrics Hypn. 

   Acc. MF1 k F1     

IS-RC 

DSN-L 

w/o MC 75.8 56.5 0.69 75.9 0.836   0.041 

w/ MC 78.6 57.6 0.67 78.0 0.850   0.036 

SSN 

w/o MC 83.1 60.2 0.73 81.6 0.817   0.047 

w/ MC 83.0 59.2 0.73 81.1 0.818   0.048 

DOD-H 

DSN-L 

w/o MC 80.2 72.4 0.72 80.4 0.873   0.053 

w/ MC 84.4 75.9 0.76 84.2 0.906   0.026 

SSN 

w/o MC 88.8 82.3 0.83 88.7 0.907   0.039 

w/ MC 89.1 82.6 0.84 89.0 0.910   0.039 

DOD-O 

DSN-L 

w/o MC 79.4 69.6 0.69 79.9 0.878   0.061 

w/ MC 80.7 70.8 0.71 80.9 0.889   0.059 

SSN 

w/o MC 86.8 77.7 0.79 86.7 0.906   0.043 

w/ MC 87.1 78.0 0.80 86.9 0.909   0.041 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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