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Tropical forests continue to suffer from various kinds of disturbances in the

Anthropocene. An immediate impact of disturbances on forest ecosystems is the

creation of numerous large and small canopy gaps, which dramatically affect forest

structure and function. Yet, we know little about the effect of canopy gaps on

forest successional trajectory. More specifically, the responses of seedlings from

different successional stages to increased light intensity under large and small

canopy gaps in understory remain unclear. In this study, dominant tree seedlings

from early-, mid-, and late-successional stages were selected, respectively from a

tropical montane forest in Hainan Island, China to study their growth rate, biomass

and traits. Our results showed that the light condition under small canopy gaps

(SG, 10–15% of full sunlight) and large canopy gaps (LG, 40–50% of full sunlight)

induced greater increment of relative growth rates for seedlings from early- and

mid-successional stages relative to that in late-successional stage. Both SG and

LG also significantly increased photosynthesis rate, leaf area (LA), light saturation

point (LSP), root mass ratio (RMR) and root: shoot ratio, but decreased specific leaf

area (SLA) of seedlings across successional stages. Tree seedlings from the early-

successional stage displayed the greatest decrease in leaf mass ratio, increase in LA,

LSP, and RMR, in comparison to those from mid- and late- successional stages. Light

condition and SLA were the most important factors for seedlings’ relative growth

rate across successional stages. SLA connected the interaction between the light

condition and successional stage on seedlings’ growth, thereby jointly explaining the

93% variation of seedlings’ growth, combining with area-based light saturated rate

of CO2 assimilation. Our study highlights the distinct effect of disturbance-induced

canopy gaps on seedling regeneration in the understory in tropical forest due to

the variation of light intensity. We suspect that the seedlings from late-successional

stage will recover relatively slow after disturbances causing canopy losses, which can

have detrimental impacts on structure feature and successional trajectory in tropical

forest, as well as forest-based ecosystem services.
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Introduction

Tropical forests harbor over one half of global biodiversity on
land, and play a crucial role in terrestrial carbon cycle (Malhi and
Marthews, 2013; Behera et al., 2022). It is crucial to understand
the sustainability of functions and services in tropical forest for
ecosystem management in context of global change (Lohbeck et al.,
2015). In the Anthropocene, deforestation and climate changes
continue to exert tremendous stress on ecosystems (Broadbent
et al., 2008; Thakur et al., 2022), inducing detrimental consequences
for tropical forest diversity and associated ecosystem functions
(Emanuel, 2005; Miller et al., 2011; Olivero-Lora et al., 2022). Several
such disturbances, like drought, heat waves, disease outbreaks,
and extreme weather events (e.g., typhoon) induce tree mortality
and heavy defoliation, causing canopy senescence and resulting in
numerous canopy gaps (Corona-Lozada et al., 2019; Thakur et al.,
2022). As a double-edged sword, disturbance-induced formation of
canopy gaps cause more opportunity for germination from the soil
seed bank, as well as huge loss of tree biomass (Barlow and Peres,
2004). With the formation of canopy gaps, the environment at forest
understory correspondingly shifts, e.g., the enhanced available light
and nutrient release from decomposition of dead trees, affecting
the seedlings’ growth and the process of forest regeneration and
succession after these disturbances are over (Prescott, 2002; Lin
et al., 2003). Understanding the growth and survival of tree seedlings
under canopy gaps at the understory is key for predicting forest
resilience and also to help shed insights on the ongoing debate
about the role of canopy gaps for maintaining forest’s diversity
and function (Muscolo et al., 2014; Wang and Lin, 2019; Xi et al.,
2019).

In the understory, the nursery for young seedlings in tropical
forests, the availability of light and nutrient determine seedlings’
growth, survivorship and competition, driving forest regeneration
and succession (Trauernicht et al., 2006; Mazzochini and Camargo,
2020). The formation of canopy gaps are generally considered to have
positive effect on seedlings’ growth, due to the alleviated limitation
of light availability (Alvarez-Clare and Avalos, 2007; Westerband
and Horvitz, 2015). However, what species of tree are recruited
and be more stimulated by increased light, becomes a critical
determinant for the forest recovery and subsequent trajectory of
natural regeneration after disturbance, in the understory of tropical
forest (Matsuo et al., 2021; Tourville et al., 2022; Wang et al.,
2022).

For example, tree seedlings of species from different successional
stages (e.g., early-, mid-, and late- stage) exhibit distinct survival,
growth rates, and susceptibility to photoinhibition in understory
habitats, due to their respective physiological and growth traits
(Kitao et al., 2000; Martinez-Garza et al., 2005). In general,
germination of early-successional tree species occur in tree-fall
gaps, characterized by a high mortality rates and high inherent
growth rates (Souza and Válio, 2003). Conversely, species germinated
from the later successional stages (e.g., mid- and late-successional
species) or shade-tolerant species germinated in relative deep
shade, exhibit high survival and lower relative growth rates to
adapt the potential nutrient limitation (Kneeshaw and Bergeron,
1998; Kitao et al., 2000). The distinct optimal illumination
condition among species from different successional stages is
one of the main factors that determines demography of the
understory seedlings’ community (Pollastrini et al., 2022). Thus, in

facing with suddenly enhanced light intensity under canopy gaps
after disturbance, seedlings of species from different successional
stages might exhibit diverse response in growth (Hogan et al.,
2022).

Besides of inherent difference in characteristics of germination
and growth, species from different successional stages also represent
differences in leaf traits (e.g., specific leaf area, SLA) and resource
allocation strategies (e.g., pattern of biomass partitioning), which
in turn regulate their ability to obtain above–(e.g., light and
CO2) and below-ground resources (e.g., nutrients and water)
(Davidson et al., 2002; Toledo-Aceves and Swaine, 2008). Relative
to the seedlings from the late-successional stage, that from early-
successional stage generally have shorter leaf life-span, higher
SLA, lesser investments to defense compounds and structures, and
smaller root: shoot ratio (Reich et al., 1992; Antos and Halpern,
1997; Batuwatta and Singhakumara, 2014). These different traits
among species from diverse successional stage control their growth
rates in forest, regulating species’ competitiveness and understory
biodiversity together with forest succession (Hu et al., 2018; Tsai
et al., 2018). Whether the seedlings from different successional
stages, display diverse response in leaf-scale photosynthetic and/or
individual morphological traits, to enhanced light intensity or
not, become a crucial issue (Kitajima, 1994; Wang et al., 2022).
Especially in the context of more frequent natural or anthropogenic
disturbance in tropical forest, the formation of canopy gaps
would affect future forest succession due to the distinct growth
responses among different seedlings (Zong et al., 2018; Li et al.,
2021).

In this study, we selected the dominant species from early-,
mid-, and late-successional stages at the understory layer from a
tropical forest in Hainan Island, which lies on the northern edge
of Asian tropical rain forest as an important biodiversity hotspot
in China (Li, 2002). The frequency and intensity of natural or
anthropogenic disturbances, e.g., typhoon and selective logging,
have increased tremendously in this district, resulting in a higher
frequency of canopy gaps in tropical forest (Ding et al., 2017;
Yang et al., 2017). The effects of canopy gap-induced increasing
light intensity on seedlings’ growth were hypothesized to be
different among species from early-, mid-, and late-successional
stages, consequently regulating the future recovery and successional
trajectory for tropical forest after disturbances (Olivero-Lora et al.,
2022). Thus, the relative growth rates of seedlings under manipulated
three light conditions, i.e., light intensity in ambient understory
of tropical forest (Control, 0–5% of full light), that in small (SG,
10–15% of full sunlight, to simulate the canopy opening caused
by snapped branches and defoliation) and large canopy gap (LG,
40–50% of full sunlight, to simulate the canopy opening caused
by tree fall and selective logging) (Valladares et al., 2000; Yang
et al., 2017), were investigated together with their photosynthetic
properties (e.g., light-saturated rate of CO2 assimilation and apparent
quantum efficiency) and resource allocation strategy (e.g., root:
shoot ratio and leaf area ratio). Here, we seek to answer the
following questions: (1) how does the increased light intensity
due to canopy gaps, respectively affect relative growth rate of
seedlings for tree species from early-, mid-, and late-successional
stages of tropical forests; (2) what are the key properties of
tree seedlings regulating their growth responses to enhanced light
conditions?
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Materials and methods

Experimental design

In order to probe the effects of light condition altered by canopy
gaps on the growth of understory tree seedlings in tropical forest, six
native tree species from early- [Dolichandrone cauda-felina (Hance)
Benth. et Hook. F. and Radermachera hainanensis Merr.], mid-
[Syzygium cumini (L.) Skeels and Sterculia lanceolata Cav.], and
late- successional stages (Dillenia turbinate Finet et Gagnep. and
Cryptocarya chinensisHance) were selected from Jianfengling tropical
montane rainforest (E 108◦46′–109◦45′, N 18◦23′–18◦50′, Hainan,
China) (Li, 2002; Fang et al., 2004; Sheng et al., 2012). The seeds
for each species were collected from the understory layer under
five parent trees during seed dispersal stage in Jianfengling natural
reserve and germinated in shallow trays filled with forest topsoil
(Yang et al., 2011). The parent trees were selected in habitat without
canopy opening to avoid the effect of disturbance on selected seeds.
After growing in a nursery with 5% full sunlight, 1 month-old
tree seedlings for each species with 20 replicates were removed to
three shade-houses from June. The three shade–houses were covered
with plastic shade nets of different thicknesses to achieve 0–5% (as
control, i.e., the light condition in tropical forest understory without
disturbance) (Capers and Chazdon, 2004), 10–15% (SG, as light
condition under small canopy gaps caused by heavy defoliation or
broken branches) and 40–50% of full sunlight (LG, as light condition
under large canopy gaps caused by fallen tree) (Clark et al., 1996;
Tobita et al., 2010; Yang et al., 2017), respectively. All the seedlings
were received natural rainfall, and sprayed monthly with 100 ml
solution of NPK (ammonium, phosphate, and potassium) compound
fertilizer (2 g l−1) and a fungicide solution (50% Carbendazim,
Pesticide Technology Development Co., Ltd., Wuhan Scarlett, China)
twice during the experiment in order to control fungal infections. In
order to calculate the seedlings’ relative growth rates for each species
under Control, SG and LG treatments, the averaged initial biomass
parameters (e.g., stem height, dry mass in leaves, stem and root) of
each species were measured based ten additional replicates.

Measurements of photosynthetic,
morphological properties, and relative
growth rate

From July to October, the photosynthetic properties of five
seedlings per species under three light treatments were measured
from 09:00 to 11:30 a.m. under clear skies, by taking on five fully
expanded leaves per plant. Light response curves were generated with
a Li-6400 portable photosynthesis system (Li-Cor Inc., Lincoln, NE,
USA) using the “Light Curve” automatic program (Yang et al., 2008).
Leaves were allowed 10 min to acclimate to light intensity changes
before measurements at light levels of 2,000, 1,500, 1,000, 500, 200,
100, 50, 20, 10, and 0 µmol m−2

·s−1. Ambient temperature ranged
from 24 to 28◦C, and leaf chamber temperature was about 25◦C. The
leaf chamber environment was maintained at 370 mmol m−2 s−1

CO2, 28± 2◦C leaf temperature and 65± 5% relative air humidity in
the measuring chamber, respectively. Light response curves (A/PAR)
were fit using non-rectangular hyperbola least square curve fitting

procedure (Equation 1, Eq. 1; Lambers et al., 1998):

Pn =

AQE× PAR+ Pmax

−

√√√√ (AQE× PAR+ Pmax)× (AQE× PAR+ Pmax)
−4× AQE× PAR× k× Pmax

2× k
(1)

where AQE is the apparent quantum efficiency; PAR is
photosynthetic available radiation; Pmax (µmol CO2 m−2 s−1)
is the light-saturated rate of CO2 assimilation; Rd (µmol CO2 m−2

s−1) is the dark respiration rate; and k is the convexity or curvature
factor. The light compensation point (LCP) was determined to be
the light intensity on the light curve where the rate of photosynthesis
exactly matches the rate of cellular respiration. The light saturation
point (LSP) was calculated by the same equation, considering that
LSP is the value when net photosynthetic rate (Pn) reaches 90% of
Pmax (Quero et al., 2006).

After 12 months of experimental duration in shade houses to
create canopy conditions caused by disturbances, 10 seedlings per
species from three treatments of light conditions (i.e., Control, SG,
and LG) were harvested for relative growth rate in mass (RGRm,
Eq. 2). Before being dried at 72◦C in a forced air oven for 48 h for dry
mass measurement, seedlings were separated into roots, stems and
leaves, and washed for morphological characteristics determination,
including specific leaf area (SLA, Eq. 3), leaf mass ratio (LMR, Eq. 4),
stem mass ratio (SMR, Eq. 5), root mass ratio (RMR, Eq. 6), and leaf
area ratio (LAR, Eq. 7).

Relative growth rate in mass (RGRm, mg g−1d−1) =

(lnW2 − lnW1)/(T2 − T1) (2)

where W2 and W1 are the final and initial total dry weights per plant;
and T2–T1 is the growth time interval (i.e., 12 months, Yang et al.,
2011).

Specific leaf area (SLA, cm2 g−1) = leaf area/leaf mass (3)

Leaf mass ratio (LMR, g g−1) = leaf mass/total plant mass (4)

Stem mass ratio (SMR, g g−1) = (stem+ petiole mass)/

total plant mass (5)

Root mass ratio (RMR, gg−1) = root mass/total plant mass (6)

Leaf area ratio (LAR, cm2 g−1) = total leaf area/total plant mass
(7)

where leaf total area of each seedling was measured using a Li-3000
leaf area meter (Li-Cor Inc., Lincoln, NE, USA, An et al., 2010).

Data analysis

The mean effect size of light condition changed by SG and LG on
morphological and photosynthetic properties on tree seedlings from
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early-, mid-, and late-successional stages were calculated as Eq. 8–12
(Hedges et al., 1999):

Mean effect size =
∑2

i = 1 Wi × Ei∑2
i = 1 wi

(8)

E= ln
(
XSG or LG

XCK

)
= ln

(
XSG or LG

)
− ln(XCK) (9)

wi =
1
Vi

, v =
SSG or LG

2

nSG or LGXSG or LG
2 +

SCK2

nCKXCK
2 (10)

where, i is the number of species of tree seedlings from early-, mid-,
and late-successional stages; XSG or LG and XCK , nSG or LG, and nCK ,
SSG or LG and SCK are the mean value, number of replication and
standard deviation of morphological and photosynthetic properties
for tree seedlings in SG or LG, and control treatment, respectively.
A significant mean effect size of light condition changed by SG and
LG on morphological and photosynthetic properties was considered
only when the 95% confidence interval (CI) did not overlap with zero
(Zhou et al., 2014).

The importance of morphological and photosynthetic
properties on seedlings’ RGRm was expressed as %IncMSE
(percent increase in mean squared error) using the package
“RandomForest” (version 4.6-12, Liaw and Wiener, 2002) in
R (R Core Team, 2015). The relationships among predictors
with RGRm were analyzed by Pearson correlation analysis. The
effect of light conditions (Control, SG, and LG) and successional
stage (early-, mid-, and late-) on the variables were examined by
analysis of variance (ANOVA). The path analysis was performed
using the “lavaan” package (version 0.6-12, Rosseel, 2010) in
R to examine the effect of light conditions and successional
stages on RGRm through morphological and photosynthetic
properties.

Results

Response of seedlings’ relative growth
rates to increased light intensity

In the control groups with ambient light intensity, seedlings from
different successional stages exhibited significant differences in the
relative growth rate (RGRm, p < 0.0001), with the lowest values of
–8.61 (± 0.41 standard error, s.e.) mg g−1d−1 at early-successional
stage and the highest value of 5.61 (± 0.80 s.e.) mg g−1d−1 at
late-successional stage (Supplementary Table 1 and Figures 1A–
D). Relative to control, both SG and LG induced significant
increment of RGRm for seedlings (P < 0.05, Supplementary
Table 1 and Figure 1E). Improved light condition caused greater
enhancement of growth for seedlings from both early- and mid-
successional stage than that from the late-one, that SG and
LG increased RGRm of seedlings from both early- and mid-
successional stage significantly, but not always of the seedling
RGRm of late- successional tree species (Figures 1A–C). Canopy
gaps could affect the structure of understory community due to
these distinct positive effects of increased light intensity on relative
growth rates among seedlings from different successional stages
(Figure 1).

Response of seedlings’ photosynthetic
and morphological properties to
increased light intensity

Improved light intensity (i.e., in SG and LG) caused higher
photosynthesis rates (Pn) relative to that in control, inducing 24.6–
212.1, 35.0–107.8, and 17.8–50.2% increase of mass- and area-based
light-saturated rate of CO2 assimilation (Amass and Aarea) for species
at early-, mid-, and late-successional stage, respectively (P < 0.05,
Figures 2A–F). Leaf area (LA) and light saturation point (LSP)
in both SG and LG were greater than that in control (P < 0.05,
Supplementary Tables 1, 2), while the pattern of specific leaf area
(SLA) was contrary (Figures 2G–I and Supplementary Table 2).
Increased light intensity induced larger positive effects on both LA
and LSP for seedlings from early-successional stage than that from
mid- and late-ones (Figure 2). Relative to SG, LG induced greater
effect on seedlings’ photosynthetic properties, especially for species
from early-successional stage (Figure 2 and Supplementary Table 1).
Both dark respiration (Rd) and light compensation point (LCP)
displayed positive response to LG (P < 0.05) but not to SG (P > 0.05,
Figures 2G–I, and Supplementary Table 2).

Both SG and LG caused positive effect on root: shoot ratio (R/S)
and root mass ratio (RMR) for seedlings from all three successional
stages, while only LG significantly decreased seedlings’ leaf area
ratio (LAR) due to the dependence on both light condition and
successional stages (P < 0.05, Figures 2D–F and Supplementary
Tables 1, 3). Species at early-successional stage displayed the greatest
decrease of leaf mass ratio (LMR) and increase of RMR in comparison
with that at mid- and late-successional stage, especially for those at
late- stage, seedlings displayed no significant decrease of LMR under
both SG and LG (P < 0.05, Figure 2F and Supplementary Figure 1).
Seedlings from early-stage displayed greater positive responses of
both photosynthetic and morphological properties to enhanced light
intensity, suggesting a larger advantage in growth in early-stage tree
species over mid- and late-successional tree species (Figures 2, 3).

Regulation of successional stage on
RGRm’s response to increased light
condition

Among the predictor variables, we confirmed that light condition
was the most important factor for seedlings’ RGRm, followed by SLA,
LA, LAR, successional stage, and LSP (Figure 1F). Light condition
increased LA, RMR, R/S, Rd, LCP, LSP and Aarea, but decreased
SLA (Figures 2, 3, 5), and displayed significant interactions with
successional stage on SLA, Rd, LCP and Aarea (P = 0.021, 0.014,
0.012 and 0.048, Supplementary Table 1). RGRm displayed positive
correlations with Aarea, LA, LSP and R/S (R2 = 0.51, 0.39, 0.46,
and 0.24, respectively, P < 0.05, Figures 4A–C, F), while exhibited
negative relationship with SLA and LAR (R2 = 0.52 and 0.45,
P < 0.01, Figures 4D, E). The positive effects of improved light
condition on RGRm included direct and indirect pathways (through
SLA and Aarea, Figure 5). The regulation of species’ successional stage
on RGRm was through the path of SLA. Light condition, Aarea and
SLA all had direct path to affect RGRm, and jointly explained 93% of
seedlings’ RGRm in total (P = 0.319, Figure 5). As one of crucial traits
of plants, SLA represented the important regulation of successional
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FIGURE 1

Relative mass growth rate [RGRm, (A–D)] for tree seedlings at early– (A,D), mid- (B,D) and late-successional stage (C,D), and in light conditions of
Control, SG and LG (E), and the importance of predictor variables for RGRm in random forest modelling (F). Control, 0–5% of full sunlight; SG: small
canopy gaps, 10–15% of full sunlight; LG: large canopy gaps, 40–50% of full sunlight. The red lines and figures in plots (D,E) are the mean value of RGRm

in each group. LC, SLA, LA, LAR, SS, LSP, LCP, Aarea, Amass, SMR, Rd, LMR, R/S, RMR, and AQE in panel (F) were abbreviations of light condition, specific leaf
area, leaf area, leaf area ratio, successional stage, light saturation and compensation point, area- and mass- based light saturated rate of CO2

assimilation, stem mass ratio, dark respiration, leaf mass ratio, root: shoot ratio, root mass ratio, and apparent quantum efficiency, respectively. In
random forest modeling, “1,” “2,” and “3” were assigned to treatments of Control, SG and LG; and species at early-, mid-, and late-successional stage,
respectively. %IncMSE is the per cent increase in mean squared error. Error bars and the different letters in plots (A–E) are standard error (n = 25) and
significant difference at P < 0.05, respectively. Symbols ** and * in plot (F) indicates statistical significance at P < 0.01 and 0.05, respectively.

stages on seedlings’ RGRm in responding to enhanced light intensity
after disturbance-induced canopy gaps (Figures 1F, 5).

Discussion

Changes in the canopy structure and resource availability due to
various anthropogenic activities continue to alter forest regeneration
and ecosystem functioning. Here, we tested whether the increased
light availability (and intensity) due to various size of canopy gaps
created from anthropogenic activities differentially affect the growth
rates of tree seedlings from different successional stages, which
are crucial for predicting future forest recovery and successional
trajectory. The results agreed with our hypothesis that the light
condition under small canopy gaps (SG, 10–15% of full sunlight)
and large canopy gaps (LG, 40–50% of full sunlight) induced greater
increment of relative growth rates for seedlings from early- and
mid-successional stages relative to that in late- successional stage.

Effect of light condition under canopy gap
on growth of seedlings at different
successional stages

Canopy opening readily alleviate the light limitation for
understory plants in a forest (Lin et al., 2003; Lee et al., 2017).
In our study, seedlings grown with light intensity to mimic small

(SG) and large canopy gap (LG) displayed significantly higher
RGRm than that with ambient light intensity (Control, P < 0.05,
Figure 1 and Supplementary Table 1). Moreover, we found that the
development of leaf area (LA, Figures 2, 4) was one of the most
important mechanisms to improve photosynthetic assimilation for
plant individuals at enhanced light availability (Evans and Poorter,
2001; Tang et al., 2021). The formation of canopy gaps was verified to
be beneficial for the understory regeneration in Jianfengling tropical
montane rainforest (Feldmann et al., 2020), without considering the
impacts on the direction of forest succession.

Exposed to increased light intensity, seedlings at early
successional stage with a negative RGRm in ambient light
condition, exhibited the greatest improvement in their RGRm

(Figure 1), altering the survival rate, competition and dynamics of
seedling community in the tropical forest understory subsequently
(Valladares et al., 2000). In contrast, relative to seedlings from early-
and mid- successional stage, those from the late-successional stage
displayed a lower increment in RGRm at increased light intensity
(Figure 1), potentially confirming to the narrow niche breadth
of species from the late-successional stage (Parrish and Bazzaz,
1982; Carscadden et al., 2020). Therefore, the canopy gaps due to
defoliation (with the equivalent light intensity in SG) and tree fall
(with the equivalent light intensity in LG) would trigger the changes
of understory productivity, biodiversity and successional trajectory
in disturbed patches, altering the structural heterogeneity in tropical
forest (Takafumi et al., 2010; Lee et al., 2017).
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FIGURE 2

Photosynthetic light response curves (A–F) for seedlings grown in light conditions under Control, SG and LG, and the mean effect size (G–I) of SG and
LG on leaf area (LA), specific leaf area (SLA), dark respiration (Rd), light saturation point (LSP), light compensation point (LCP), apparent quantum
efficiency (AQE), mass-, and area- based light saturated rate of CO2 assimilation (Amass and Aarea) for seedlings at early- (G), mid- (H) and
late-successional stage (I). Control: 0–5% of full sunlight; SG: small canopy gaps, 10–15% of full sunlight; LG: large canopy gaps, 40–50% of full sunlight.
Light curves were fitted by non-linear regression using non-rectangular hyperbola least square curve fitting procedure (Lambers et al., 1998). Data points
in plots (A–F) and (G–I) represent mean ± s.e. [standard error, n = 25 (5 plants × 5 leaves)] and mean ± CI (the 95% confidence interval), respectively. If
the CI in plots (G–I) did not overlap with zero (the gray dotted line), a significant mean effect of SG and/or LG was considered (P < 0.05).

Effect of light condition under canopy gap
on photosynthetic properties of seedling
at different successional stages

The different response of RGRm among seedlings from three
successional stages could be firstly reflected by corresponding
changes in leaf-scale photosynthetic properties (Figures 1, 2, 4),
which is the foundation for regulating plant carbon assimilation to
take the advantage from enhanced light due to temporary canopy
gaps (Kneeshaw and Bergeron, 1998; Yao et al., 2015). Especially for
the greatest improvement of RGRm for seedlings at early successional
stage could be ascribed to their changes in photosynthetic properties,
e.g., a significant enhancement of light saturated point (LSP,
Figures 2, 4). We suspect that greater LSP may have benefited the
seedlings to achieve a higher saturated photosynthetic rate, such
as the light–demanding species from the early stage of succession
(Ackerly, 1996; Qi et al., 2004). Especially for light condition in
LG, seedlings from early-successional stage displayed the largest

improvement in both mass- and area-based light-saturated rate of
CO2 assimilation (Amass and Aarea, Figure 2), thus the more light
penetrated into forest understory the more advantage would be found
for seedlings from early-successional stage (Baul et al., 2022). Beside
changes in LSP, light compensation point (LCP) and dark respiration
(Rd) in seedlings from early successional stages may also have
enhanced due to increased growth respiration driven by accelerated
development of leaf and total biomass (Figures 1, 2; Marcelis et al.,
1998; Inoue et al., 2022). Furthermore, seedlings from early- and mid-
successional stages declined their specific leaf area (SLA, Figure 2) as
a response to improved light conditions, especially in LG treatment,
while that from the late- with an original successional stage lower
SLA had no significant changes in SLA (Figure 2 and Supplementary
Table 3), displaying the evolutionary conservatism in this functional
trait among these plant species (Schweizer et al., 2013; Letcher et al.,
2015). The intensity and range of disturbance would be crucial
for species composition and successional process in understory
patches in tropical forest, the larger canopy gap might brought
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FIGURE 3

Leaf, stem and root mass ratio [LMR, SMR, and RMR, (A–C)] of
seedlings in Control, SG, and LG, and the mean effect size (D–F) of SG
and LG on root: shoot ratio (R/S), root, stem, and leaf mass ratio (RMR,
SMR, and LMR), and leaf area ratio (LAR) for tree seedlings at early-
(D), mid- (E), late-successional stage (F). Control, 0–5% of full
sunlight; SG: small canopy gaps, 10–15% of full sunlight; LG: large
canopy gaps, 40–50% of full sunlight. The bars in plots (A–C) and
(D–F) represent standard error (n = 5 plants) and 95% confidence
interval (CI), respectively. If the CI in plots (D–F) did not overlap with
zero (the gray dotted line), a significant mean effect of SG and/or LG
was considered (P < 0.05).

more advantage for seedlings from early- and mid-successional stages
(Yamashita et al., 2000; Liu B. et al., 2012).

Different from other photosynthetic properties with positive
or negative responses, the apparent quantum yields (AQE) didn’t
change even for the seedlings from the early-successional stage
(Figure 2 and Supplementary Table 1), which agreed with the
correlated results in comparing AQE between shade-tolerant species
(i.e., from the late-successional stage) and pioneer species (i.e., from
the early-successional stage) previous studies (e.g., Ramos and Grace,
1990; Marenco et al., 2001; Tsvuura et al., 2010).

Effect of light condition under canopy gap
on morphological properties in seedlings
at different successional stages

Apart from the regulation in leaf-scale photosynthesis properties,
seedlings would also alter allocation strategy of photosynthates to the
organs acquiring the resource that strongly limits seedling growth
(McCarthy and Enquist, 2007; Zhou et al., 2020). In this study, the
sensitivity of root mass ratio was greater than that of leaf and stem
mass ratio under improved light intensity (Figure 3; Poorter and
Nagel, 2000). The adequate root development was considered to be
crucial for improving seedlings’ survival in forest understory, since
more belowground sources, e.g., nutrients and water, could support
seedlings with an accelerated growth and a greater competitiveness in
understory community (Landhausser and Lieffers, 2001; Myers and
Kitajima, 2007). Correspondingly, the vertical biomass allocations

between below- and above- ground biomass, reflected in root:
shoot ratio (R/S) in these seedlings were altered by improved
light availability (Figure 3; Poorter and Nagel, 2000). However, the
significant positive response of R/S to both SG and LG exhibiting an
increasing trend from late- to early-successional stage (Figure 3), that
the seedlings from early- and mid- successional stages displayed a
greater morphological plasticity than that from late- stage (Yan et al.,
2006). The greater increment of R/S for seedlings from early- and
mid- successional stages would be more beneficial for root nutrient
absorption, particularly for phosphorus capture, in tropical montane
forests, such as our study site (Liu et al., 2010, Liu F. et al., 2012).
Thus, seedlings from early- and mid- could successional stages take
advantage of the transitory opportunity of improved light condition
caused by anthropogenic disturbances, regulating seedlings’ niche-
partitioning and successional process in the understory of tropical
forest (Dupuy and Chazdon, 2006; Yang et al., 2011).

In contrast to the positive correlation between R/S and RGRm,
leaf area ratio (LAR) exhibited a negative relationship with RGRm
(Figure 4). Under higher light intensity, per unit leaf area or shoot
mass could provide greater productivity for plant individual than
ambient light condition in understory (Kong et al., 2016), that
seedlings with lower LAR and higher R/S potentially had a sufficient
functions of above-ground organs, e.g., adequate photosynthetic
capacity under increased light intensity (Shafiq et al., 2021).
Therefore, canopy gap-induced greater light intensity could drive
the trade-off between above- and below-ground biomass allocation,
regulating morphological properties of seedlings for better resource
acquisition and growing (Freschet et al., 2013; Baez and Homeier,
2018).

The dependence of seedlings’ RGRm on
successional stage in responding to
increased light condition under canopy
gap

Our results show that the seedlings in the understory from
different successional stages are characterized by diverse strategies
in responding to improved light condition caused by canopy gap
after disturbance (Figures 1–3). In ambient light condition of
understory, seedlings from the late-successional stage had a higher
RGRm, ensuring a greater competitiveness relative to seedlings from
early- and mid-successional stages in the understory tree community
(Figure 2; Gao et al., 2016). However, greater light availability due to
canopy gaps provided a potential opportunity for the seedlings from
early- or mid- successional stages to offset the competitive advantage
of late-successional plants (Abbas et al., 2020).

Seedlings’ RGRm in the understory of tropical forest performed
a dependence on the light condition, while the successional stage
of species displayed a significant regulation on changes of RGRm
through effects on Amass, LAR and SLA (Figure 5). Thereinto,
SLA was a critical traits connected the effects of light condition
and successional stage on seedlings’ growth, and playing the most
important role for RGRm after light condition (Figures 1F, 5; Baez
and Homeier, 2018). For different seedlings, interspecific functional
trait differentiation had been indicated to mainly associate with
SLA, that at early-successional stage are generally characterized by
a higher SLA relative to that at mid- and late- stages (Supplementary
Table 3; Wang et al., 2012). Light condition and successional stage
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FIGURE 4

The relationship between relative mass growth rate (RGRm) with area- based light saturated rate of CO2 assimilation [Aarea, (A)], leaf area [LA, (B)], light
saturation point [LSP, (C)], specific leaf area [SLA, (D)], leaf area ratio [LAR, (E)], and root: shoot ratio [R/S, (F)]. The gray shadow represents the 95%
confidence interval for the estimates.

FIGURE 5

Illustration of disturbance-caused canopy gaps’ impact on light condition (LC, i.e., Control, SG, and LG) in forest understory (A), and their effects on
seedlings’ relative mass growth rate [RGRm, (B)] for tree species at different successional stage (SS, i.e., early-, mid-, and late- successional stage) based
on the path analysis. Control, 0–5% of full sunlight; SG: small canopy gaps, 10–15% of full sunlight; LG: large canopy gaps, 40–50% of full sunlight. In
path analysis, “1,” “2”, and “3” were assigned to treatments of Control, SG and LG; and species at early-, mid-, and late-successional stage, respectively.
The red and blue arrows indicate significantly positive and negative effects of light condition (LC), successional stage (SS), leaf area (LA), specific leaf area
(SLA), dark respiration (Rd), light saturation point (LSP), light compensation point (LCP), apparent quantum efficiency (AQE), mass-, and area- based light
saturated rate of CO2 assimilation (Amass and Aarea), leaf mass ratio (LMR), root mass ratio (RMR) and root: shoot ratio (R/S) on RGRm (P < 0.05),
respectively. Symbols **, *** indicate statistical significance at P < 0.01 and 0.001. In Chi-square test for the path model, the P-value (0.319, >0.05)
calculated from one-tailed test indicated that model fit had been established.
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displayed a significant interaction on seedlings’ SLA, jointly affected
seedlings’ RGRm in the understory of tropical forest (Supplementary
Table 1 and Figure 5; Kitao et al., 2000). Under the more frequency
and intensity disturbances, the advantage of seedlings from late-
successional stage would be weaken much more than that from
early- and mid-successional stages, slowing down the process of forest
forward succession.

Conclusion

Natural and anthropogenic disturbance induced canopy gaps
affecting the forest structure and function. Increased light intensity
under canopy gaps were verified to accelerate the relative growth
rate (RGRm) of seedlings, improving the understory productivity
in Jianfengling tropical rainforest. Relative to the seedlings from
late- successional stages, early- and mid-successional stage seedlings
displayed stronger positive response of RGRm due to the higher
improvement of leaf area, light saturation point, mass- or area-
based light saturated rates of CO2 assimilation, root mass ratio and
root: shoot ratio, as well as the decrement of specific leaf area and
leaf area ratio. Light condition and SLA were the most important
factors for seedlings’ relative growth rate across successional stages.
The formation of canopy gaps would open up opportunities for the
seedlings of tree species from the early- and mid-successional stages,
being beneficial for species diversity and habitat heterogeneity, while
go against the forward successional process due to the depressed
advantage of species from late-successional stage in tropical forest.
Especially, in the context of global climate change, facing higher
frequency and intensity of natural disturbance (i.e., typhoon and
forest fire), whether the succession of tropical forest would be
redirected by too many big scale canopy gaps should depend on both
disturbance per se and forest stability.
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