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ABSTRACT: To mitigate the impacts associated with adverse weather conditions, meteorological

services issue weather warnings to the general public. These warnings rely heavily on forecasts

issued by underlying prediction systems. When deciding which prediction system(s) to utilise when

constructing warnings, it is important to compare systems in their ability to forecast the occurrence

and severity of high-impact weather events. However, evaluating forecasts for particular outcomes

is known to be a challenging task. This is exacerbated further by the fact that high-impact

weather often manifests as a result of several confounding features, a realisation that has led to

considerable research on so-called compound weather events. Both univariate and multivariate

methods are therefore required to evaluate forecasts for high-impact weather. In this paper, we

discuss weighted verification tools, which allow particular outcomes to be emphasised during

forecast evaluation. We review and compare different approaches to construct weighted scoring

rules, both in a univariate and multivariate setting, and we leverage existing results on weighted

scores to introduce conditional probability integral transform (PIT) histograms, allowing forecast

calibration to be assessed conditionally on particular outcomes having occurred. To illustrate the

practical benefit afforded by these weighted verification tools, they are employed in a case study

to evaluate probabilistic forecasts for extreme heat events issued by the Swiss Federal Office of

Meteorology and Climatology (MeteoSwiss).
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1. Introduction26

The impacts associated with adverse weather conditions are well-documented. To mitigate27

these impacts, meteorological services issue weather warnings that inform the general public28

when hazardous conditions are expected, and outline what action should be taken to minimise the29

associated risks. Operational warning systems typically account not only for how likely it is that a30

high-impact weather event will occur, but also for other factors, such as how the public will behave31

in response to a warning (WMO 2015). Evaluating the quality of a warning system is thus an32

intrinsically difficult task. However, if a warning system has access to more accurate forecasts for33

high-impact weather events, then it has the potential to generate more useful warnings. Methods to34

evaluate forecasts for these high-impact events can therefore play an integral role when developing35

warning systems.36

It is important to distinguish between high-impact and extreme weather events. Extreme events37

are rare, relative to previously observed values, and are typically defined as maxima or exceedances38

of a relevant threshold. Of course, extreme weather events are of practical interest because they39

often result in large social and economic impacts. However, not all extreme events will generate40

a large impact. Instead, it has become common to study high-impact weather events, defined41

directly as events that result in a large (usually negative) societal impact, which may or may42

not be extreme from a statistical perspective. For example, in 2015, the World Meteorological43

Organisation (WMO) launched theHigh-ImpactWeather Project, whose goal is to improve forecasts44

and warnings for high-impact weather (Majumdar et al. 2021). A key component of this project45

is to develop methods to evaluate the quality of forecasts and warnings for high-impact weather46

events.47

Traditionally, the evaluation of weather forecasts focuses on two aspects of forecast performance:48

forecast calibration and forecast accuracy. Forecast calibration considers towhat extent forecasts are49

reliable, or trustworthy - for example, do the observed outcomes occur with the same probability50

with which they are predicted? This is typically assessed visually using graphical diagnostic51

tools, such as reliability diagrams or rank histograms (Hamill 2001; Jolliffe and Stephenson 2012;52

Dimitriadis et al. 2021), though statistical tests also exist to check the calibration more rigorously53

(e.g. Wilks 2019; Arnold et al. 2021). Forecast accuracy, on the other hand, is a measure of the54

agreement between a forecast and the corresponding observation, and is quantified using proper55
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scoring rules. Scoring rules summarise forecast performance using a single numerical value,56

allowing competing forecasters to be ranked and compared objectively, and proper scoring rules57

encourage the forecaster to issue what they truly believe will occur (Gneiting and Raftery 2007).58

However, when interest is on particular outcomes, such as high-impact events, classical evaluation59

techniques risk raising the forecaster’s dilemma; in particular, Lerch et al. (2017) remark that “if60

forecast evaluation proceeds conditionally on a catastrophic event having been observed, always61

predicting calamity becomes a worthwhile strategy." Gneiting and Ranjan (2011) demonstrate that62

a proper scoring rule is rendered improper if it is used to evaluate only the forecasts issued when63

particular outcomes have occurred, and Bellier et al. (2017) note that the forecaster’s dilemma64

also applies to checks for forecast calibration. This raises questions regarding how forecasts for65

high-impact events should be assessed.66

If only the occurrence of a high-impact event is of interest, then forecasts for this binary outcome67

can be evaluated using established verification tools: contingency table-based methods assess68

forecasts that are themselves binary (Stephenson et al. 2008; Ferro and Stephenson 2011), whereas69

probabilistic forecasts for the event occurrence can be evaluated using reliability diagrams and70

appropriate scoring rules. However, relatively few methods exist to evaluate forecasts for the71

severity of a high-impact event. Over the past decade, the canonical approach to achieve this72

has been to employ weighted scoring rules, which emphasise particular outcomes during forecast73

evaluation whilst circumventing the forecaster’s dilemma (Gneiting and Ranjan 2011; Diks et al.74

2011; Holzmann and Klar 2017).75

While weighted scoring rules have been applied almost exclusively in univariate settings, they76

can also be used to place more weight on certain multivariate outcomes when assessing forecast77

accuracy (Allen et al. 2022). The application of weighted scoring rules in a multivariate context78

is particularly useful when evaluating forecasts for high-impact weather events, since such events79

are often inherently multivariate. In particular, high-impact weather may arise not only from an80

extreme event, but also from the interaction of several more moderate events; this has been the81

catalyst for numerous recent studies on so-called compound weather events (see Zscheischler et al.82

2020, for a review).83

Various approaches to construct weighted scoring rules have been proposed. In this paper, we84

discuss and compare these approaches, and provide guidance regarding which should be employed85
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in different circumstances, both in a univariate and multivariate setting. While weighted scoring86

rules provide a measure of forecast accuracy when predicting extreme events, we demonstrate that87

the theory underlying these weighted scores can readily be applied to checks for forecast calibration.88

We then introduce a novel diagnostic tool that can assess the calibration of probabilistic forecasts89

conditionally on particular outcomes having occurred.90

To demonstrate how they can be applied in practice, these weighted verification tools are applied91

to forecasts of extreme heat. Extreme heat provides a salient example of a compound weather92

event: while short and intense periods of extreme heat can have serious implications for human93

health (among other things), persistent hot periods further strain the human body by inhibiting its94

ability to recover (Basagaña et al. 2011). Most major weather services therefore issue warnings to95

the public when persistently high temperatures are expected, and a greater understanding of how96

well such events can be predicted would allow weather services to further refine their heat warning97

systems.98

The remainder of the paper is structured as follows. In the following section, we review the99

general framework for forecast evaluation and introduce relevant weighted verification tools when100

evaluating forecasts for high-impact weather events. These are then applied to forecasts of extreme101

heat events in Section 3. In particular, operational forecasts issued by the Swiss Federal Office of102

Meteorology and Climatology (MeteoSwiss) are compared to forecasts obtained from a statistical103

post-processing model, also introduced in Section 3, allowing us to analyse the effect of post-104

processing when forecasting extreme heat. The conclusions drawn from this case study are105

discussed in Section 4.106

2. Forecast verification107

a. Forecast accuracy108

Suppose we are interested in forecasting a random variable𝑌 that takes values in a setΩ, and that109

our forecasts are probability distributions onΩ. Let F denote a set of such distributions. A scoring110

rule 𝑆 is a function that takes a forecast 𝐹 ∈ F and an observation 𝑦 ∈ Ω as inputs, and outputs a111

numerical value, or score, that quantifies the forecast accuracy. All scoring rules considered herein112

are negatively oriented, so that a more accurate forecast receives a lower score. A scoring rule 𝑆 is113

called proper with respect to F ifE𝐺 [𝑆(𝐺,𝑌 )] ≤E𝐺 [𝑆(𝐹,𝑌 )] for all 𝐹,𝐺 ∈ F , whereE𝐺 denotes114
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the expectation over𝐺, and strictly proper with respect to F if this holds with equality if and only if115

𝐹 =𝐺. That is, if the observations are believed to arise according to a certain distribution, then the116

expected score is optimised when this distribution is issued as the forecast. We assume throughout117

that the expectations are finite where necessary.118

Proper scoring rules exist to assess forecasts for a range of different outcomes (Gneiting and119

Raftery 2007). When considering high-impact events, it is common to reduce the problem to120

a binary forecasting task, whereby we are only interested in predicting whether or not the event121

of interest will occur. Although forecasts for such events could themselves be binary, it is more122

natural to issue forecasts that are probabilistic, thereby quantifying the uncertainty inherent in the123

prediction. One of the most popular scoring rules to evaluate such forecasts is the Brier score124

(Brier 1950). Consider the case where the outcome is univariate and real-valued, i.e. Ω =R, and125

the forecast 𝐹 is a cumulative distribution function over the real line. A high-impact event might126

then be defined as an instance where the outcome exceeds a certain threshold 𝑡, in which case the127

Brier score is defined as128

BS(𝐹, 𝑦; 𝑡) = (𝐹 (𝑡) −1{𝑦 ≤ 𝑡})2, (1)

where 1 denotes the indicator function.129

Of course, in considering only the occurrence of a high-impact event, we cannot assess how well130

forecasts predict the event’s severity. While the Brier score evaluates the forecast at a particular131

threshold, the entire forecast distribution can be evaluated by integrating the Brier score over all132

possible thresholds. In doing so, we obtain the continuous ranked probability score (CRPS), the133

most commonly used scoring rule to evaluate probabilistic forecasts. If our forecast distribution 𝐹134

has a finite mean, the CRPS can be expressed as135

CRPS(𝐹, 𝑦) =
∫ ∞

−∞
(𝐹 (𝑧) −1{𝑦 ≤ 𝑧})2d𝑧

=E𝐹 |𝑋 − 𝑦 | − 1
2
E𝐹 |𝑋 − 𝑋′|,

(2)

where 𝑋 and 𝑋′ are independent random variables that follow the distribution 𝐹 (Matheson and136

Winkler 1976; Gneiting and Raftery 2007).137

The CRPS is regularly employed in climate-related studies, in part because it can readily be138

applied to ensemble forecasts by replacing the expectations in the second expression of Equation 2139
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with sample means over the ensemble members. The CRPS assesses the forecast distribution over140

the set of all possible outcomes, providing a measure of overall forecast performance, rather than141

evaluating forecasts made for high-impact events. Nonetheless, several extensions of the CRPS142

have been proposed that can emphasise particular outcomes whilst assessing forecast accuracy.143

Weighted scoring rules144

In order to emphasise high-impact events during forecast evaluation, a seemingly intuitive ap-145

proach would be to only evaluate the forecasts issued when such an event occurs; more generally,146

to assign a higher weight to outcomes corresponding to higher impacts. However, Gneiting and147

Ranjan (2011) demonstrate that if proper scoring rules are weighted by a function that depends on148

the observed outcome, then the score is generally rendered improper. For example, if evaluation is149

restricted to instances where high-impact events occur, then the forecaster is encouraged to always150

predict that such an event will occur, even though such a forecast is uninformative in practice (Lerch151

et al. 2017).152

Instead, weighted scoring rules have been introduced to target particular outcomes during forecast153

evaluation in a more theoretically desirable way. Weighted scoring rules incorporate a weight154

function into conventional scoring rules, but do such in such a way that the resulting score remains155

proper. The weight function can then be chosen to emphasise particular outcomes of interest.156

In the following, a weight function is a function 𝑤 such that 𝑤(𝑧) ≥ 0 for all possible outcomes157

𝑧. Gneiting and Ranjan (2011) list weight functions that could be used to emphasise certain158

real-valued outcomes, and these are given in Table 1.159

Having chosen a suitable weight function for the problem at hand, several approaches have been160

proposed to incorporate this weight into existing scoring rules. Allen et al. (2022) list three possible161

methods to emphasise particular outcomes when evaluating forecasts using the CRPS. Firstly, the162

threshold-weighted CPRS (twCRPS) introduced by Matheson and Winkler (1976) and Gneiting163

and Ranjan (2011) is defined as164

twCRPS(𝐹, 𝑦;𝑤) =
∫ ∞

−∞
(𝐹 (𝑧) −1{𝑦 ≤ 𝑧})2𝑤(𝑧)d𝑧

=E𝐹 |𝑣(𝑋) − 𝑣(𝑦) | − 1
2
E𝐹 |𝑣(𝑋) − 𝑣(𝑋′) |,

(3)
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where 𝑋, 𝑋′ ∼ 𝐹 are independent, and 𝑣 is any function such that 𝑣(𝑧) − 𝑣(𝑧′) =
∫ 𝑧

𝑧′
𝑤(𝑥)d𝑥.165

Secondly, Holzmann and Klar (2017) proposed the outcome-weighted CRPS (owCRPS):166

owCRPS(𝐹, 𝑦;𝑤) = 𝑤(𝑦)
∫ ∞

−∞
(𝐹𝑤 (𝑧) −1{𝑦 ≤ 𝑧})2d𝑧

= 𝑤(𝑦)CRPS(𝐹𝑤, 𝑦),
(4)

where167

𝐹𝑤 (𝑥) =
E𝐹 [1{𝑋 ≤ 𝑥}𝑤(𝑋)]
E𝐹 [𝑤(𝑋)] , (5)

with 𝑋 ∼ 𝐹. Lastly, Allen et al. (2022) introduced the vertically re-scaled CRPS (vrCRPS):168

vrCRPS(𝐹, 𝑦;𝑤,𝑥0) =E𝐹 [|𝑋 − 𝑦 |𝑤(𝑋)𝑤(𝑦)] − 1
2
E𝐹 [|𝑋 − 𝑋′|𝑤(𝑋)𝑤(𝑋′)]

+ (E𝐹 [|𝑋 − 𝑥0 |𝑤(𝑋)] − |𝑦− 𝑥0 |𝑤(𝑦)) (E𝐹 [𝑤(𝑋)] −𝑤(𝑦)),
(6)

where 𝑋, 𝑋′ ∼ 𝐹 are independent, and 𝑥0 is an arbitrary real value. Gneiting and Ranjan (2011)169

additionally introduced a quantile-weighted version of the CRPS, though this emphasises particular170

regions of the forecast distribution rather than particular outcomes, and is thus not considered here.171

In all cases, the unweighted CRPS is recovered when the weight function is constant and equal172

to one. Of the above three approaches to weight the CRPS, the twCRPS is the most well-known,173

and has been applied in several studies to evaluate forecasts for extreme weather events (e.g. Lerch174

and Thorarinsdottir 2013; Allen et al. 2021b). The outcome-weighted CRPS, on the other hand,175

has been used to assess economic forecasts, but is relatively unknown within the field of weather176

and climate forecasting. An obvious question then is how these weighted scores differ from one177

another, and which (if any) should be preferred when evaluating forecasts for high-impact weather178

events? In this section, we seek to answer this question by providing a detailed comparison of the179

different approaches.180

Firstly, consider how these weighted scores differ. As discussed, the CRPS is defined as an181

integral of the Brier score when predicting whether the observation will exceed a certain threshold,182

and the twCRPS simply assigns different weights to different thresholds in the integration. Note183

that the weight in the twCRPS depends on the variable of integration, rather than the observation.184

The second expression in Equation 3 demonstrates that the twCRPS can additionally be interpreted185
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as the CRPS after having transformed the forecasts and observations, with the transformation 𝑣 -186

which Allen et al. (2022) call the chaining function - governed by the choice of weight function.187

In contrast to the twCRPS, the owCRPS employs a weight that depends on the outcome. Gneiting188

and Ranjan (2011) demonstrate that if the CRPS is weighted by a function that depends on the189

observed outcome, then the expectation of this weighted score, i.e. E𝐺 [𝑤(𝑌 )CRPS(𝐹,𝑌 )] with190

𝑌 ∼𝐺, is minimised by issuing 𝐺𝑤 as the forecast, rather than 𝐺, where 𝐺𝑤 is defined analogously191

to 𝐹𝑤 in Equation 5. This weighted scoring rule is therefore generally improper. To circumvent192

this, Holzmann and Klar (2017) suggest evaluating the forecasts via their weighted representation,193

providing an arguablymore direct way of circumventing the forecaster’s dilemma than the twCRPS.194

Both the twCRPS and the owCRPS transform the forecasts and observations prior to implement-195

ing the unweighted CRPS, with the two approaches differing in the transformation they employ.196

Consider the common case where the weight function restricts attention to values above some197

threshold of interest 𝑡, i.e. 𝑤(𝑧) = 1{𝑧 > 𝑡}. Figure 1 illustrates the difference between these two198

transformations for such a weight function. While the CRPS measures the distance between the199

observation and the entire forecast distribution, the twCRPS reassigns all probability assigned to200

values lower than the threshold to the threshold itself. This results in a left-censored distribution,201

with a point mass at the threshold of interest. In doing so, the score only depends on how the202

forecast behaves above the threshold. The owCRPS, on the other hand, truncates the distribution203

at the threshold, thereby evaluating the conditional distribution given that the threshold has been204

exceeded. This relies on the observation exceeding the threshold, and the owCRPSwith this weight205

function is zero whenever this is not the case.206

In considering this conditional distribution, the owCRPS is only sensitive to the shape of the209

forecast distribution above the threshold, and not to the forecast probability that the threshold210

will be exceeded; that is, the score cannot distinguish between two forecasts that have the same211

conditional distribution. It therefore only assesses the predicted severity of a high-impact event,212

whereas the twCRPS additionally accounts for the probability with which the event is predicted213

to occur. Holzmann and Klar (2017) suggest complementing the owCRPS by adding the score214

to a scoring rule for binary events, such as the Brier score, which can independently evaluate the215
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Fig. 1. Probability density functions used when calculating the CRPS, twCRPS, and owCRPS, with a weight

function equal to 𝑤(𝑧) = 1{𝑧 > 𝑡}. Note the contrasting scale for the owCRPS.

207

208

probability forecasts. For example,216

owCRPS(BS) (𝐹, 𝑦;𝑤) = owCRPS(𝐹, 𝑦;𝑤) +1{𝑦 ≤ 𝑡}(𝐹 (𝑡) −1{𝑦 ≤ 𝑡})2

= 1{𝑦 > 𝑡}CRPS(𝐹𝑤, 𝑦) +1{𝑦 ≤ 𝑡}BS(𝐹, 𝑦; 𝑡).
(7)

A similar extension of the owCRPS is also possiblewhen alternativeweight functions are considered217

(Holzmann and Klar 2017).218

However, even when complemented with such a score, the owCRPS does not consider the shape219

of the forecast distribution when the outcome does not exceed the threshold: in this case, if two220

forecasts assign the same probability to the exceedance of the threshold, then they will receive the221

same score, even if one predicts more severe events with a higher probability. Instead, this binary222

score could be replaced with a score that also accounts for the distance between the probability223

distribution and the threshold, penalising forecast distributions that assign higher probabilities to224

values much larger than the threshold. It turns out that this is in essence what the twCRPS does.225

In fact, if 𝑤(𝑧) = 1{𝑧 > 𝑡}, it is straightforward to rewrite the twCRPS in terms of the owCRPS:226

twCRPS(𝐹, 𝑦;𝑤) =(1−𝐹 (𝑡))2owCRPS(𝐹, 𝑦;𝑤)

+1{𝑦 > 𝑡}
[
𝐹 (𝑡)2(𝑦− 𝑡) +2𝐹 (𝑡)

∫ 𝑦

𝑡

𝐹 (𝑥) −𝐹 (𝑡)d𝑥
]

+1{𝑦 ≤ 𝑡}
∫ ∞

𝑡

(𝐹 (𝑥) −1)2d𝑥.

(8)
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For this weight function, the twCRPS thus differs from the owCRPS in two main respects. Firstly,227

when the outcome does not exceed the threshold of interest, the twCRPS still depends on the228

forecast, whereas the owCRPS is always equal to zero. While complemented versions of the229

owCRPS (e.g. Equation 7) address this, the twCRPS accounts not only for the probability that the230

threshold will be exceeded, but also the distance from the forecast distribution to this threshold.231

Secondly, when the threshold is exceeded by the outcome, the twCRPS is additionally comprised of232

two terms not present in the owCRPS, both of which penalise forecasts that issue a high probability233

that the outcome will not exceed the threshold.234

The vrCRPS differs from the other two scores in that it does not transform the forecasts and235

observations, but rather weights the distance between them. In doing so, the vrCRPS depends236

not only on a weight function, but also on an additional parameter 𝑥0. Although this could be237

construed as a practical disadvantage of the score, Allen et al. (2022) note thatwhen𝑤(𝑧) =1{𝑧 > 𝑡},238

a canonical choice for this parameter is 𝑥0 = 𝑡, in which case the vrCRPS is in fact equivalent to239

the twCRPS. When there is no canonical choice for 𝑥0, it can arbitrarily be set equal to zero.240

For this indicator-based weight function, a simple illustration of how the weighted scores behave241

is displayed in Figure 2. The forecast in this case is a standard normal distribution, and the scores242

are shown as a function of the observation. The CRPS clearly increases as the observed value243

moves away from the forecast mean, while all weighted scores are constant when the observation244

falls below the threshold of interest. The twCRPS and vrCRPS are proportional to the CRPS above245

this threshold, and the twCRPS has the desirable property that it is continuous: there is a jump in246

all other scores at the threshold, meaning a small difference in the observation can lead to a large247

change in the score. For the vrCRPS, the magnitude of this difference is controlled by 𝑥0. When248

𝑥0 = 𝑡, the vrCRPS is also continuous, since the score is equivalent to the twCRPS (for comparison,249

the vrCRPS shown in Figure 2 employs 𝑥0 = 0).250

The twCRPS and vrCRPS additionally have the benefit that they can readily be applied to254

ensemble forecasts, or forecasts in the form of Monte-Carlo samples; as with the CRPS, this can255

be achieved by replacing the expectations in their definitions with sample means over the ensemble256

members (see also Allen et al. 2022). Note that for the twCRPS, the chaining function 𝑣 is typically257

straightforward to calculate for the weights frequently employed in practice. The owCRPS, on the258

other hand, relies on the weighted forecast distribution 𝐹𝑤 being well-defined (i.e.E𝐹 [𝑤(𝑋)] > 0),259
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Fig. 2. CRPS and weighted versions of the CRPS for a standard normal distribution as a function of the

observation 𝑦. The weight function 𝑤(𝑧) = 1{𝑧 > 𝑡} is used within the weighted scores, and a vertical grey line

is shown at 𝑡.

251

252

253

which is often not the case if the weight function targets rare events and the forecast is an ensemble.260

In this case, it may be necessary to smooth the ensemble to form a continuous forecast distribution261

prior to assessing the forecasts. Although the use of strictly positive weight functions would ensure262

E𝐹 [𝑤(𝑋)] > 0 in theory, this can still lead to numerical complications in practice. Hence, when263

interest is on high-impact weather events, we recommend evaluating forecast accuracy using the264

twCRPS or vrCRPS.265

Multivariate weighted scoring rules266

Since high-impact weather often arises as a combination of weather events across multiple267

dimensions, forecasts for such events should be assessed using both univariate and multivariate268

techniques. Suppose now thatΩ=R𝑑 , for 𝑑 > 1, and that the forecast 𝐹 is a probability distribution269

on R𝑑 . Two of the most popular scoring rules to assess such forecasts are the energy score (ES;270

Gneiting and Raftery 2007) and the variogram score (VS; Scheuerer and Hamill 2015). The energy271

score is defined as272

ES(𝐹, 𝑦) =E𝐹 | |𝑋 − 𝑦 | | − 1
2
E𝐹 | |𝑋 − 𝑋′| |, (9)

where | | · | | is the Euclidean distance in R𝑑 , and 𝑋, 𝑋′ ∼ 𝐹 are independent (Gneiting and Raftery273

2007). The energy score provides a natural generalisation of the CRPS to higher dimensions, and274

is commonly employed in practice since it can readily be applied to ensemble forecasts.275
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Values of interest Univariate weight Multivariate weight

All values 𝑤 (𝑥) = 1 𝑤 (𝑥) = 1

Central values 𝑤 (𝑥) = 𝜙`,𝜎 (𝑥) 𝑤 (𝑥) =ϕ𝝁,𝚺 (𝑥)

Tail values 𝑤 (𝑥) = 1− 𝜙`,𝜎 (𝑥)/𝜙`,𝜎 (`) 𝑤 (𝑥) = 1−ϕ𝝁,𝚺 (𝑥)/ϕ𝝁,𝚺 (µ)

Right tail/Upper right quadrant 𝑤 (𝑥) = Φ`,𝜎 (𝑥) 𝑤 (𝑥) =𝚽𝝁,𝚺 (𝑥)

Left tail/Lower left quadrant 𝑤 (𝑥) = 1−Φ`,𝜎 (𝑥) 𝑤 (𝑥) = 1−𝚽𝝁,𝚺 (𝑥)

Table 1. Possible weight functions for univariate and multivariate weighted scores. Here, 𝜙`,𝜎 and Φ`,𝜎

denote the density and distribution functions, respectively, of the Gaussian distribution with mean ` and standard

deviation 𝜎, while ϕ𝝁,𝚺 and𝚽𝝁,𝚺 denote the density and distribution functions, respectively, of the multivariate

Gaussian distribution with mean vector µ and covariance matrix 𝚺.

292

293

294

295

However, some studies have suggested that the energy score fails to be discriminative when276

comparing forecasts with different dependence structures (e.g. Pinson and Tastu 2013). Scheuerer277

and Hamill (2015) introduce the variogram score as an alternative scoring rule, which exploits the278

variogram commonly used in spatial statistics in order to directly target the forecast’s multivariate279

dependence structure. The variogram score of order 𝑝 > 0 is defined as280

VS𝑝 (𝐹, 𝑦) =
𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=1

ℎ𝑖, 𝑗 (E𝐹 |𝑋𝑖 − 𝑋 𝑗 |𝑝 − |𝑦𝑖 − 𝑦 𝑗 |𝑝)2, (10)

where 𝑦 = (𝑦1, . . . , 𝑦𝑑) ∈ R𝑑 , 𝑋 = (𝑋1, . . . , 𝑋𝑑) ∼ 𝐹, and ℎ𝑖, 𝑗 are non-negative scaling parameters.281

In the following, 𝑝 is chosen to be one half, as recommended by Scheuerer and Hamill (2015), and282

the scaling parameters ℎ𝑖, 𝑗 are all set to one.283

As in the univariate case, weighted versions of these scores exist that allow particular outcomes284

to be targeted during forecast evaluation. In this case, the weight functions should be defined onR𝑑
285

rather than the real line. Gneiting and Ranjan (2011) propose several univariate weight functions286

based on Gaussian density and distribution functions, and weights to emphasise certain regions287

of the multivariate outcome space can be defined analogously in terms of multivariate Gaussian288

density and distribution functions. Some examples of such multivariate extensions are listed in289

Table 1. Of course, alternative weight functions could also be applied, and the most appropriate290

weight will depend on what information is to be extracted from the forecasts during evaluation.291

The three approaches to generate weighted versions of the CRPS can also be applied to other296

scoring rules. It is possible to construct an outcome-weighted version of any proper scoring rule297
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(Holzmann and Klar 2017), while threshold-weighting and vertically re-scaling are applicable to298

the very general class of kernel scores (Gneiting and Raftery 2007; Allen et al. 2022). Since the299

energy score and variogram score both belong to the class of kernel scores, it is possible to introduce300

threshold-weighted, outcome-weighted, and vertically re-scaled versions of these multivariate301

scores, which can emphasise particular multivariate outcomes when evaluating forecast accuracy302

(Allen et al. 2022). For example, threshold-weighted energy and variogram scores can be defined303

as follows:304

twES(𝐹, 𝑦;𝑣) =E𝐹 | |𝑣(𝑋) − 𝑣(𝑋′) | | − 1
2
E𝐹 | |𝑣(𝑋) − 𝑣(𝑋′) | |, (11)

305

twVS𝑝 (𝐹, 𝑦;𝑣) =
𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=1

ℎ𝑖, 𝑗 (E𝐹 |𝑣(𝑋)𝑖 − 𝑣(𝑋) 𝑗 |𝑝 − |𝑣(𝑦)𝑖 − 𝑣(𝑦) 𝑗 |𝑝)2, (12)

where 𝑋, 𝑋′ ∼ 𝐹 are independent, and 𝑣 : R𝑑 → R
𝑑 . As with the twCRPS, these scores involve306

a transformation of the forecasts and observations prior to calculating the unweighted scores.307

Outcome-weighted and vertically re-scaled versions of these scores can similarly be introduced308

(see Allen et al. 2022, for details).309

We can again consider how these weighted scores differ. Firstly note that, although the energy310

score and variogram score are arguably the most popular scoring rules to evaluate multivariate311

weather forecasts, other multivariate scoring rules exist, such as the logarithmic score and the312

Dawid-Sebastiani score (Dawid and Sebastiani 1999). While it is possible to construct outcome-313

weighted versions of these scores, these scores do not fit into the kernel score framework, and hence314

threshold-weighted and vertically re-scaled versions of these scores cannot readily be defined. This315

approach of outcome-weighting is therefore more general than threshold-weighting and vertically316

re-scaling. However, the outcome-weighted multivariate scores again rely on E𝐹 [𝑤(𝑋)] being317

non-zero, and since multivariate weather forecasts almost exclusively take the form of ensem-318

bles, implementing outcome-weighted scores to evaluate forecasts for high-impact weather events319

becomes yet more challenging in a multivariate setting.320

The threshold-weighted multivariate scores are defined in terms of a chaining function 𝑣 that is321

used to transform the forecasts and observations. However, in contrast to the univariate case, there322

is no general framework with which to obtain a chaining function from a weight function on R𝑑 .323

Allen et al. (2022) show that if the weight function is always equal to either zero or one, then a324
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canonical choice for the chaining function is325

𝑣(𝑧) =


𝑧 if 𝑤(𝑧) = 1,

𝑧0 if 𝑤(𝑧) = 0,
(13)

where 𝑧0 is an arbitrary point in R𝑑 . With such a weight function, the score will depend only on326

how the forecast distribution behaves at points 𝑧 for which 𝑤(𝑧) = 1. However, for more general327

weight functions, there is no obvious and general framework to construct a chaining function from328

a weight, and choosing a chaining function to emphasise the events of interest is somewhat less329

intuitive than selecting an appropriate weight function.330

Conversely, the vertically re-scaled energy and variogram scores depend directly on amultivariate331

weight function. As a result, they can readily be applied with arbitrarily complex weight functions,332

without having to additionally define a relevant chaining function. This is a practical advantage333

of these weighted scores. Moreover, as in the univariate case, the vertically re-scaled scores334

are the same as the threshold-weighted scores for particular choices of the weight and chaining335

functions, and both classes of weighted scores can easily be applied to multivariate ensemble336

forecasts. Hence, due to the ease with which they can be implemented in practice, we generally337

recommend using vertically re-scaled multivariate scores to emphasise particular outcomes in338

multiple dimensions, though threshold-weighted scores are equally appealing if a canonical choice339

of the chaining function exists.340

b. Forecast calibration341

Although proper scoring rules allow competing prediction systems to be ranked and compared342

objectively, they cannot be used to determine whether a prediction system is trustworthy, in the343

sense that the observed outcomes are statistically consistent with the forecasts that were issued.344

If the forecasts do align with the observations, then the prediction system is said to reliable, or345

calibrated.346

When the outcomes are univariate and real-valued, the most popular tool to assess forecast347

calibration is the rank or probability integral transform (PIT) histogram (Dawid 1984; Gneiting348

et al. 2007). PIT histograms rely on the result that if the outcome𝑌 is a continuous random variable349
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with cumulative distribution function 𝐹, then 𝐹 (𝑌 ) will follow the standard uniform distribution; a350

simple extension of this result exists for when 𝑌 is not continuous. Hence, to check for calibration,351

we can evaluate each forecast distribution function at the observed outcome, 𝐹 (𝑦), and display352

these values in a histogram. If the observations are indeed draws from the corresponding forecast353

distributions, then the resulting histogram should be uniform. If the histogram is not uniform, then354

there is evidence to suggest the forecasts are miscalibrated, and the behaviour of the deviations can355

be used to diagnose the nature of the forecast errors (Hamill 2001).356

Although forecast calibration in this setting could also be visualised using other techniques,357

one reason why PIT histograms are so commonly applied in practice is because there exists a358

discrete analogue when forecasts are in the form of an ensemble. So-called rank histograms359

display the relative frequency of the rank of the observation when pooled among the corresponding360

ensemble members (e.g. Hamill and Colucci 1997). If the prediction system is calibrated, then the361

observation should be equally likely to assume any rank on average, resulting in a uniform rank362

histogram. As with PIT histograms, the forecast miscalibration can be quantified by measuring363

the deviation between the observed histogram and a uniform histogram, and statistical tests for364

forecast calibration can then be derived by assessing whether or not this deviation is significantly365

large (Delle Monache et al. 2006; Wilks 2019; Arnold et al. 2021).366

Conditional PIT histograms367

The forecaster’s dilemma also applies to diagnostic checks for calibration: if a rank or PIT368

histogram is constructed from only the forecasts issued when a high-impact event occurs, then the369

resulting histogram of a calibrated prediction systemwill in general not be uniform. For this reason,370

Bellier et al. (2017) “strongly advise against observation-based stratificationwhen constructing rank371

histograms." While weighted scoring rules have been proposed to emphasise particular outcomes372

when calculating forecast accuracy, no similar extensions have been introduced when assessing373

forecast calibration. In this section, we leverage the previous discussion on weighted scoring rules374

to introduce conditional PIT (cPIT) histograms, which can be used to check the calibration of375

probabilistic forecasts conditionally on certain outcomes having occurred.376

When interest is on particular real-valued outcomes, the outcome-weighted CRPS evaluates377

the conditional forecast distribution given that these outcomes have occurred. This conditional378
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distribution can similarly be used within PIT histograms in order to assess forecast calibration379

for high-impact events. For example, let the outcome 𝑌 be a continuous (real-valued) random380

variable with distribution function 𝐹, and let 𝑌>𝑡 denote the conditional outcome variable given381

that the outcome exceeds a threshold 𝑡; that is, 𝑌>𝑡 follows the distribution 𝐺, where 𝐺 (𝑥) =382

[𝐹 (𝑥) − 𝐹 (𝑡)]/[1− 𝐹 (𝑡)] for 𝑥 > 𝑡, and 𝐺 (𝑥) = 0 otherwise. The probability integral transform383

𝐺 (𝑌>𝑡) then follows a standard uniform distribution. Hence, to evaluate the calibration of forecasts384

conditionally on the threshold being exceeded, we can calculate the conditional PIT values 𝐺 (𝑦) =385

[𝐹 (𝑦)−𝐹 (𝑡)]/[1−𝐹 (𝑡)] for all observations 𝑦 that exceed 𝑡, and display these values in a histogram.386

If the conditional distribution of 𝑌 is indeed the conditional distribution predicted by the forecasts,387

then the resulting histogram should be uniform, in which case the prediction system is said to be388

conditionally calibrated.389

These cPIT histograms are not equivalent to focusing on the bins on the right-hand side of the390

standard PIT histogram, since an extreme observation could correspond to a low PIT value 𝐹 (𝑦)391

if the forecast predicts more extreme events to occur with a high probability. To illustrate this,392

Figure 3 displays PIT and cPIT histograms for a perfect or ideal prediction system, as well as393

a histogram comprised of the PIT values that correspond to observations above a threshold of394

interest (labelled a restricted PIT histogram). The prediction system is calibrated, resulting in a395

uniform PIT histogram, but when interest is restricted to observations that exceed the threshold,396

the histogram becomes considerably skewed. The cPIT histogram, on the other hand, remains397

uniform, suggesting the forecasts are conditionally calibrated.398

In theory, if the prediction system is calibrated, then it will additionally be conditionally cali-403

brated, irrespective of the outcomes considered in the conditional PIT histograms. However, in404

practice, a forecast that appears calibrated may be significantly miscalibrated when more focus is405

put on particular outcomes. An example of this is presented in Section 3. Conversely, a fore-406

cast that is miscalibrated overall, leading to a non-uniform PIT histogram, may still be calibrated407

conditionally on the occurrence of a high-impact event.408

If the cPIT histogram is not uniform, then the shape of the histogram can be used to infer what416

errors are present in the forecast. For example, suppose the observations are drawn from a logistic417

distribution with a random mean and fixed variance, and consider three competing forecasters: the418

first forecaster issues the normal distribution as a forecast, the second issues the logistic distribution,419
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Fig. 3. PIT and conditional PIT histograms for an ideal forecaster, along with the PIT histogram constructed

from only the observations that exceed a certain threshold. The histograms are comprised of 100,000 observations

from a N(`,𝜎2) distribution, where ` ∼ N(0,1−𝜎2) and 𝜎2 = 1/3. A threshold of 𝑡 = 1 is used within the

weighted histograms.

399

400

401

402

and the final forecaster issues the Student’s 𝑡 distribution with five degrees of freedom, all of which420

are constructed to have the same mean and variance as the outcome distribution. Figure 4 displays421

the cPIT histograms for the three approaches, with a threshold equal to two. The logistic forecaster422

is the ideal forecaster, resulting in a uniform cPIT histogram, whereas the other two forecasters423

are oppositely biased: the normally distributed forecasts exhibit too light a tail, indicating a large424

proportion of the observations that exceed 𝑡 fall in the tail of the conditional Gaussian distribution,425

while the Student’s 𝑡 distribution has a heavier tail than the logistic distribution, resulting in426

forecasts that over-predict the severity of extreme events.427

While the number of bins to display in a PIT histogram is often chosen to equal the number428

of possible ranks within a reference ensemble prediction system, there is no canonical choice for429

the number of bins in a cPIT histogram. Hence, although histogram-based diagnostic tools are430

commonly employed to assess forecast calibration, we instead recommend visualising conditional431

calibration using PIT reliability diagrams (Gneiting and Resin 2021). PIT reliability diagrams432

display the empirical cumulative distribution function of the observed PIT values, and, as with433

standard reliability diagrams, a straight line along the graph’s diagonal is indicative of a calibrated434

prediction system. Conditional PIT reliability diagrams analogously display the conditional PIT435

values, and cPIT reliability diagrams for the three forecasters in the previous example are presented436

in Figure 4.437
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Fig. 4. Conditional PIT histograms (left) and conditional PIT reliability diagrams (middle) for forecast

distributions with light (Normal), perfect (Logistic), and heavy (Student’s 𝑡) tails. The histograms have been

constructed using 1,000,000 observations from a logistic distribution, roughly 25,000 of which exceed the

threshold 𝑡 = 2. Standard reliability diagrams (right) also show the conditional event probabilities (CEP) given

the forecast probability that the threshold will be exceeded. The blue shaded regions on the reliability diagrams

are consistency intervals, constructed such that a calibrated prediction system would lie within these intervals

99% of the time.
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Regardless of how the conditional calibration is visualised, by considering only the outcomes438

that exceed a threshold, these conditional diagnostic tools inherit some of the disadvantages439
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associated with the outcome-weighted scores that were discussed previously. In particular, the440

outcome-weighted CRPS only assesses the shape of the conditional distribution, and does not441

consider the probability of a high-impact event occurring. This is also true for cPIT histograms442

and cPIT reliability diagrams, meaning they only evaluate the predicted severity of the high-impact443

event, and not the probability of occurrence. We therefore recommend that they are accompanied444

by a standard reliability diagram that separately assesses how well the forecasts can predict the445

occurrence of a high-impact event - akin to howHolzmann and Klar (2017) suggest complementing446

the owCRPS with a scoring rule for binary events. An illustration of this is presented in Figure447

4 for the Gaussian, logistic, and Student’s 𝑡 forecasters. These reliability diagrams, constructed448

using the CORP approach proposed recently by Dimitriadis et al. (2021), highlight that, despite449

the differences when predicting event severity, the calibration of the three forecasters does not vary450

much when predicting the occurrence of a threshold exceedance.451

Another disadvantage of the outcome-weighted CRPS is that it cannot easily be applied to452

ensemble forecasts when interest is on rare events, since the conditional forecast distribution is453

not always well-defined. Again, this also applies to checks for conditional calibration. As with454

the owCRPS, this could be addressed by smoothing the ensemble before assessing the calibration.455

However, generally speaking, we only advise employing checks for conditional calibration to456

ensemble forecasts when at least a reasonable number of ensemble members (say, 10) are expected457

to exceed the threshold of interest. While this limits their utility when evaluating ensemble forecasts458

when targeting high-impact events, cPIT histograms and cPIT reliability diagrams could still be459

useful when assessing the conditional calibration of ensemble forecasts relative to more moderate460

thresholds: for example, when interest is on precipitation accumulations that exceed zero.461

Nonetheless, cPIT histograms and reliability diagrams provide a convenient and easily inter-462

pretable graphical approach to visualise calibration conditional on a high-impact event having463

occurred. While the interpretation of these diagnostic checks is similar to that for conventional464

checks for overall forecast calibration, formally testing whether a forecast is conditionally cali-465

brated is less straightforward. In particular, the number of observations that exceed the threshold466

of interest is random and depends on the observed outcomes, rendering standard one-sample tests467

of uniformity invalid. Instead, more involved statistical tests are required that test for equality468
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of conditional distributions, such as those commonly applied in the field of extreme value theory469

(Coles et al. 2001).470

Throughout this section, the discussion has focused on high-impact events defined as the ex-471

ceedance of a relevant threshold, i.e. corresponding to a weight function𝑤(𝑧) = 1{𝑧 > 𝑡}. In theory,472

cPIT histograms and reliability diagrams could be extended to more general weight functions. This473

would require identifying the random variable that follows the weighted distribution 𝐹𝑤 in Equation474

5. This will change for each weight function being considered, and is, in general, not a trivial task.475

However, we note that the weighted distribution 𝐹𝑤 is generally not easy to interpret, and hence,476

even if we were able to construct the weighted PIT histogram corresponding to a general weight477

function, it would not be straightforward to use the resulting histogram to diagnose exactly what478

errors are present in the prediction system. For this reason, we restrict further attention to the cPIT479

histograms and reliability diagrams introduced above.480

Multivariate conditional PIT histograms481

Just as weighted scoring rules can be designed to target multivariate outcomes during forecast482

evaluation, the cPIT histograms introduced herein can also be extended to the multivariate case.483

However, there is no canonical definition of a multivariate rank or PIT histogram, and several484

contrasting approaches have been proposed to construct them (see Thorarinsdottir and Schuhen485

2018). The general approach, as outlined by Ziegel (2017), is to define a pre-rank function, which486

condenses the multivariate forecasts and observations to univariate objects, and then to assess the487

calibration of these transformed forecasts using standard univariate rank or PIT histograms. The488

various approaches that have been proposed differ in their choice of pre-rank function.489

Regardless of the chosen pre-rank function, we can straightforwardly adapt this approach to490

construct multivariate cPIT histograms that emphasise particular multivariate outcomes when491

assessing forecast calibration. In this case, consider a multivariate threshold of interest, 𝑡 ∈ R𝑑 ,492

and suppose we are interested in instances where the threshold is exceeded along all dimensions. By493

applying the pre-rank function to this multivariate threshold, we can obtain a univariate threshold.494

Note that this univariate threshold will change for each forecast case if the pre-rank function495

depends on the forecast, as it often does. Nonetheless, having obtained a univariate threshold,496
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a cPIT histogram or cPIT reliability diagram can now easily be constructed as described in the497

previous section.498

Note, however, that the challenges mentioned previously when assessing the conditional cali-499

bration of ensemble forecasts also apply here, and, since multivariate weather forecasts are more500

regularly in the form of finite ensembles, these issues will be yet more prevalent in the multivariate501

setting. In the case study presented in the following section, the multivariate forecasts are all502

ensemble forecasts, and hence we do not employ this approach to assess the conditional calibration503

of the multivariate forecasts.504

3. Case study: evaluating heatwave forecasts505

a. Extreme heat events506

The verification techniques discussed in the previous section provide a means of evaluating507

forecasts with respect to high-impact events. In this section, we demonstrate the practical benefit508

afforded by these techniques by using them to evaluate operational weather forecasts for heatwaves509

and extreme heat events. The impacts associated with extreme heat events can be mitigated through510

effective early warning systems, and we define heat events using operational heat warning criteria511

adopted by the Swiss Federal Office of Meteorology and Climatology (MeteoSwiss), determined512

following a recent study on how high temperatures affect human health in Switzerland (Ragettli513

et al. 2017).514

MeteoSwiss issue heat warnings of three different levels, with a higher level associated with a515

higher impact. All heat levels are defined in terms of the daily mean temperature over a three516

day period, as summarised in Table 2. For completeness, Table 2 also includes a level one heat517

event, synonymous with the occurrence of low or moderate temperatures; the four levels therefore518

comprise an exhaustive set of the possible daily mean temperatures over three days. As expected,519

non-dangerous heat occurs on the vast majority (97%) of instances, whereas the most severe heat520

level occurs just 0.04% of the time. The MeteoSwiss warning levels do not change depending on521

the location, thereby assuming that the dangers associated with heat events do not vary substantially522

within the relatively small country of Switzerland.523

Although these heat warning levels are specific to Switzerland, similar definitions of extreme524

heat are employed at other national weather centres (see e.g. McCarthy et al. 2019). This follows525
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Heat level Criterion Rel. Freq. (%)

1 T < 25◦C on all three days 97.12

2 T ≥ 25◦C on one or two days 2.40

3 T ≥ 25◦C on all three days, T < 27◦C on at least one day 0.45

4 T ≥ 27◦C on all three days 0.04

Table 2. MeteoSwiss heat warning levels given daily mean temperatures (T) over a three day period, and the

relative frequency with which each level occurs in the data under consideration.

533

534

WMO guidelines, which recommend that a heatwave be defined as “a period of marked unusual526

hot weather over a region persisting for at least three consecutive days during the warm period of527

the year based on local climatological conditions, with thermal conditions recorded above given528

thresholds” (WMO 2018). We highlight, however, that the weighted verification tools discussed in529

the previous section can readily be applied using other definitions of extreme heat (and high-impact530

events more generally), and they therefore provide a very flexible way to perform user-oriented531

forecast evaluation.532

b. Data535

Since these heat event definitions depend only on the daily mean temperature, we study forecasts536

for this weather variable. We consider daily mean temperature forecasts obtained from an opera-537

tional ensemble prediction system at MeteoSwiss, which is based on a high-resolution numerical538

weather prediction (NWP) model from the Consortium for Small-Scale Modeling (COSMO-E).539

The COSMO-E model operates at a horizontal resolution of 2.2km over Switzerland and the540

surrounding area, and produces ensemble forecasts comprised of 21 members, all of which are541

initialised at 00 UTC in this study. Further details regarding COSMO-E are provided by Keller542

et al. (2021) and references therein.543

However, even high-resolution NWP models are unable to resolve Switzerland’s complex topog-544

raphy, leading to large temperature biases on valley-floors and mountain-tops. To account for this,545

a simple lapse-rate bias correction is added to the COSMO-E forecasts, which takes into account546

the difference between the height of the model at each location and the true altitude; we assume a547

constant lapse-rate of 0.6 degrees Celsius per 100m.548

The forecasts are assessed against observational temperature records at 149 weather stations549

across Switzerland, with the gridded COSMO-E output interpolated to individual stations using a550
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Fig. 5. Frequency of heat events of level two or greater at each station of interest, over all seven summer

seasons under consideration.

566

567

nearest grid-point approach. These stations are all operated by MeteoSwiss and subject to rigorous551

quality control procedures. The stations are displayed in Figure 5, along with the number of552

extreme heat events (i.e. level two or greater) that occur at each station during the period of interest.553

Although there are several stations at which an extreme heat event does not occur, all stations are554

utilised in the subsequent analysis since forecasts should also be assessed in their ability to predict555

when a high-impact event will not occur.556

Forecasts and observations are available for the seven year period between 2014 and 2020, and557

we restrict attention to extended summer seasons (May-September) in order to focus on extreme558

heat. This results in roughly 150,000 forecast-observation pairs to analyse at each forecast lead559

time. The COSMO-E forecasts extend out to five days, but since the heatwaves are defined over560

a three day period, forecasts are only considered over the coming three days. The forecasts are561

evaluated at each lead time separately using univariate verification techniques, while multivariate562

tools are used to assess the forecasts over the entire three day period. In doing so, forecasts can be563

evaluated in their ability to predict the temporal evolution of the daily mean temperature, which is564

key when focus is on heatwaves.565

The COSMO-E ensemble forecasts are compared to two alternative forecast strategies: a cli-568

matological forecast, which always issues the local climatological temperature distribution as the569

prediction, and a statistically post-processed forecast, designed to remove systematic errors that570

occur in the COSMO-E forecasts. The post-processing method is based on an approach employed571

at MeteoSwiss, described in detail in the appendix.572
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c. Results573

Overall forecast performance574

The accuracy of the three prediction systems at each lead time is assessed using the CRPS.575

The scores for the three methods, averaged over all forecast cases and stations, are displayed in576

Table 3. As expected, the climatological forecast performs considerably worse than the approaches577

that utilise the COSMO-E output, while post-processing offers improvements upon the raw model578

output at all lead times.579

The post-processed forecasts are consistently around 16%more accurate than the raw COSMO-E580

forecasts. To account for sampling uncertainty in this measurement, Table 3 additionally presents581

95%confidence intervals for the relative improvement of all methods upon theCOSMO-E forecasts.582

These confidence intervals have been obtained using non-parametric block bootstrapping, which583

accounts for both temporal and contemporaneous dependencies between the errors of the different584

forecast methods. A temporal block size of 30 days is used, though almost identical intervals are585

obtained using suitably smaller and larger block sizes. Further details about the block bootstrapping586

implemented here can be found in Wilks (2019) and Gilleland (2020).587

The energy score and variogram score are also displayed in Table 3. The climatological forecasts588

again perform considerably worse than the two other methods, while the post-processed forecasts589

significantly outperform the COSMO-E ensembles when assessed using the energy score, with590

a relative improvement similar to that obtained from the CRPS. However, post-processing does591

not provide any benefit with respect to the variogram score. Since the variogram score is more592

sensitive to the forecast dependence structure, this suggests that the benefit of post-processing is593

largely due to improvements in the univariate forecast distributions, rather than in the multivariate594

dependence structure.595

The calibration of the competing prediction systems is assessed using rank and PIT histograms,599

which are displayed in Figure 6. The results are shown at a lead time equal to three days, though600

similar conclusions are drawn at other lead times. The COSMO-E forecasts are considerably under-601

dispersed on average, which is commonly the case for operational weather forecasts for surface602

weather variables, while the post-processing model generates forecasts that are considerably better-603

calibrated. The climatological forecasts are also well-calibrated.604
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These rank and PIT histograms have been constructed from the forecasts and observations at all609

stations of interest. However, due to the complex topography of Switzerland, forecast calibration610

will likely change depending on the location. Figure 6 additionally contains a reliability index611

corresponding to each of the 149 stations, as a function of the station latitude and altitude (defined612

as the height above sea level). The reliability index, introduced in Delle Monache et al. (2006,613

Equation 1), measures the absolute deviation of the bars in the histogram from the uniform red line:614

the index is therefore minimised at zero, with larger values indicating more severe miscalibration.615

The reliability index for the COSMO-E forecasts tends to be marginally smaller at higher altitudes616

than lower altitudes, though the improvement in calibration gained by post-processing appears to617

be fairly insensitive to the station’s location. The climatological forecasts produce yet smaller618

reliability indices.619

Predicting heatwave severity620

In the univariate case, to evaluate how well the forecasts capture the severity of the extreme heat621

events, the three weighted versions of the CRPS are employed at each lead time. Figure 7 displays622

these scores at a lead time of three days as a function of the threshold employed in the weight623

function 𝑤(𝑧) = 1{𝑧 > 𝑡}, which emphasises events that exceed the threshold 𝑡. The owCRPS has624

been complemented with the Brier score (Equation 7), and, to ensure this score is well-defined,625

the COSMO-E ensembles are smoothed using a normal distribution prior to calculation. The626

additional parameter in the vrCRPS is set to 𝑥0 = 0.627

CRPS ES VS

1 day 2 days 3 days

Clim.
2.36 2.36 2.37 4.44 2.40

[−1.40,−1.03] [−1.36,−0.97] [−1.40,−1.02] [−1.34,−1.03] [−0.88,−0.66]

COSMO
1.05 1.08 1.07 2.02 1.36

[0.00, 0.00] [0.00, 0.00] [0.00, 0.00] [0.00, 0.00] [0.00, 0.00]

Post-proc.
0.88 0.92 0.92 1.76 1.37

[0.14, 0.18] [0.13, 0.18] [0.11, 0.17] [0.11, 0.15] [−0.02, 0.02]

Table 3. The CRPS (at each lead time), energy score, the variogram score for the climatological, COSMO-E,

and post-processed forecasts. The scores have been aggregated over all years and stations. Below each score is

a 95% confidence interval for the corresponding skill score, with the COSMO-E forecasts used as reference.
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Fig. 6. Rank histogram for the COSMO-E ensemble and PIT histograms for the climatological and post-

processed forecast distributions at a lead time of three days. The ranks have been aggregated over all years and

stations, and the horizontal red line is indicative of perfect calibration. A measure of the miscalibration in the

histogram is also shown as a function of the station latitude and altitude for all three methods.

605

606

607

608

The scores are displayed in the form of skill scores, with the raw COSMO-E ensemble forecasts628

as the reference. A positive skill score indicates an improvement upon the COSMO-E forecasts,629

whereas a negative skill score suggests the reference forecasts are more accurate. As the threshold630

decreases, the weight function tends to one, and all scores should therefore tend to the skill score631

obtained from the unweighted CRPS. As expected in this case, the climatological forecasts are632

27



significantly worse than the COSMO-E output, while the post-processed forecasts offer improve-633

ments of roughly 16%. Confidence intervals for the skill scores are also shown at each threshold,634

calculated using the block bootstrap approach described previously.635

However, for all weighted versions of the CRPS, the skill score increases as higher thresholds636

are considered, suggesting the COSMO-E forecasts perform particularly poorly when predicting637

these more extreme events. This is true not only for the post-processed forecasts, but also for the638

climatological predictions. The COSMO-E forecasts, and hence also the post-processed forecasts639

to a lesser degree, tend to over-predict exceedances of extreme thresholds (see Figures 8 and640

9). However, the extreme thresholds are rarely exceeded by the observations, meaning the average641

weighted scores for the climatological forecasts are very close to zero. As a result, the climatological642

forecasts improve even upon the post-processed forecasts at very extreme temperature thresholds,643

with skill scores that tend towards one.644

When evaluating the three competing prediction systemswith respect to multivariate high-impact650

events, separate weight functions are chosen to emphasise the different heat levels. For example,651

when interest is on level two heat events, the weight is equal to one when the level two criteria652

in Table 2 are satisfied, and zero otherwise. Equation 13 is then used to construct a chaining653

function for the threshold-weighted energy and variogram scores from this weight function, with654

𝑧0 = (25,25,25) for heat levels one, two, and three, and 𝑧0 = (27,27,27) for heat level four.655

For concision, only the threshold-weighted scores are presented here. The outcome-weighted656

scores cannot be readily applied to the multivariate ensemble forecasts without some appropriate657

smoothing, as discussed previously, while the vertically re-scaled scores are equivalent to the658

threshold-weighted scores for appropriate choices of 𝑥0. Of course, the weighted scores could be659

calculated using alternative weight functions, though in this example there are fixed definitions660

of extreme heat events, providing obvious weight functions with which to emphasise these events661

when calculating multivariate forecast accuracy.662

The threshold-weighted energy and variogram scores with the above weight and chaining func-663

tions are displayed in Table 4. The scores corresponding to level one heat events are similar to those664

obtained from the unweighted ES and VS, while the climatological forecasts appear to perform665

best with respect to the most extreme heat level. COSMO-E forecasts appear to be significantly666
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Fig. 7. Skill scores for the twCRPS, owCRPS, and vrCRPS as a function of the threshold used in the weight

function 𝑤(𝑧) = 1{𝑧 > 𝑡} at a lead time of three days. The skill scores are shown for the climatological and post-

processed forecast distributions, with the COSMO-E forecasts as the reference approach. The shaded regions

represent pointwise 95% confidence intervals. Dashed vertical grey lines are shown at the thresholds 𝑡 = 25 and

𝑡 = 27.
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less accurate than the alternative strategies when predicting the severity of level three and four heat667

events.668

However, the weighted scoring rules cannot be used to infer what biases are present in the674

COSMO-E forecasts for these high-impact heat events. For this, conditional PIT histograms and675

conditional PIT reliability diagrams are displayed in Figures 8 and 9, where interest is on instances676
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when the temperature exceeds 25◦C or 27◦C, respectively. These checks for conditional calibration677

are accompanied by standard reliability diagrams for predictions that these thresholds will be678

exceeded. As with the owCRPS, the COSMO-E ensembles are first smoothed using a normal679

distribution.680

The climatological forecasts appear to issue better-calibrated forecasts for the probability of an681

extreme temperature event occurring, though the range of the predictions issued is much smaller682

than the COSMO-E and post-processed forecasts, highlighting that the climatological forecasts are683

less discriminative. The climatological forecast distributions also exhibit a heavy tail, suggesting684

parametric families other than the normal distribution may be more appropriate when modelling685

summer-time temperatures (Allen et al. 2021a). Figures 8 and 9 suggest that the COSMO-E686

ensembles over-estimate both the occurrence and severity of high temperature events, particularly687

for the more extreme threshold. This behaviour is also observed for the post-processed forecasts,688

albeit to a lesser degree. Hence, although statistical post-processing improves upon the raw689

COSMO-E model output, these forecasts themselves exhibit systematic biases when predicting690

high-impact events.691

4. Conclusions696

If meteorological services could accurately and reliably predict high-impact weather events,697

then the impacts associated with these events could be mitigated through the design of effective698

twES twVS

Level: 1 2 3 4 1 2 3 4

Clim.
4.44 0.83 0.12 0.07 2.53 3.55 0.25 0.16

[−1.39,−1.05] [−0.03, 0.16] [0.15, 0.43] [0.71, 0.96] [−0.77,−0.54] [−0.22, 0.08] [0.13, 0.48] [0.69, 0.95]

COSMO
1.99 0.87 0.16 0.41 1.53 3.25 0.35 0.78

[0.00, 0.00] [0.00, 0.00] [0.00, 0.00] [0.00, 0.00] [0.00, 0.00] [0.00, 0.00] [0.00, 0.00] [0.00, 0.00]

Post-proc.
1.75 0.71 0.10 0.11 1.47 2.55 0.21 0.23

[0.10, 0.14] [0.13, 0.24] [0.29, 0.47] [0.66, 0.85] [0.01, 0.07] [0.15, 0.29] [0.29, 0.50] [0.63, 0.81]

Table 4. Threshold-weighted ES and VS for the three forecasting strategies with emphasis on each heat event

level. The weight and chaining functions used within the scores are discussed in the text. Below each score is a

95% confidence interval for the corresponding skill score, with the COSMO-E forecasts used as reference. For

readability, all scores for level two and three heat events have been scaled by 10, and those for level four by 100.

The skill scores are unaffected by this scaling.
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Fig. 8. Conditional PIT histograms (left) and conditional PIT reliability diagrams (right) for the three

forecasting strategies at a lead time of three days. Emphasis is on daily mean temperatures that exceed 25◦C.

Standard reliability diagrams (right) also show the conditional event probabilities (CEP) given the forecast

probability that the threshold will be exceeded.
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693

694

695

early warning systems. Methods to evaluate forecasts made for high-impact weather are therefore699

crucial when developing warning systems. This paper has reviewed techniques to evaluate forecasts700

for high-impact events, highlighting in particular how weighted verification tools allow certain701
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Fig. 9. As in Figure 8 but with emphasis on daily mean temperatures that exceed 27◦C.

outcomes to be emphasised during forecast evaluation. We review and compare approaches702

to construct weighted scoring rules, both in a univariate and multivariate setting, and we then703

leverage the existing theory on weighted scoring rules to introduce diagnostic checks that assess704

forecast calibration conditionally on particular outcomes having occurred. To illustrate how these705

verification tools can be employed in practice, they are used to assess how well operational weather706

forecasts can predict dangerous heat events, defined using criteria adopted by the Swiss Federal707

Office of Meteorology and Climatology (MeteoSwiss).708
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Three alternativemethods to construct weighted scoring rules are compared: threshold-weighted,709

outcome-weighted, and vertically re-scaled scores. Outcome-weighted scores provide a direct and710

intuitive way to circumvent the forecaster’s dilemma, allowing forecasts to be evaluated only711

when high-impact events occur. However, when forecasts are in the form of an ensemble, and712

interest is on rare events, these scores are not always well-defined, making it difficult to implement713

them in practice. Hence, when interest is on high-impact weather events, we instead recommend714

evaluating forecast accuracy using threshold-weighted and vertically re-scaled scoring rules. To aid715

their implementation in practice, these weighted scoring rules have recently been made available716

in the widely-used scoringRules package in R (Jordan et al. 2019).717

In Section 3, we use these weighted scoring rules to evaluate three competing prediction systems718

whilst emphasising extreme heat events in Switzerland. In particular, we compare an operational,719

high-resolution ensemble prediction system to climatological and statistically post-processed fore-720

casts. Although recent studies have suggested that statistical post-processing methods could deteri-721

orate the accuracy of forecasts issued by numerical weather models when interest is on high-impact722

weather events, our results indicate that even simple post-processing methods can significantly im-723

prove upon the raw model output when predicting extreme heat in Switzerland. This suggests that724

forecasters should utilise statistically post-processed forecasts when constructingweather warnings,725

in addition to the raw output from numerical weather models.726

However, the checks for conditional calibration introduced here - namely conditional PIT his-727

tograms and conditional PIT reliability diagrams - indicated that even the post-processed forecasts728

were not calibrated conditionally on extreme temperatures having occurred, despite the overall729

forecast distributions being reasonably well-calibrated. Future work might therefore look to rem-730

edy this, by considering how statistical post-processing methods can be developed that are tailored731

to the generation of weather warnings.732

The conditional calibration of the three prediction systems was only evaluated in the univariate733

setting. In Section 2b, we also describe how multivariate cPIT histograms and cPIT reliability734

diagrams could be constructed to check for multivariate calibration given that a high-impact event735

has occurred. However, as with outcome-weighted scoring rules, the approach has practical736

limitations when interest is on rare events and the forecast is an ensemble, which is frequently the737

case for multivariate weather forecasts. It would therefore be useful design appropriate methods738
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to convert multivariate ensemble forecasts to continuous forecast distributions, thereby allowing739

multivariate cPIT histograms and reliability diagrams to be applied.740

Lastly, we reiterate that the methods discussed herein do not evaluate warning systems, but rather741

the ability of weather forecasts to predict potentially impactful events. Weather warnings rely742

not only on these forecasts, but also on several other factors: for example, the economic costs743

associated with a warning, the expected behaviour in response to the warning, and the effectiveness744

with which the warnings are relayed to those at risk. Although this renders the evaluation of745

weather warnings a multifaceted and thus complex task, methods to objectively identify effective746

warning systems would be highly valuable to operational forecasters. Future work might therefore747

look at developing methods to evaluate the quality of weather warnings, potentially building on the748

approaches presented herein to do so.749
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APPENDIX760

Statistical post-processing761

State-of-the-art ensemble prediction systems typically exhibit systematic biases when forecasting762

surface weather variables. To remove these biases and re-calibrate the ensemble output, statis-763

tical post-processing is applied to the forecasts (see Vannitsem et al. 2018, for a review). We764

re-calibrate the COSMO-E daily mean temperature forecasts using the ensemble model output765

statistics (EMOS) framework proposed by Gneiting et al. (2005). EMOS assumes that the variable766

to be forecast follows a certain parametric distribution, whose moments depend linearly on those of767

the corresponding ensemble forecast. We assume here that the daily mean temperature at a given768

time and location is normally distributed.769

To account for local structures within the COSMO-E forecast biases, two additional predictors770

are incorporated into the post-processing model: a topographic position index (TPI) that reflects771

the change in elevation between a station and those in a local neighbourhood of 2km radius, and a772

measure of the height difference between the COSMO-E model and reality (MHD). The inclusion773

of these two spatial covariates follows other recent studies on the post-processing of COSMO-E774

temperature forecasts in Switzerland (e.g. Keller et al. 2021). These additional predictors allow775

the model to account for local features in the forecast biases despite fitting a single post-processing776

model simultaneously to forecasts at all stations.777
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The post-processingmodel can be formalised as follows. Let𝑌 denote the dailymean temperature778

at a given station, time, and lead time, and let 𝑥 and 𝑣 denote the mean and variance of the779

corresponding COSMO-E ensemble members, respectively. Then, the model assumes that780

𝑌 = 𝛽0 + 𝛽1𝑥 + 𝛽2MHD+ 𝛽3TPI+ 𝜖, 𝜖 ∼ N(0,𝜎0 +𝜎1𝑣), (A1)

whereN(`,𝛾) denotes the normal distribution with mean ` and variance 𝛾. Note that the TPI and781

MHD depend on the station under consideration, but not on the time or lead time. The variance782

of this model could similarly be set up to depend on the MHD and TPI, but this was not found to783

provide much benefit.784

The post-processingmodel parameters 𝛽0, 𝛽1, 𝛽2, 𝛽3,𝜎0,𝜎1 link the predictors to the observations.785

A separate set of parameters is estimated for each forecast lead time, thereby acknowledging that the786

relationship between the forecast and the observation will change as the forecast horizon increases.787

As in Keller et al. (2021), the parameters are estimated by minimising the CRPS over a rolling788

training window containing the previous 45 forecast-observation pairs, allowing the model to also789

account for recent patterns in the forecast biases.790

Post-processing is applied to the daily mean temperature forecast at each lead time separately.791

Since dangerous heat events are often a multivariate phenomenon, we use copulas to convert these792

individual forecast distributions into a temporally coherent multivariate forecast over the three793

day period. To do so, we employ ensemble copula coupling (ECC; Schefzik et al. 2013), an794

empirical copula-based approach. ECC works by converting the univariate post-processed forecast795

distributions at each lead time to an ensemble forecast, by selecting 21 evenly-spaced quantiles796

from each distribution, before reordering the resulting ensemble members so that the rankings of797

the ensemble members at each lead time are the same as in the corresponding COSMO-E ensemble.798

By comparing the performance of this post-processing model to the raw COSMO-E output,799

we can investigate how post-processing affects predictions of high-impact events: Pantillon et al.800

(2018), among others, have recently postulated that post-processing can hinder forecasts of extreme801

events due to a regression-to-the-mean type effect. We additionally compare the COSMO-E and802

post-processed forecasts to a climatological prediction. The climatological forecast again assumes803

that the temperature is normally distributed, but no predictors are employed within this distribution.804

The mean and variance of this climatological distribution are estimated over a 45-day rolling805
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window, similarly to the post-processing model, though a separate climatology is estimated for806

each station separately to incorporate local information. An empirical copula is then applied to the807

climatological forecasts to generate a coherent multivariate forecast.808
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