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Abstract 

Aims: Hypoglycemia is one of the most dangerous acute complications of diabetes 

mellitus and is associated with an increased risk of driving mishaps. Current 

approaches to detect hypoglycemia are limited by invasiveness, availability, costs, and 

technical restrictions. In this work, we developed and evaluated the concept of a non-

invasive machine learning (ML) approach detecting hypoglycemia based exclusively 

on combined driving (CAN) and eye tracking (ET) data. 

Materials and Methods: We first developed and tested our ML approach in 

pronounced hypoglycemia, and, then, we applied it to mild hypoglycemia to evaluate 

its early warning potential. For this, we conducted two consecutive, interventional 

studies in individuals with type 1 diabetes mellitus. In study 1 (n=18), we collected CAN 

and ET data in a driving simulator during eu- and pronounced hypoglycemia (blood 

glucose [BG] 2.0 – 2.5 mmol L-1). In study 2 (n=9), we collected CAN and ET data in 

the same simulator but in eu- and mild hypoglycemia (BG 3.0 – 3.5 mmol L-1). 

Results: Here, we show that our ML approach detects pronounced and mild 

hypoglycemia with high accuracy (area under the receiver operating characteristics 

curve [AUROC] 0.88±0.10 and 0.83±0.11, respectively). 

Conclusions: Our findings suggest that an ML approach based on CAN and ET data, 

exclusively, allows for detection of hypoglycemia while driving. This provides a 

promising concept for alternative and non-invasive detection of hypoglycemia. 

Study registration: ClinicalTrials.gov (NCT04035993 and NCT05183191).  
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Introduction 

Hypoglycemia is a dangerous acute complication of diabetes mellitus1, 2, associated 

with impairments of cognitive, executive, and psychomotor functions3-5, thereby 

interfering with the performance of many everyday activities, including driving. Despite 

ongoing and important developments in diabetes treatment, hypoglycemia is 

responsible for a substantial and increasing number of driving accidents6-9. While 

intermittent self-monitoring of capillary blood glucose (SMBG) is still the standard in 

many countries, continuous glucose monitoring (CGM) offers the advantage of 

permanent glucose control. However, CGM is limited by invasiveness, availability, 

costs, and is subject to an inherent time lag in hypoglycemia10. Of note, in a recent 

prospective study, individuals with type 1 diabetes spent a considerable amount of time 

in hypoglycemia while driving11, corroborating the need for alternative and 

complementary methods to detect hypoglycemia while driving. Here, we develop a 

machine learning (ML) approach to detect hypoglycemia exclusively from driving and 

gaze behavior. There is a growing body of evidence examining hypoglycemia 

prediction algorithms based on physiological, nutritional, insulin, and/or CGM data12, 

13. However, to the best of our knowledge, no study has so far aimed to detect 

hypoglycemia using ML methodology based on driving and gaze behavior data. 

Cars permanently generate a broad spectrum of granular real-time information on 

various driving features, transmitted via the Controller Area Network (CAN) bus. 

Additionally, cameras are increasingly installed in modern vehicles14 to monitor driver 

behavior and vigilance, also in (semi-)autonomous driving situations. A hypoglycemia 

warning system based on CAN and eye tracking (ET) data could provide a non-
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invasive, complementary, and scalable approach to reduce accidents in people with 

diabetes. In this paper, we present the concept of a machine learning (ML) approach 

using CAN and ET data to detect hypoglycemia during driving. 
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Material and Methods 

Study design and population 

We conducted two non-randomized, interventional studies in individuals with type 1 

diabetes from 10/2019 to 07/2020 (study 1), and from 11/2021 to 03/2022 (study 2). 

We included active drivers aged 21–50 years (up to 60 years for study 2). Key 

exclusion criteria included motion sickness, pregnancy or breast-feeding, severe organ 

dysfunction, alcohol or drug abuse, and medication known to interfere with driving 

performance (e.g., sedatives, opioids). The eligibility criteria are listed in the 

Supplementary Methods. The studies were conducted at the University Hospital of 

Bern in collaboration with the ETH Zurich, and the University of St. Gallen, following 

the Declaration of Helsinki, the guidelines of good clinical practice, the Swiss health 

laws, and the ordinance on clinical research. Each participant gave informed written 

consent. Both studies were approved by the local ethics committee Bern, Switzerland 

(2019-00579, 2021-002018), and were registered on ClinicalTrials.gov 

(NCT04035993, NCT05183191). 

Study procedure 

Supplementary Figure 1a depicts the visit schedule. After screening, participants 

familiarized themselves with the driving simulator during a test-drive. Participants not 

capable of driving with the simulator (e.g., due to motion sickness) were excluded. 

Participants were fitted with the Dexcom G6 continuous glucose monitoring (CGM) 

system. Participants were instructed to refrain from alcohol, caffeine, and strenuous 
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physical activity 24 hours before the main visit. The main visit was postponed if sensor 

glucose was <3.0mmol L-1 for >30min in the preceding 24 hours. 

For the main visit, participants were admitted to our clinical research unit after an 

overnight fast. During a controlled hypoglycemia procedure, participants drove in eu- 

and hypoglycemia (Figure 1a) on a designated circuit using the driving simulator 

(Figure 1b) while CAN and ET data were recorded. We used a well-established driving 

simulator (Carnetsoft BV, Groningen, Netherlands) as in previous studies on driving 

behavior16-18. Eye gaze was recorded with a consumer eye tracker (Tobii Eye Tracker 

4C, Tobii AB, Danderyd, Sweden). The intended BG range in hypoglycemia was 2.0–

2.5mmol L-1 (in study 1) and 3.0–3.5mmol L-1 (in study 2), respectively (Figure 1c and 

1d). In both studies, each driving session in eu- and hypoglycemia consisted of three 

environments (highway, rural, and urban) completed in random order. The driving 

lasted 5 min in each environment and was separated by 1–2 min breaks for intermittent 

BG measurement using the Biosen C-Line glucose analyzer (EKF Diagnostics 

Holdings plc., Penarth, Cardiff, Great Britain). Participants were informed that a 

hypoglycemic state aiming at a BG level of 2.0–2.5mmol L-1 (study 1) or 3.0–

3.5mmol L-1 (study 2) was to be induced but they were blinded to the BG values 

throughout the experiment. In eu- and hypoglycemia, participants rated eight 

hypoglycemic symptoms, ‘need-to-treat right now’ and ‘difficulty driving’ on a seven-

point scale (0=none, 6=extreme)19. In addition, participants guessed their BG level (in 

mmol L-1,one decimal place). Participants could abandon study procedures at any time 

point if they felt that the situation was unacceptable to them. After data collection and 

restoral of euglycemia, the procedure was terminated if deemed save by the 
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investigator. A detailed description of the controlled hypoglycemic state, the driving 

simulator, the eye tracker, and the driving environments is provided in the 

Supplementary Methods. 

One to three days after the main visit, participants were scheduled for the close-out 

visit including a safety assessment. 

Outcome and sample size calculation 

The main outcome was the diagnostic accuracy of our ML approach to detect 

hypoglycemia quantified as the area under the receiver operating characteristic curve 

(AUROC). Traditional null hypothesis testing that lends itself to power calculation was 

not applicable to our study (i.e., there is no null hypothesis for the development of ML 

models). Therefore, we implemented an established methodology from a previous 

study20 to extrapolate the discriminatory power of ML with increasing sample size. Due 

to the lack of pre-existing literature in the field, this method was applied to preliminary 

data that we retrieved in a pilot study (n=3) to calculate the sample size for study 1. 

Based on this approach, an AUROC of 0.85 to detect pronounced hypoglycemia was 

projected for a sample size of n=18. After completion of study 1, we implemented a 

bootstrap procedure21 to suggest a sample size for study 2. Specifically, after training 

our ML models, we computed 10,000 random samples with replacement for the out-

of-sample AUROC of n patients and then inspected the bootstrapped distribution. For 

a sample size of n=9, we registered a mean AUROC of 0.88 with a standard deviation 

of 0.03. We thus aimed for n=9 completing study 2, which was expected to give precise 

estimates of the diagnostic accuracy with good confidence. 
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ML approach 

We developed and tested our ML approach in a two-step manner (Figure 2): First, 

based on data from study 1 (n=18), we built three ML models (named CAN+ET, CAN, 

and ET) to detect pronounced hypoglycemia (vs. euglycemia) and evaluated the 

performance using cross-validation. Second, the three ML models trained on data from 

pronounced hypoglycemia (study 1) were applied to previously unseen data from 

study 2 and their performance in detecting mild hypoglycemia (vs. euglycemia) was 

evaluated. We chose this approach because training the models on data from 

pronounced hypoglycemia (study 1) allows them to associate clear behavioral changes 

with hypoglycemia. Second, using data from mild hypoglycemia to evaluate the models 

allows us to see how well the models perform when the behavioral effects of 

hypoglycemia are weaker and to provide early warnings. In addition, this also allows 

validating the models on a separate population (study 2). 

To reflect different generations of vehicles, we evaluated the performance to detect 

hypoglycemia separately with three ML models: (1) The CAN+ET model incorporating 

driving and gaze data, representing the latest state of available technology in modern 

cars. (2) A CAN model solely based on driving data, since contemporary cars are not 

yet generally equipped with ET. (3) An ET model using only gaze data, anticipating 

that the availability of (semi-)autonomous driving22 will limit the role of CAN data in the 

future. 

We followed best-practice in ML and use the following procedure for training and 

evaluation to ensure that the ML approach generalizes well to unseen individuals and 

to unseen road segments (see Supplementary Methods). To this end, all evaluations 
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were performed using out-of-sample data to assess the ML models on previously 

unseen road segments and unseen individuals. For study 1, we used leave-one-

subject-out cross-validation (n=18). Hyperparameters were tuned against the AUROC. 

For study 2, there was no training and no hyperparameter tuning; instead, we used the 

trained hypoglycemia detection ML models from study 1 and applied it to each 

participant from study 2 (n=9). That is, there was no additional training with data from 

study 2; instead, data from study 2 was only used for assessing the prediction 

performance. Thereby, we assumed mild hypoglycemia to have the same but weaker 

effects on driving behavior than pronounced hypoglycemia. We also experimented with 

other training and evaluation procedures (Supplementary Table 7), where we arrived 

at consistent conclusions. Eventually, results are reported as the out-of-sample 

prediction performance averaged across study participants (i.e., macro-average). To 

quantify the variation in the prediction performance across participants, we further 

report the standard deviation of the performance at participant level in both studies. 

The input to the ML models consisted of eight features for CAN data, derived from four 

in-vehicle data signals reflecting the driver behavior and vehicle velocity (‘brake pedal 

position’, ‘gas pedal position’, ‘steering wheel angle’, ‘vehicle velocity’). For ET, four 

features were derived from two eye tracker signals (‘gaze fixations’, ‘gaze velocity’). 

All features were standardized by subtracting the mean and scaling to unit variance. 

Each feature was computed within a sliding window of 60 seconds. We did not use 

driver characteristics (e.g., age) as inputs to our models as (i) we included a 

comparably homogeneous population of well-controlled, young individuals with type 1 

diabetes, and (ii) as currently implemented advanced driver assistance systems in 

 14631326, ja, D
ow

nloaded from
 https://dom

-pubs.onlinelibrary.w
iley.com

/doi/10.1111/dom
.15021 by U

niversität B
ern, W

iley O
nline L

ibrary on [16/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



 

 

 

production cars work without additional information about the driver23, 24. This is due to 

various reasons including privacy concerns and usability. Details on the feature 

engineering are outlined in the Supplementary Methods. The output of the three ML 

models was the probability of the participant driving in hypoglycemia vs. euglycemia. 

Additional ML modelling specifications and robustness checks can be found in the 

Supplementary Methods. 

Reporting and software used 

Unless otherwise specified, results are reported as mean±standard deviation (SD). 

Paired BG and CGM values were checked for normal distribution using the Shapiro-

Wilk test and compared using paired t-tests or Wilcoxon signed rank tests. Self-rated 

symptoms were analyzed as follows: according to previous research25, neurogenic and 

neuroglycopenic scores were calculated by averaging scores of the four neurogenic 

and neuroglycopenic symptoms, respectively. The overall symptom score was 

calculated by averaging scores of all eight symptoms. Symptom scores, single 

symptoms, and self-estimated BG levels were checked for normal distribution, and 

compared between euglycemia and hypoglycemia using paired t-tests or paired 

Wilcoxon signed rank tests, respectively. A p-value <0.05 was considered statistically 

significant. 

Descriptive statistical analyses were performed using STATA version 16.0 (StataCorp 

LLC, College Station, Texas, USA). All ML models were implemented using Python 

3.8 with the Python packages scikit-learn (version 0.24.2). The package XGBoost 

(version 1.3.3) was used additionally for the robustness checks. Input features to the 
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ML models were computed using numpy (version 1.20.1) and scipy (version 1.6.2). 

Evaluation metrics were computed using scikit-learn (version 0.24.2). Software used 

for data collection and management are described in the Supplementary Methods. 

Data and code availability statement 

The code for independent replication is available on GitHub (link will be inserted upon 

acceptance of this manuscript). The datasets from the current study are available from 

the corresponding author upon reasonable request. All data shared will be de-

identified. 
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Results 

The final analysis included 18 individuals with type 1 diabetes from study 1 (age 

32.2±7.1y, 12 male, HbA1c 7.1±0.6%, 54±7mmol mol-1), and 9 individuals from study 2 

(age 47.5±10.5y, 7 male, HbA1c 7.3±0.8%, 56±9mmol mol-, see Table 1). There was 

no overlap in these participants across the studies. The study flows are displayed in 

the Supplementary Figure 1.  

Mean venous BG during hypoglycemia was 2.37±0.18mmol L-1 in study 1 and 

3.31±0.15mmol L-1 in study 2 (Figure 1d). Corresponding mean CGM values were 

3.30±0.44mmol L-1 and 3.81±0.64mmol L-1, respectively. CGM readings were 

significantly higher compared to BG values in both studies during hypoglycemia 

(p<0.001 for all comparisons). Individual BG values are shown in the Supplementary 

Figure 2, the self-rated symptoms by the participants are summarized in the 

Supplementary Table 1. 

Overall, the feature engineering approach described in the Supplementary Methods 

led to 18,844 (9,881) observations for study 1 (study 2), out of which 9,101 (4,804) 

observations come from driving in euglycemia and 9,743 (5,077) from driving in 

hypoglycemia. The distribution of observations across the different BG levels is shown 

in Supplementary Figure 3. For detection of pronounced hypoglycemia (study 1), the 

CAN+ET model showed an overall area under the receiver operating characteristics 

curve (AUROC) of 0.88±0.10 (Figure 3a). The corresponding area under the precision-

recall curve (AUPRC) was 0.90±0.10. The CAN model achieved an AUROC of 

0.81±0.13 and the ET model showed an AUROC of 0.81±0.15 (Table 2). 
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When transferring the three ML models to mild hypoglycemia (study 2), the CAN+ET 

model showed an overall AUROC of 0.83±0.11 (Figure 3b), and AUPRC of 0.92±0.06. 

The CAN model achieved an AUROC of 0.75±0.05 and the ET model showed an 

AUROC of 0.75±0.19 (Table 2). 

Additional performance metrics are displayed in Table 2. The AUPRC plots and the 

performance across different environments (highway, rural, and urban) are shown in 

the Supplementary Figures 4 and 5, and Supplementary Table 3. 

To explain the decision-making of the ML models, we interpret the coefficients of the 

input features for CAN+ET, CAN, and ET in the Supplementary Figure 6. Robustness 

checks include the evaluation of other (non-)linear ML models, a sensitivity analysis of 

the detection performance across different window lengths, and with different training 

and evaluation procedures (Supplementary Tables 5–7). 
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Discussion 

The main findings of our prospective, interventional studies in people with type 1 

diabetes evaluating hypoglycemia detection while driving in a simulator are three-fold: 

First, a non-invasive ML approach purely based on driving and gaze behavior data and 

without measurement of glucose (CAN+ET model) detected pronounced 

hypoglycemia with high accuracy. Second, our ML approach was also applicable to 

mild hypoglycemia, thereby allowing for early warnings. Third, limiting the model to 

driving data (CAN model) or gaze data (ET model), exclusively, still resulted in an 

acceptable detection of both hypoglycemic levels. This corroborates the potential of 

our ML approach to be applied in widely available cars without eye tracking cameras 

(CAN only), as well as expanding the use to future cars with (semi-)automated driving 

(ET only). 

Driving a vehicle involves the complex management of speed, braking, and steering. 

High levels of cognitive, executive, and psychomotor functions are required, all of 

which are affected negatively by hypoglycemia3-5. While SMBG is a standard 

approach, it is not suitable for detecting hypoglycemia while driving. CGM offers 

continuous glucose readings but is limited by invasiveness, availability, and 

compromised accuracy particularly in hypoglycemia26. The costs for a CGM system 

are considered around thousand to several thousand dollars a year, depending on the 

country and the manufacturer. In addition, coverage of CGM by health insurances is 

limited and a majority of people living with diabetes still does not use or have access 

to this technology27, 28. In contrast, our approach leverages data that is already being 

recorded by vehicles, making it a scalable and cost-effective solution not requiring 
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additional sensors installed in the car or attached to the body. Moreover, there is a 

growing economic interest in in-vehicle warning systems, as car manufacturers are 

increasingly integrating health-related features into their vehicles23, 24. Of note, the 

accompanying CGM system significantly underestimated the degree of hypoglycemia 

in both of our studies, corroborating the potential of the ML approach to improve the 

accuracy of hypoglycemia detection. While manual calibration could mitigate this 

limitation of factory-calibrated CGM systems30, it would not eliminate the delay of CGM 

as described previously10. Conversely, setting CGM alarm thresholds to a higher level 

may translate into earlier warning but is likely to worsen glycemic control31, while 

repetitive adaptation before and after each ride may not be realistic in clinical practice.  

The interpretation of the mean coefficients of the input features (Supplementary 

Figure 6) allowed for an analysis of the behavioral changes while driving in 

hypoglycemia. Driving behavior based on CAN data was characterized by a decrease 

in the standard deviation (SD) of vehicle controls (steering, brake and gas pedal) in 

hypoglycemia, indicating a less proactive driving style with reduced fine motor control. 

Drivers intervened more abruptly, which was reflected in higher energy (i.e., sum of 

squares) in vehicle control signals. When analyzing the ET data, the model feature 

coefficients revealed a less situational and wandering gaze behavior, which was 

reflected in a lower number of gaze fixations as well as a higher mean and a lower SD 

in gaze velocity. Observations in CAN and ET were consistent in that they both 

depicted behavior in hypoglycemia as more monotonous, less situational, and less fine 

control driven.  
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Earlier simulator studies in individuals with type 1 diabetes have reported more time 

off-road and across the midline in hypoglycemia19, 33. These changes indicate (near) 

mishaps and are thus unsuitable parameters for a preventive system. In contrast, the 

proposed ML approach relies upon driving features that describe more subtle changes 

in driving behavior, allowing for detection of changes in an earlier stage. This is 

corroborated by the fact that our ML approach still achieved an adequate performance 

when tested in mild hypoglycemia. In line with the literature34-36, participants reported 

few symptoms and overestimated their BG levels during mild hypoglycemia 

(Supplementary Table 1), and a majority reported that they would continue driving in 

this state. Such findings, established in well-controlled individuals with preserved 

hypoglycemia awareness according to established criteria15, further emphasizes the 

need for alternative hypoglycemia detection methods. 

All three ML models showed good performance in the highway environment, where the 

traffic context is more monotonous than in other settings. In contrast, the urban and 

rural environments appeared more challenging. In urban and rural settings, drivers 

have to operate the steering wheel and pedals more frequently and significantly, as 

well as shift their gaze more often (traffic lights, pedestrians, junctions, etc.). 

The strength of our study is its prospective and interventional design using a 

standardized protocol, providing data from different hypoglycemic ranges and driving 

environments. BG, the gold standard, was measured with high frequency, confirming 

that the glycemic target ranges during the experiments were reliably met and 

maintained within narrow ranges. In a two-step manner, we developed and tested our 

ML models in independent populations and across different ranges of hypoglycemia, 
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irrespectively of individual thresholds for cognitive decline. Our dataset was collected 

in a well-established driving simulator, using CAN and ET data of contemporary car 

systems, thus providing a base for widespread applicability in the automotive sector. 

Compared to other proposed hypoglycemia detection methods13, our approach allows 

for implementation without the need for additional sensors installed in the vehicle or 

attached to the body. All ML models were evaluated on unseen road segments and 

unseen individuals, which eliminates learning bias. While the current study focuses on 

people with diabetes, the concept may be applicable to other critical driver states 

caused by drowsiness and/or other medical conditions. However, this hypothesis 

needs validation in future studies.  

Limitations include a restricted sample size, owing to the complex and laborious study 

procedures. Conversely, the high resolution of driving and gaze parameters (30 and 

90 Hz, respectively) and BG values (5 – 10 min) provided a solid basis for the ML 

modelling process. The model was built on data of well-controlled and generally 

healthy individuals with type 1 diabetes, since hypoglycemia induction was ethically 

justifiable in this population. This limits generalization to multi-morbid individuals and 

other populations affected by hypoglycemia (e.g., type 2 diabetes), where the 

approach needs separate validation. Currently, the detection capacity of the ML 

approach is limited to the specific glucose ranges of these studies and the performance 

in additional glucose ranges requires future research. Since the study was performed 

in a simulator and not in real cars, we acknowledge the proof-of-concept character of 

our experiments. Given the potential risks of inducing hypoglycemia while driving, this 

may however be an acceptable first step. In this study, we used CAN data analogous 
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to the data collected in real cars. This does not include environmental data, which 

precludes conclusions on the performance of our model on predicting mishaps (e.g., 

crossing the midline). We acknowledge that the sequence of driving (euglycemia 

followed by hypoglycemia) may have introduced bias. This was chosen to avoid a 

carry-over effect since driving after hypoglycemia may be affected up to 75 min after 

restoration of euglycemia37. Lastly, the frequency of eu- and hypoglycemic values was 

balanced in the current study, not reflecting clinical reality. While this may increase 

probability of false positive alarms, this may again be acceptable at the current 

conceptual stage. 

In conclusion, we provide proof-of-concept that a machine learning approach based 

on driving and gaze behavior data can detect hypoglycemia while driving. The 

approach may empower self-management and care of people with diabetes, and may 

be applicable to contemporary cars while anticipating future developments in 

automotive technology.  
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Figure legends 

Figure 1: Overview. (a) Hypoglycemia induction procedures for study 1 and study 2 using 

variable insulin aspart and glucose administration with corresponding driving sessions in eu- and 

hypoglycemia. The intended range for blood glucose (BG) in hypoglycemia was 

2.0 – 2.5 mmol L-1 in study 1, and 3.0 – 3.5 mmol L-1 in study 2. Driving sessions consisted of 

three 5-minute drives in three different environments (highway, rural, and urban) while in-vehicle 

driving (CAN) and eye tracking (ET) data was collected. (b) Driving simulator, eye tracker, and 

glucose management setup in both studies. (c) Key characteristics of study 1 and study 2. (d) 
Venous BG in hypoglycemia for study 1 and study 2 shown as boxplots. Overall, BG in 

hypoglycemia was stable across both studies. The line within the box of the boxplot shows the 

median, the inner bounds of the box correspond to the interquartile range (IQR=25th to 75th 

percentiles) and the outer bounds (i.e., whiskers) correspond to the most extreme data points no 

more than 1.5 x IQR from the edge of the box. Values outsides the whisker range are illustrated 

by dots. 
 

Figure 2: Procedure for building and evaluating our machine learning models. 

 

Figure 3: Machine learning (ML) detects pronounced and mild hypoglycemia based on 
driving and gaze data. Reported is the area under the curve for the receiver operating 

characteristic (AUROC) to detect hypoglycemia. Here, we report the performance in detecting 

(a) pronounced hypoglycemia (study 1) and (b) mild hypoglycemia (study 2) using combined 

in-vehicle driving and eye tracking data (CAN+ET). The AUROC illustrates the mean true 

positive rate (=sensitivity) against the false positive rate (=1−specificity). The shaded areas 

illustrate the standard deviation (SD) at various thresholds across the participants. The gray 

dashed line shows the performance of a model that has no discriminatory power and decides 

at random (AUROC=0.50). ROC, receiver operating characteristic. 
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Tables 

Variable Study 1 (n=18) Study 2 (n=9) 
Age [years] 32.2±7.1 47.5±10.5 
Sex 6 female, 12 male 2 female, 7 male 
Insulin treatment 12 CSII, 6 MDI 4 CSII, 5 MDI 
Weight [kg] 85.0±22.5 84.6±21.5 
Height [m] 1.76±0.10 1.76±0.08 
BMI [kg m-2] 27.1±5.0 27.2±5.5 
TDD [IU day-1 kg-1] 0.69±0.17 0.59±0.13 
HbA1c [%] 7.1±0.6 7.3±0.8 
HbA1c [mmol mol-1] 54±7 56±9 
Clarke score >3 0 / 18 2 / 9 * 
Diabetes duration [years] 19.5±11.0 20.8±10.9 
Driving experience [years] 14.1±7.6 25.8±13.3 
Kilometers driven per year [km year-1] 9,356±7,837 12,944±9,625 

*two participants reported a Clarke Score of 4 points 

Table 1: Baseline characteristics of the participants. Shown are the mean 

values±standard deviation for continuous variables. A Clarke score of higher than 3 

points indicates impaired awareness of hypoglycemia. BMI, body mass index; CSII, 

continuous subcutaneous insulin infusion; HbA1c, glycated hemoglobin; IU, insulin 

units; MDI, multiple daily injections; TDD, total daily insulin dose. 
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 AUROC AUPRC BACC F1 MCC Sensitivity Specificity 

St
ud

y 
1 CAN+ET 0.88±0.10 0.90±0.10 0.85±0.10 0.87±0.10 0.70±0.19 0.86±0.14 0.83±0.14 

CAN 0.81±0.13 0.86±0.11 0.80±0.09 0.81±0.13 0.61±0.16 0.79±0.19 0.81±0.15 
ET 0.81±0.15 0.87±0.12 0.81±0.10 0.82±0.13 0.63±0.20 0.79±0.20 0.83±0.19 

St
ud

y 
2 CAN+ET 0.83±0.11 0.92±0.06 0.80±0.08 0.80±0.13 0.57±0.16 0.71±0.19 0.88±0.13 

CAN 0.75±0.05 0.88±0.04 0.74±0.05 0.85±0.09 0.53±0.10 0.88±0.16 0.59±0.18 
ET 0.75±0.19 0.86±0.12 0.76±0.12 0.86±0.07 0.52±0.23 0.86±0.11 0.65±0.25 

 

Table 2: Machine learning (ML) detects pronounced and mild hypoglycemia 
based on driving and gaze data. Reported is the performance in detecting 

pronounced (study 1) and mild hypoglycemia (study 2) as mean±standard deviation. 

Across both studies, we report the performance metrics using combined in-vehicle 

driving and eye tracking data (CAN+ET), and driving (CAN) or gaze (ET) data 

exclusively. AUROC, area under the curve for the receiver operating characteristic, 

AUPRC, area under the precision-recall curve; BACC, balanced accuracy; F1, F1-

score; MCC, Matthews correlation coefficient. 
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