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Abstract 

Study objectives: Isolated REM sleep behaviour disorder (iRBD) is a parasomnia characterized by 

dream enactment. It represents a prodromal state of alpha-synucleinopathies, like Parkinson’s 

disease. In recent years, biomarkers of increased risk of phenoconversion from iRBD to overt alpha-

synucleinopathies have been identified. Currently, diagnosis and monitoring rely on subjective 

reports and polysomnography performed in the sleep lab, which is limited in availability and cost 

intensive. Wearable technologies and computerized algorithms may provide comfortable and cost-

efficient means to not only improve the identification of iRBD patients but also to monitor risk 

factors of phenoconversion.  In this work, we review studies using these technologies to identify 

iRBD or monitor phenoconversion biomarkers.  

Methods: A review of articles published until 31st May 2022 using the Medline database was 

performed. We included only papers in which subjects with RBD were part of the study population. 

The selected papers were divided into four sessions: actigraphy, gait analysis systems, computerized 

algorithms, and novel technologies. 

Results: 25 articles were included in the review. Actigraphy, wearable accelerometers, pressure 

mats, smartphones, tablets, and algorithms based on polysomnography signals were used to identify 

RBD and monitor the phenoconversion. Rest-activity patterns, core body temperature, gait, and 

sleep parameters were able to identify the different stages of the disease. 

Conclusions: These tools may complement current diagnostic systems in the future, providing 

objective ambulatory data obtained comfortably and inexpensively. Consequently, screening for 

iRBD and follow-up will be more accessible for the concerned patient cohort. 

Keywords: REM sleep behaviour disorder; sleep movement disorders; neurodegenerative diseases; 

Parkinson’s disease; digital biomarkers; wearable sensors; nearable sensors; home monitoring; 

machine learning.  
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Introduction 

Rapid eye movement (REM) sleep behaviour disorder (RBD) is the most common form of REM-

parasomnias. The clinical picture consists of vivid dreaming and enactment of dream content, 

resulting in injuries to patients and their bed partners [1]. RBD can occur in neurodegenerative 

diseases, especially α-synucleinopathies like Parkinson’s disease (PD), then called secondary RBD [2]. 

In the absence of arguments for secondary aetiology, RBD is called isolated (isolated RBD, iRBD). The 

international classification of sleep disorders third edition (ICSD-3) requires the presence of REM 

sleep without atonia (RSWA) in polysomnography (PSG) for the diagnosis of RBD. The ICSD-3 

suggests using the cut-off values for RSWA quantification as proposed by the Sleep Innsbruck 

Barcelona group (SINBAR)  [3]. The same criteria are part of the diagnostic recommendations of  the 

international RBD study group [4]. 

IRBD has an all-over prevalence of 0.38% [5]. In older subjects (>60 years), it rises to 2%, with 80% of 

the RBD patients being male [6]. These numbers may be underestimated as most studies were 

performed without video-PSG. Patients with iRBD are at high risk of converting to overt α-

synucleinopathies (6.3% per year, 73.5% after 12 years)  [7]. Therefore, iRBD is now considered a 

prodromal stage of α-synucleinopathies [8]. Other sleep-wake disturbances such as insomnia, 

restless legs syndrome (RLS), periodic limb movements (PLMS), and sleep apnoea syndrome (SAS) 

are frequent in α-synucleinopathies [9] [10]. 

Determination of biomarkers associated with a higher risk of conversion from iRBD to overt α-

synucleinopathies will become crucial in the light of potential future disease-modifying 

neuroprotective therapeutics [11]. Previous studies identified several biomarkers associated with an 

increased risk of phenoconversion. A large multicentre study by Postuma et al. reports disease 

progression in several clinical domains (motor function, speech, colour vision and olfaction, 

cognition, and vegetative functions) [12]. For instance, quantitative motor tests using a Unified 

Parkinson’s Disease Rating Scale (UPDRS-III) score > 4 identified prodromal parkinsonism with 88% 

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/advance-article/doi/10.1093/sleep/zsad030/7038942 by U

niversitaetsbibliothek Bern user on 16 February 2023



Acc
ep

ted
 M

an
us

cri
pt

sensitivity and 94% specificity two years before diagnosis [13], even if UPDRS-III > 3 is considered a 

standard value in the elderly [14]. No individual or combined biomarker is currently validated to 

predict phenoconversion to overt α-synucleinopathies.  

Information on sleep-wake disorders in iRBD patients originates from patients’ reports and the 

observations of partners and caregivers, complemented by clinical examinations and hospital-based 

objective assessments. Considering that subjective reports are often prone to recall bias, not only in 

patients with cognitive impairment, the frequent lack of reliable third-party history, and the time-

limited assessments by neurologists during single hospital visits, these measures can only provide 

limited or even inconsistent information.  

In recent years, technological development has shown promising and reliable results in the use of 

actigraphy [15], wearable [16], and nearable [17] devices for sleep and motor disorders evaluation. 

Wearables have been used for several years to monitor biomarkers and validated in many studies 

[18]. Numerous studies have investigated the use of wearable devices in patients with PD to monitor 

motor and non-motor symptoms, such as gait, sleep-wake rhythm, and sleep [19]. In contrast, 

relatively few studies have been conducted with patients in the early stages of α-synucleinopathies 

like iRBD patients using wearables.  

Previous review articles focused on objective and subjective measurements for the workup of 

suspected RBD [20] biomarkers of phenoconversion [21], with particular emphasis on brain imaging 

technologies [22]. To our knowledge, this is the first review focusing on novel technological 

approaches that are becoming very popular for monitoring the disease progression and identifying 

the RBD population. This review aims to overview studies that applied wearable and nearable 

technology in patients with RBD defining novel “digital” biomarkers. We will discuss the findings and 

applied technologies to conclude with an outlook on future functional development to improve the 

standard of care for patients with iRBD using novel methodologies.  
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Methods 

For this narrative review, the articles were extracted by one author (O.G.) and evaluated by the 

other authors. A review of articles in English, published until 31st May 2022, using the Medline 

database, was performed. We used the search term “REM sleep behaviour disorder” to identify 

articles specific to patients with RBD. We included studies with idiopathic and secondary RBD, PSG-

confirmed. The articles should contain an abstract. We included only original articles; case reports 

and editorials were excluded from the study. We used Web of Science to search for the topic: “REM 

sleep behaviour disorder” in combination with a second topic such as “actigraphy”, “wearable”, 

“sensors”, “technology”, “machine learning”, “deep learning”, and “automatic scoring”, or “home-

monitoring”. We included only papers in which subjects with RBD were part of the study population. 

The review is divided into four sections according to the different technological approaches used 

(actigraphy, gait analysis, computerized algorithms, and novel technologies). 

 

Results 

The initial search identified 2040 records about RBD. The number was reduced to 76 by considering 

“RBD” in combination with the second argument. From this selection, only 25 studies were 

performed with patients with RBD and therefore have been included in this review. The selected 

studies differ based on whether they assess patients with isolated RBD or secondary RBD and differ 

in their purpose. In some cases, we find studies comparing healthy controls with iRBD and patients 

with neurodegenerative diseases to study phenoconversion. In other cases, authors compare 

patients with different sleep movement disorders to distinguish iRBD or secondary RBD from the 

others. 
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Actigraphy 

Actigraphy represents the state-of-the-art for measuring sleep-wake rhythm in sleep medicine. 

Usually, in sleep clinics, the patient is given an actiwatch to wear at home for one to two weeks. Five 

studies that used actigraphy with patients with RBD are displayed in Table 1. 

Louter et al. used actigraphy to identify RBD in PD patients. 22 patients with PD and no RBD and 23 

patients with PD and RBD were included in the study. Using the number of wake bouts at night as a 

readout, actigraphy could identify patients with RBD with high specificity (95.5%) but low sensitivity 

(20.1%). The authors suggest that actigraphy might be combined with a sensitive method, such as 

questionnaires, to diagnose RBD in PD patients [23]. Filardi et al. used a non-parametric analysis of 

actigraphy to assess nocturnal and diurnal rest-activity features in 19 iRBD patients. These were 

compared to three control groups with different sleep movement disorders (20 RLS, 19 SAS, and 16 

controls*). The relationship between nocturnal and diurnal motor activity intensity (I < O index) can 

distinguish iRBD from patients with other sleep movement disorders and healthy controls with 

similar sensitivity and specificity to visual actigraphy analysis performed by sleep experts [24]. 

However, combined with clinical information (including questionnaires screening for RBD), visual 

analysis outperformed quantitative analysis in identifying subjects with iRBD and distinguishing iRBD 

from other motor activities during sleep [25]. Thus, in combination with clinical information and 

iRBD screening questionnaires, non-parametric actigraphy analysis may significantly improve the 

accuracy and efficiency of screening and even maybe allow diagnosis of iRBD in the general 

population.  

The last two studies in Table 1 used actigraphy to monitor sleep-wake rhythm as a putative 

biomarker of neurodegenerative disease progression. In a cross-sectional study, Liguori et al. 

compared 27 iRBD patients with 19 healthy controls for two weeks. They found a desynchronized 

rest-activity cycle (as represented by a lower relative amplitude) and significantly increased time in 

bed and sleep latency while sleep efficiency was reduced in iRBD patients [26]. Feng et al. compared 
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the rest-activity pattern of 44 secondary RBD patients with overt α-synucleinopathies (PD, DLB, 

MSA), 88 iRBD, and 44 controls for one week. In line with the previous results from [24] and [26], 

significant increases in probable napping behaviours, activity fragmentation, and physical inactivity 

during active periods from controls to iRBD to α-synucleinopathies were found in actigraphy 

recordings. The 88 patients with iRBD were longitudinally followed and monitored for two years. 

Within two years, 22 had converted to overt alpha-synucleinopathies. Comparing baseline 

actigraphy analysis of these converters to the 66 non-converts showed more probable napping 

features and, even after adjusting for napping, significantly less activity during the day [27]. This 

result suggests that increased daytime napping and decreased daytime activity may present a 

biomarker of disease progression and higher phenoconversion risk. 

 

Gait Analysis 

Gait disturbances are considered a significant daytime biomarker of phenoconversion [11]. Table 2 

summarizes five studies that have used different techniques to monitor gait parameters in iRBD and 

secondary RBD patients.  

All studies in Table 2 have identified specific gait parameters as biomarkers of neurodegeneration as 

a common outcome. Decreased gait velocity and cadence and increased stride variability in iRBD 

patients compared to healthy controls have been reported by monitoring gait in a free-condition 

environment using a tri-axial accelerometer [28]. However, gait analysis comparing 24 iRBD patients 

and 14 healthy controls with Zeno pressure sensor walkway did not find differences in step length 

and velocity. In contrast, iRBD patients showed greater gait asymmetry during fast-paced walking, 

and in the dual-task walking condition, step width variability was increased [29]. Deficits in dual-task 

gait have been reproduced in a later study by the same group in a paradigm using a foot pedal 

system with concomitant functional brain magnetic resonance imaging (MRI). Dual task-gait deficits 
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were associated with impaired cortico-striatal connectivity [30]. Finally, Ma et al. investigated 

subclinical gait changes as a prodromal symptom of PD in 31 iRBD using six wearable devices 

containing gyroscopes and accelerometers placed on the chest, wrists, ankles, and abdomen. They 

identified decreased trunk motion and increased step time before turning as prodromal symptoms 

of PD [31].   

Interestingly, an earlier study conducted in 2010 by Benninger et al. on 26 patients with mild-to-

moderate PD (13 with polysomnography confirmed and 13 with excluded RBD) and 20 age-matched 

healthy controls found no association of the presence of RBD with prevalence or severity of gait 

disturbances or postural impairment. Gait assessment on a treadmill and static and dynamic 

posturography was performed. Moreover, RBD was not associated with any particular motor 

phenotype [32]. This indicates that gait disturbances and RBD arise from the degeneration of 

different neuronal networks that may degenerate to various degrees independently. Thus, gait 

disturbances emerging in iRBD patients may indeed point toward disease progression due to the 

spreading of α-synuclein pathology. Further longitudinal studies are needed to investigate the 

emergence of gait disturbances in iRBD patients and evaluate their potential as biomarkers for 

phenoconversion. The availability of well-tolerated and comfortable wearable devices to evaluate 

gait will facilitate such investigations. 

 

Computerized Algorithms 

A new frontier of digital research in medical science is automated signal processing algorithms to 

understand patients’ behaviours. In Table 3, we report eight studies that applied this technological 

approach to the gold standard of sleep evaluation, the PSG. Through the automated analysis of 

electroencephalogram (EEG), electromyogram (EMG), electrocardiogram (ECG), and 

electrocardiogram (EOG), these studies identify not only RBD episodes but also new biomarkers for 
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neurodegeneration in α-synucleinopathies.  Earlier studies by Christensen et al. reported that 

patients with RBD (patient number, n=30), either isolated or in the context of PD, had decreased 

sleep spindle density (SSD) compared to healthy controls (n=15) and PD patients not suffering from 

RBD (n=15), suggesting that SSD may be a biomarker for the presence of RBD [33]. Ruffini et al. used 

a deep learning approach with EEG spectrograms to train a neural network to classify patients with 

iRBD (n=121) compared to healthy controls (n=91). Fourteen of these patients with iRBD developed 

PD after two to four years. The algorithm classified iRBD, which converted to PD with 80% accuracy 

[34]. Research performed by Cooray et al. aims at developing algorithms to identify RBD based on a 

minimum set of signals that wearable devices can obtain at the patient's home. They developed an 

algorithm to detect iRBD in a fully automated analysis of PSG signals (EEG, EOG, and EMG), 

performed with an accuracy of 92% [35]. Their latest study demonstrated the algorithm's 

functionality without the cumbersome EEG [36].  

Cesari et al. developed an algorithm to differentiate patients with different sleep movement 

disorders based on the analysis of the EMG signals. The algorithm distinguished iRBD patients (n=29) 

from patients with PLMD (n=36) with an accuracy of 70.8%. It performed best when both REM and 

NREM phases were considered, and movements caused by apnoea or awakening were not removed 

[37]. In a subsequent study, EEG and EOG signals were used for automatic macro (30s-epoch)- and 

micro (5s-epoch)-sleep stage scoring in a population of patients with PD, divided into three groups: 

26 patients with secondary RBD, 54 patients without RBD, and 27 patients with REM behavioural 

events (RBE). RBE are defined as minor motor behaviours and vocalizations with a seemingly 

purposeful component occurring in REM sleep, but RSWA cut-off criteria for RBD diagnosis are not 

met. RBE have been proposed as prodromal RBD in PD patients. They found that micro-sleep 

instability may be a biomarker for the presence of RBD and progression from RBE to RBD in PD 

patients [38]. This finding is in line with an earlier study by Christensen et al. with an unsupervised, 

data-driven machine learning approach that identified a decrease in NREM3 duration and the 

inability to maintain the NREM and REM phases as potential early predictors of PD [39]. Finally, 
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Dijkstra et al. found that increased total, tonic, chin RSWA, and supine sleep position, extracted from 

the PSG report, are prodromal biomarkers of neurodegeneration, identified in PD patients (n=30) 

before the onset of parkinsonism and irrespective of the presence of RBD [40].  

In conclusion, automated PSG computerized algorithm-based analysis can identify RBD with high 

accuracy, approaching visual analysis by sleep experts. Furthermore, several biomarkers of 

phenoconversion have been identified using PSG-derived data.  

 

Novel Technologies 

In Table 4, we report eight studies to summarize the approaches with the newest technologies used 

in recent years with RBD patients.  

Lee et al. applied machine learning methods to diffusion tensor imaging (DTI) data. DTI is an MRI 

technique that uses anisotropic diffusion to estimate the central nervous system's axonal 

organization. The classifier, known as Support Vector Machine (SVM), using conventional DTI 

measures such as fractional anisotropy, mean, axial, and radial diffusivity, classified 20 iRBD patients 

from 20 healthy controls with an accuracy of 87.5% [41]. Waser et al. analysed the images of a 3D 

video camera (Microsoft Kinect v2 sensor) to distinguish iRBD (n=40) from patients with different 

sleep movement disorders (n=64). They found that minor leg jerks discriminated with the highest 

accuracy (90.4%) iRBD from other patients [42].  

Several studies used smartphone-based technology to investigate speech and other physiological 

features as biomarkers for neurodegeneration. Postural tremor, rest tremor, and voice discriminated 

best between iRBD patients (n=104), PD patients (n=334), and controls (n=84) [43]. The capability of 

smartphone-based speech analysis to discriminate iRBD patients from PD patients and controls (n = 

112 iRBD, 335 PD, and 92 controls, respectively) was confirmed by another study from the same 

group [44] as well as by the work of a different team [45]. Both studies yielded comparable results 
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based on the analysis of smartphone-recorded speech. IRBD patients could be discriminated from 

healthy controls with sensitivity and specificity of 60 – 70%. It did not matter if the patients 

performed a specific speech task [44] or if the spontaneous speech was analysed [45]. In the latter 

study, the duration of pause intervals and rate of speech timing was sufficiently sensitive to separate 

the groups significantly. These studies suggest that voice abnormalities may be considered a 

putative digital neurodegeneration biomarker. 

Motor function abnormalities have been associated with an increased risk of phenoconversion [12]. 

Two recent studies published by Cochen De Cock et al. [46] and R. Krupička et al. [47] investigated 

finger tapping as a biomarker of neurodegeneration. Both included patients with iRBD, PD, and 

healthy controls. The first study used a tablet application to identify temporal distortions in the 

production and perception of rhythmic events in 21 patients with iRBD as early markers of 

phenoconversion. They found that iRBD and PD patients revealed impaired spontaneous rhythm 

production and poor rhythm perception compared to the 38 controls [46]. The second study 

explored whether finger tapping abnormalities, assessed with a 3D motion capture system, are 

already present in iRBD patients (n = 40) and found decreased finger tapping amplitude and velocity 

compared to healthy controls (n = 25), probably reflecting prodromal bradykinesia in iRBD patients 

[47]. 

Impairment of body temperature regulation has been described in PD patients [48]. Raupach et al. 

asked patients suffering from iRBD, PD with and without RBD, or dementia with Lewy bodies (DLB) (n 

= 52) and healthy controls (n = 10) to take an ingestible pill that transmits temperature data to 

monitor core body temperature (CBT) during the night. They found that CBT amplitude is 

significantly reduced in iRBD patients but not in PD patients without RBD [49]. These findings 

indicate a dysregulation of the circadian system and circadian thermoregulatory and, thus, their role 

as a potential early biomarker for iRBD and the ongoing neurodegenerative process. 
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Discussion 

This paper reviewed studies conducted with wearable, contactless technologies, and computerized 

PSG signal analysis algorithms in RBD patients. These technologies were selected for their potential 

usefulness in assessing different aspects of the disorder.  

Actigraphy, which contains an accelerometer and a light sensor, is critical for monitoring the 

disturbances that characterize RBD in a free-condition environment. While the accelerometer can 

measure gait dysfunction during the day and movements to potentially identify RBD occurrence at 

night, the light sensor can be used in combination with the accelerometer to monitor sleep-wake 

rhythm alterations. The inconsistency of primary gait parameters found across the reviewed studies 

can be partly attributed to the different methods of gait detection and to the intrinsic difficulties in 

recognizing the transition phase from iRBD to over alpha-synucleinopathies. The different expertise 

of the various centers may further contribute to the observed differences. 

Considering the in-lab standard clinical assessment of the PSG, the development of computerized 

algorithms applied to PSG signals allows quantifying the RSWA, provides biomarkers that may not be 

accessible to visual analysis, improves diagnosis, and monitors disease progression. In the future, 

these algorithms can be adapted to signals generated by wearable devices, enabling the diagnosis of 

RBD and monitoring of phenoconversion biomarkers under real-world conditions. 

Besides studies focusing on computerized algorithms, most of the other techniques mentioned in 

this review focus on detecting motor impairments as biomarkers of phenoconversion. However, 

since about half of iRBD patients phenoconvert to DLB, the development of screening tests for 

cognitive impairment focusing on attentional and executive performance will be important in the 

future. New technologies, such as smartphone and tablet apps, can bridge and supplement it, 

allowing the assessment of cognitive states. For example, personalized smartphone and tablet apps 

could monitor the cognitive level of patients longitudinally at risk of phenoconversion. 
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The studies selected for this review used the technologies mainly for two purposes: first, to identify 

RBD and discriminate it from other sleep movement disorders, and second, to identify and monitor 

biomarkers for phenoconversion in manifest alpha-synucleinopathies. According to these studies, 

I<O index (sensitivity of 63.2%, specificity of 89.1%) and wake bouts (specificity of 20.1%, sensitivity 

of 95.5%), both obtained by actigraphy, micro-sleep instability (sensitivity and specificity over 75%), 

obtained from EEG, and leg jerks (sensitivity of 97.5%, specificity of 85.9%), obtained from 3D 

camera recordings, were most accurate in identifying patients suffering from RBD. Further studies 

are needed to refine and simplify the analytic frameworks, to obtain high identification accuracy 

with lower patient burden and maximum cost efficiency. In addition to the already-known 

biomarkers of phenoconversion, many diagnostic features mentioned above may serve as digital 

biomarkers for an increased risk of neurodegeneration. Sleep spindle density (sensitivity of 84.7% 

and specificity of 84.5%); step time before turning (sensitivity of 39.7%, specificity of 82.8%); and 

gait velocity (sensitivity of 66.7, specificity of 60%) were markers that could discriminate the 

different stages of the disease. Figure 1 provides a schematic summary of the markers described in 

this literature review. 

Finally, for patients with cognitive and motor impairments, long-term use of wearables for more 

than 2-3 days is difficult [50]. For this reason, the use of nearable devices such as pressure sensors 

mattresses [51], passive infrared sensors [52], and radars [53] represents a promising approach to 

obtaining an objective estimate of motor activity, circadian rhythm, and sleep parameters without 

disturbing the patient in their daily life and maybe evaluated further in the future. However, a 

critical aspect to consider for monitoring sleep disturbances in a free-condition environment is the 

presence of bedpartners. In particular, for contactless technologies, it is essential to identify the 

patients and distinguish them from the bedpartners before calculating sleep and movement 

parameters that have the potential to become digital markers. 
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In conclusion, wearable technology and novel analysis methods hold the potential to enable 

screening for RBD and monitoring of phenoconversion biomarkers in an accurate, efficient, and cost-

effective way. RBD diagnosis and the phenoconversion risk assessment may reach maximum 

accuracy if combined with several technologies and analysis methods. Future studies are needed to 

determine the optimal combination of sensors, signal analysis methods, and biomarkers [54]. 

Wearable technology may support such longitudinal study designs by posing a minimal burden on 

the patients and enabling continuous monitoring of objective features at the patient’s home.  
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Figure Caption 

 

Figure 1:  Identification markers are used to discriminate RBD from other sleep movement disorders. 

Neurodegeneration markers are associated with a high risk of phenoconversion. A) Actigraphy. B) 

Wearable accelerometers and pressure walking mattresses. C) Computerized algorithms like 

automatic scoring and machine and deep learning approaches. D) Smartphones, tablets, 3D 

cameras, DTI, and ingestible capsule sensors. 
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Table 1: Actigraphy in patients with RBD 

* Controls are intended for individuals with suspected sleep disturbance admitted to the sleep clinics but diagnosed with no sleep disturbances. 

** I < O index is a 24-h measure that expresses the relation- ship between nocturnal and diurnal motor activity intensity 

  

Authors Study Aims Subjects Type of sensors Duration Main Findings 

Louter et al. 
2014 [23] 

Actigraphy as a 
diagnostic aid for RBD 

in PD 

To compare actigraphy 
outcomes in PD patients with 

and without RBD. 

22 PD - RBD 
23 PD + RBD 

Actiwatch AW4, 
Cambridge 

Neurotechnology 
Ltd, UK 

8 nights 

PD patients with RBD showed a 
significantly higher number of wake 
bouts compared to patients without 

RBD. 

Filardi et al. 
2020 [24] 

Objective rest-activity 
cycle analysis by 

actigraphy identifies 
iRBD 

To explore whether rest-
activity measures can 

distinguish iRBD from patients 
with other movement sleep 

disorders and controls. 

19 iRBD 
20 RLS 
19 SAS 

16 Controls* 

MicroMini 
Motionlogger - 

Ambulatory 
Monitoring, NY 

2 weeks 

Nocturnal and diurnal motor activity 
intensity index (I < O index**) 

distinguished iRBD patients from those 
with other pathological motor activity 
during sleep and controls with 89.1% 

specificity. 

Stefani et al. 
2018 [25] 

Screening for iRBD: 
usefulness of actigraphy 

To evaluate the utility of 
actigraphy in identifying 

patients with iRBD. 

20 iRBD 
20 RLS 
20 SAS 

10 RLS + SAS 
20 Controls* 

MicroMini 
Motionlogger - 

Ambulatory 
Monitoring, NY 

2 weeks 
 

Visual actigraphy analysis can identify 
subjects with iRBD and distinguish 
iRBD from other motor activities 

during sleep. 

Liguori et al. 
2020 [26] 

Sleep−wake cycle 
dysregulation in iRBD 

To evaluate the sleep−wake 
rhythm in patients with iRBD 
compared with healthy age-

matched controls. 

27 iRBD 
19 HC 

Actiwatch 2 - 
Philips 

Respironics 
14 days 

IRBD showed reduced relative 
amplitude and alteration of both sleep 

and wake compared with controls. 

Feng et al. 
2020 [27] 

Rest-activity pattern 
alterations in iRBD 

To investigate the differences 
in rest-activity patterns 

measured with actigraphy 
across different stages of α-

synucleinopathies. 

44 αSyn 
44 non-RBD 

88 iRBD 
 

 
22 convertors 

66 non-convertors 

Actiwatch 
Spectrum Plus - 

Philips 
Respironics 

7 days 
 
 
 
 
 

2 years 
follow-up 

Significant increases in probable 
napping behaviours, activity 

fragmentation, and physical inactivity 
during active periods across non-RBD 

and iRBD, to α-synucleinopathies. 
 

Convertors had significantly more 
probable napping features. 
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Table 2: Gait monitoring of patients with RBD 

**Virtual reality (VR). 

 

  

Authors Study Aims Subjects Type of sensors Task Main Findings 

Del Din et al. 
2019 [28] 

 Continuous real-
world gait monitoring 

in iRBD 

To investigate if real-world gait 
monitoring with wearables can 
detect early gait changes and 
discriminate individuals with 

iRBD from controls. 

63 iRBD 
34 Controls 

Tri-axial 
accelerometer. 

(Axivity AX3, York, 
UK) 

Walk in a real-world 
environment for 7 

days with an 
accelerometer placed 

at the lower back. 

Reduced gait velocity, variability, 
and rhythm. 

Martens et 
al. 2019 [29] 

 Subtle gait and 
balance impairments 

occur in iRBD 

 To characterize gait and 
balance impairments in iRBD. 

24 iRBD 
14 HC 

Pressure Mattress 
Zeno Walkway 
(Protokinetics, 

Havertown, PA) 

1. Self-speed walking 
2. Fast-speed walking 

3.-5. Dual-task gait 
conditions 

Significant differences between 
the two groups in fast-speed 

walking and dual-task gait 
conditions. 

Martens et 
al. 2020 [30] 

The neural signature 
of impaired dual 
tasking in iRBD 

To determine the neural 
signature of dual-tasking 
deficits in iRBD using a 

validated gait paradigm. 

24 iRBD 
17 HC 

MRI + VR** + Foot 
pedals 

 
Pressure Mattress 

Zeno Walkway 
(Protokinetics, 

Havertown, PA) 

MRI scans as 
performing a dual-

task VR gait paradigm 
using foot pedals. 

 
Single- and dual-task 

walking 

Evidence of dual-task gait deficits 
such as greater mean step time in 

iRBD. 

Ma et al. 
2021 [31] 

Detection of motor 
dysfunction with 

wearable sensors in 
iRBD 

To investigate subclinical gait 
changes in iRBD as prodromal 

symptoms of PD. 

31 iRBD 
20 HC 

6 wearable 
gyroscopes and 
accelerometers 

(APDM; Mobility 
Lab, Portland, OR, 

USA). 

1. Self-speed walking 
2. Fast-speed walking 

3. Dual-task gait 
conditions 

Decreased trunk motion and 
increased step time before 

turning may be possible 
prodromal symptoms of PD. 
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Table 3: Computerized algorithms for patients with RBD 

Authors Study Aims Subjects Signals Main Findings 

Christensen et 
al. 2014 [33] 

Decreased sleep spindle density in 
patients with iRBD and patients 

with PD 

To determine whether SSD is a potential 
biomarker for PD. 

15 PD + 
RBD 

15 PD – 
RBD 

15 iRBD 
15 HC 

PSG 
IRBD and PD + RBD patients had a significantly 

lower SSD than the control group in N2, N3, and 
all NREM stages combined. 

Ruffini et al. 
2019 [34] 

Deep Learning with EEG 
spectrograms in RBD 

To classify subjects as PD or HC using a 
neural network trained with EEG 

spectrograms. 

121 iRBD 
91 HC 

 
14 PD 
13 DLB 

EEG 
Classification accuracy of 80% (±1%) in HC vs. PD-

conversion. AUC* of 87% ((±1%). 

Cooray et al. 
2019 [35] 

Detection of RBD by automated 
PSG analysis 

To propose a fully automated 
framework for sleep staging and iRBD 

identification. 

53 iRBD 
53 HC 

EEG 
EOG 
EMG 

This study validates a tractable, fully automated, 
and sensitive pipeline for RBD identification that 

could be translated to wearable take-home 
technology. 

 Cooray et al. 
2021 [36] 

Proof of concept: Screening for 
RBD with a minimal set of sensors 

To propose a fully automated 
framework for sleep staging and iRBD 

identification without cumbersome EEG. 

50 iRBD 
50 HC 

ECG 
EOG 
EMG 

 The EOG and EMG combination provided the 
optimal minimalist, fully automated performance 

for sleep staging and an RBD detection with an 
accuracy of 90% 

Cesari et al. 
2019 [37] 

Validation of a new data-driven 
automated algorithm for muscular 

activity detection in RBD 

To validate a data-driven method for 
muscular activity detection to classify 

iRBD patients. 

27 HC 
29 iRBD 

36 PLMD 
EMG 

71% accuracy in distinguishing HC, RBD, and 
PLMD patients. RBD patients can be better 

identified when both REM and NREM muscular 
activities are considered. 

Cesari et al. 
2021 [38] 

A data-driven system to identify 
RBD and to predict its progression 

from the prodromal stage in PD 

To investigate EEG, EOG, and micro-
sleep abnormalities associated with RBD 

and RBE in PD. 

54 PD - 
RBD 

26 PD + 
RBD 

27 PD + 

EEG 
EOG 

5-second epochs sleep instability could be a 
biomarker for RBD identification and conversion 

from RBE to definite RBD in PD. 
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*AUC = area under the curve 

 

  

RBE 

Christensen et 
al. 2014 [39] 

Data-driven modelling of sleep EEG 
and EOG reveals characteristics 

indicative of pre-PD and PD 

To identify sleep features with an 
unsupervised learning approach from 

EEG and EOG signals. 

23 HC 
25 PLMS 
31 iRBD 
36 PD 

EEG 
EOG 

The duration of N3 and the ability to maintain 
NREM and REM sleep have potential as early PD 

biomarkers. 

Dijkstra et al. 
2021 [40] 

REM sleep without atonia and 
nocturnal body position in pre-

diagnostic PD 

To characterize polysomnographic 
alterations in PD and pre-diagnostic PD. 

13 iRBD 
30 PD 
30 HC 

PSG 
Increased total, tonic, chin RSWA, and nocturnal 

supine body position are prodromal PD 
biomarkers. 

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/advance-article/doi/10.1093/sleep/zsad030/7038942 by U

niversitaetsbibliothek Bern user on 16 February 2023



Acc
ep

ted
 M

an
us

cri
pt

 

Table 4: Novel technologies for patients with RBD 

Authors Study Aims Subjects Type of sensors Monitoring Main Findings 

Lee et al. 
2021 [41] 

Application of machine 
learning analysis based on 
diffusion tensor imaging to 

identify RBD 

To evaluate the feasibility of 
machine learning analysis using 

DTI parameters to identify 
patients with iRBD 

20 iRBD 
20 HC 

DTI 
1 image 
In clinic 

SVM classifier based on 
conventional DTI measures 

revealed an accuracy of 87.5% 
and an AUC of 0.9 to identify 

iRBD. 

Waser et al. 
2020 [42] 

Automated 3D video 
analysis of lower limb 

movements during REM 
sleep: a new diagnostic 

tool for iRBD 

To evaluate automated 3D 
video analysis of leg movements 

during REM to differentiate 
iRBD from other sleep 
movement disorders. 

40 iRBD 
11 SA 

4 PLMS 
44 SA + PLMS 

5 RLS 

Microsoft 
Kinect v2 

sensor 
(Microsoft 

Corporation) 

1 night 
In clinic 

 

Minor leg jerks discriminated 
iRBD from other sleep movement 

disorders with an accuracy of 
90%. 

Arora et al. 
2018 [43] 

Smartphone motor testing 
to distinguish iRBD, 

controls, and PD 

To identify motor features to 
distinguish individuals with iRBD 

from controls and PD using a 
customized smartphone 

application. 

334 PD 
104 iRBD 

84 Controls 
Smartphone 

7 tasks 
7 days 

In clinic 
At home 

Postural tremor, rest tremor, and 
voice were the most 

discriminatory tasks overall, 
whereas the reaction time was 

the least discriminatory. 

Arora et al. 
2021 [44] 

Smartphone speech testing 
for symptom assessment in 

RBD and PD 

To investigate smartphone 
speech testing to distinguish 
iRBD from controls and PD. 

92 Controls 
112 iRBD 
335 PD 

Smartphone 

1 task 
4 times/day 

7 days 
In clinic 
At home 

Speech as a putative digital 
biomarker for PD and RBD. 

Rusz et al. 
2018 [45] 

 Smartphone allows 
capture of speech 

abnormalities associated 
with high risk of developing 

PD 

To find speech features 
representing the key aspects of 

hypokinetic dysarthria in the 
early stages of PD. 

50 iRBD 
30 de-novo PD 

30 HC 
Smartphone 

3 tasks 
In clinic 

 Duration of pause intervals and 
rate of speech timing extracted 
from the spontaneous speech 

was sufficiently sensitive to 
significantly separate groups. 

Cochen De 
Cock et al. 
2020 [46] 

Rhythm disturbances as a 
potential early marker of 

PD in iRBD 

To identify timing distortions in 
production and perception of 

rhythmic events as early 
markers of PD. 

21 iRBD 
38 PD 
38 HC 

Tablet 
15-20 min 

In clinic 

IRBD and PD revealed impaired 
spontaneous rhythm production 

and poor rhythm perception 
compared to controls. 

Krupička et 
al. 2020 [47] 

 

Instrumental analysis of 
finger tapping reveals a 
novel early biomarker of 

parkinsonism in iRBD 

To explore whether finger-
tapping abnormalities, 

evaluated with a 3D motion 
capture system, are already 

40 RBD 
25 de-novo PD 

25 HC 

3D motion 
capture system 

(V120: Trio, 
Optitrack) 

1 clinical 
assessment 

 Decreased finger tapping 
amplitude and velocity compared 

to healthy controls. 
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present in RBD patients. 

Raupach et 
al. 2019 [49] 

 Assessing the role of 
nocturnal core body 

temperature dysregulation 
as a biomarker of 

neurodegeneration 

To investigate nocturnal CBT 
changes in patients with iRBD, 

which may prove to be an early 
objective biomarker for α‐

synucleinopathies. 

15 iRBD 
31 PD 
6 DLB 
10 HC 

CBT 
ingestible 

capsule sensor 
(VitalSense, 

Phillips 
Respironics) 

1 night 
In clinic 

Reduced nocturnal CBT 
amplitude in iRBD, PD+RBD, and 

DLB, not in PD-RBD. 
Significant negative correlation 
between the amplitude of the 

CBT and self‐reported RBD. 
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Figure 1 
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