
Original Paper

Development of an Open-source and Lightweight Sensor
Recording Software System for Conducting Biomedical Research:
Technical Report

Michael Single1, MSc; Lena C Bruhin1, MSc; Narayan Schütz1,2, PhD; Aileen C Naef1, MSc; Heinz Hegi3, MSc;

Pascal Reuse1, MSc; Kaspar A Schindler4, MD, PhD; Paul Krack4, MD; Roland Wiest5, MD; Andrew Chan4, MD;

Tobias Nef1,4*, PhD; Stephan M Gerber1*, PhD
1Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
2DomoHealth SA, Lausanne, Switzerland
3Department of Sport Science, University of Bern, Bern, Switzerland
4Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
5Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University
Hospital, University of Bern, Bern, Switzerland
*these authors contributed equally

Corresponding Author:
Stephan M Gerber, PhD
Gerontechnology and Rehabilitation Group
ARTORG Center for Biomedical Engineering Research
University of Bern
Murtenstrasse 50
Bern, 3008
Switzerland
Phone: 41 31 664 09 83
Email: stephan.m.gerber@unibe.ch

Abstract

Background: Digital sensing devices have become an increasingly important component of modern biomedical research, as
they help provide objective insights into individuals’ everyday behavior in terms of changes in motor and nonmotor symptoms.
However, there are significant barriers to the adoption of sensor-enhanced biomedical solutions in terms of both technical expertise
and associated costs. The currently available solutions neither allow easy integration of custom sensing devices nor offer a
practicable methodology in cases of limited resources. This has become particularly relevant, given the need for real-time sensor
data that could help lower health care costs by reducing the frequency of clinical assessments performed by specialists and improve
access to health assessments (eg, for people living in remote areas or older adults living at home).

Objective: The objective of this paper is to detail the end-to-end development of a novel sensor recording software system that
supports the integration of heterogeneous sensor technologies, runs as an on-demand service on consumer-grade hardware to
build sensor systems, and can be easily used to reliably record longitudinal sensor measurements in research settings.

Methods: The proposed software system is based on a server-client architecture, consisting of multiple self-contained
microservices that communicated with each other (eg, the web server transfers data to a database instance) and were implemented
as Docker containers. The design of the software is based on state-of-the-art open-source technologies (eg, Node.js or MongoDB),
which fulfill nonfunctional requirements and reduce associated costs. A series of programs to facilitate the use of the software
were documented. To demonstrate performance, the software was tested in 3 studies (2 gait studies and 1 behavioral study
assessing activities of daily living) that ran between 2 and 225 days, with a total of 114 participants. We used descriptive statistics
to evaluate longitudinal measurements for reliability, error rates, throughput rates, latency, and usability (with the System Usability
Scale [SUS] and the Post-Study System Usability Questionnaire [PSSUQ]).

Results: Three qualitative features (event annotation program, sample delay analysis program, and monitoring dashboard) were
elaborated and realized as integrated programs. Our quantitative findings demonstrate that the system operates reliably on
consumer-grade hardware, even across multiple months (>420 days), providing high throughput (2000 requests per second) with

JMIR Form Res 2023 | vol. 7 | e43092 | p. 1https://formative.jmir.org/2023/1/e43092
(page number not for citation purposes)

Single et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

mailto:stephan.m.gerber@unibe.ch
http://www.w3.org/Style/XSL
http://www.renderx.com/


a low latency and error rate (<0.002%). In addition, the results of the usability tests indicate that the system is effective, efficient,
and satisfactory to use (mean usability ratings for the SUS and PSSUQ were 89.5 and 1.62, respectively).

Conclusions: Overall, this sensor recording software could be leveraged to test sensor devices, as well as to develop and validate
algorithms that are able to extract digital measures (eg, gait parameters or actigraphy). The proposed software could help
significantly reduce barriers related to sensor-enhanced biomedical research and allow researchers to focus on the research
questions at hand rather than on developing recording technologies.

(JMIR Form Res 2023;7:e43092) doi: 10.2196/43092

KEYWORDS

sensor recording software; on-demand deployment; digital measures; sensor platform; biomedical research

Introduction

Digital sensing devices have become increasingly popular in
modern biomedical research. They allow researchers to gain
objective insights into people’s behavior, helping them gain a
deeper understanding of health and disease processes [1].
Sensor-based assessment is particularly relevant in the context
of chronic conditions, such as neurodegenerative diseases, which
are inherently difficult to assess and have previously often relied
on biased, subjective data, such as questionnaires [2]. Despite
the significant potential of these new digital technologies,
adopting sensor-enhanced biomedical solutions is not simple.
Specifically, significant barriers related to technical expertise
as well as associated costs exist. As a result, their use is still
largely limited to specialized research groups. One possible
reason for this is that existing technologies and frameworks that
could be used to record internet of things–driven real-world
sensor data often require extensive technical expertise, and are
frequently in the form of complex and rather expensive solutions
(eg, cloud [3] or on-premises deployments). Such solutions are
useful on a large scale but may deter many research groups that
do not have access to the necessary expertise or resources. There
is therefore a strong need for simple yet reliable software to
build systems that are operational on cost-efficient
consumer-grade hardware as basic as a Raspberry Pi 4
(Raspberry Pi Foundation), and can integrate multiple sensing
devices, all while conforming to the clinical and technical
requirements of biomedical research settings.

Digital sensing devices are becoming increasingly important,
especially in the field of biomedical research, as their assessed
measures provide objective and continuous insights into people’s
everyday lives [4-7]. This is supported by a multitude of studies
that have demonstrated how health-related digital measures can
contribute to a deeper understanding of a person’s health and
well-being [8]. For instance, digital measures have been used
to monitor the progression of neuropsychiatric disorders [9-11],
gait abnormalities (eg, speed, stride length, and gait symmetry)
[12-14], and cardiovascular indices such as heart rate variability
in older adults with dementia [15]. A key advantage of
sensor-derived digital measures is the ability to obtain
continuous information, as more traditional on-site clinical visits
tend to provide only an often biased snapshot of a person’s
health status [16]. This access to timely health-relevant
information could also allow for the earlier detection of
health-related deterioration, which is often associated with
decreased health care costs, better health outcomes, and a higher

quality of life [17,18]. Beyond research, the availability of
real-time sensor data could help lower health care costs by
reducing the frequency of clinical assessments conducted by
specialists and improve access to health assessments (eg, for
people living in remote areas or older adults living at home).

Although the use of digital sensing devices has proven
straightforward in laboratory settings [19], their use in the real
world is associated with economic, technical, and regulatory
issues, which are nontrivial and pose significant obstacles [20].
These circumstances are especially relevant for researchers
conducting early stage research (eg, feasibility studies) or with
limited resources. Buying a complete sensor system with all
devices and applications from a single vendor is not always a
viable option either technically or economically. An alternative
strategy, developing a dedicated data acquisition system for
every research question that relies on sensing devices, can also
be impractical in the context of research. In the realm of
technical challenges, one major aspect is related to big data
requirements, such as volume, velocity, and variety [21]. Early
stage research might not inherently contribute to big data, but
it may eventually produce high-frequency data streams that
generate large volumes of data that must be ingested in (near)
real-time. Typically, such high-frequency sensor systems
produce several hundred samples per second [22]. These sensor
streams can come from numerous sensor types, leading to a
variety of data formats. Thus, ensuring high availability and
fault tolerance is critical to guarantee stable and high-quality
data recordings. Another consideration is that data are sometimes
not processed synchronously or are lost due to latency in the
network. This problem is exacerbated by the lack of
standardization in communication protocols, which makes it
difficult to ensure compatibility between sensing devices and
related applications across different vendors. Traditionally,
cloud-first solutions, thus solutions that were designed with
cloud deployments in mind, have been used to tackle the
aforementioned challenges in the context of biomedical research
using digital sensing devices. Prominent systems that take this
approach are SPHERE [23], CART [24], and Waggle [25].
However, such cloud-first solutions, while certainly powerful
for large-scale deployments, can quickly become cumbersome
and expensive, which often translates into significant
maintenance and configuration overhead. Lastly, on-premises
deployments may be preferred, especially in the context of
medical data, such as recordings in hospitals. A comprehensive
listing of such on-premises solutions can be found in the
systematic review of mobile and wearable sensing frameworks

JMIR Form Res 2023 | vol. 7 | e43092 | p. 2https://formative.jmir.org/2023/1/e43092
(page number not for citation purposes)

Single et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.2196/43092
http://www.w3.org/Style/XSL
http://www.renderx.com/


by Kumar et al [26]. This review provides a detailed comparison
of various functional (eg, data storage method) and
nonfunctional (eg, extensibility, scalability) features of mobile
health (mHealth) sensor systems. Although listed systems such
as RADAR-base [27] and AWARE [28] support the integration
of external sensor systems, are open source, and ensure
scalability (eg, by relying on technologies such as the Apache
Kafka platform), they cannot easily be deployed on
consumer-grade hardware due to their complexity. However,
alternative options are either too specific (ie, they can only be
used for certain applications or support only certain sensors)
[29] or too general [30], making them challenging to adapt to
various uses. There is therefore a significant need for
on-premises solutions that address the technical challenges, are
extensible, and can be run on consumer-grade hardware.

According to best practice principles on the internet of things
[31,32], the ideal sensor system software supports a simple
mechanism for integrating multiple and diverse high-frequency
data streams from various sensing devices with stability
guarantees and minimal development effort. To achieve such a
technical solution, the gap between laboratory systems and
consumer-grade installations must be bridged. This may best
be achieved by an open, scalable, and flexible software
infrastructure, as well as a set of tools that enables the

integration of data from a wide range of technologies. To this
end, we have developed a software system that offers a simple
and flexible installation and supports arbitrary sensor
technologies. Therefore, the objective of this work is to report
on the end-to-end development, functionality, and performance
evaluation of this open-source sensor recording software (SRS).

Methods

Overview
This section details the end-to-end development of the proposed
SRS and how its performance was evaluated (Figure 1). The
first part describes qualitative aspects of the software system,
whereas the second part describes quantitative aspects in terms
of system properties. The “Nonfunctional Requirements” section
specifies the properties and characteristics of the developed
system’s software architecture. The “Software Architecture”
section describes the system’s components, how they are
structured, and how they interact with each other. The “Field
Experiments” section describes the acquisition of data to
evaluate the SRS system, which involves running versions of
the proposed software, referred to as instances. In the “System
Properties” section, a documentation of the metrics to evaluate
the performance of the system properties is provided.

Figure 1. Outline of the qualitative and quantitative aspects of the methods section. First, a conceptualization of the system’s characteristics and
properties in the form of nonfunctional requirements is provided, followed by a report on architectural components of its software and their interactions.
This is followed by an explanation of the data acquisition in the field experiments; these data were used to evaluate the performance of the system’s
properties by applying various metrics (error rate, throughput, latency, and usability). SRS: sensor recording software.

Nonfunctional Requirements
The technical aspects of a software system (ie, its technical
properties and constraints) can be described in terms of
nonfunctional requirements. In the context of software
engineering, nonfunctional requirements are defined as the

constraints imposed on a system that specify the quality
attributes of the software [33]. These requirements therefore
affect how the software architecture of a system is designed and
implemented. To design the software architecture of the SRS,
the nonfunctional requirements and attributes in Textbox 1 were
considered.

JMIR Form Res 2023 | vol. 7 | e43092 | p. 3https://formative.jmir.org/2023/1/e43092
(page number not for citation purposes)

Single et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Textbox 1. Nonfunctional requirements and attributes.

1. Reliability

• Allow the sensor recording software (SRS) to operate without failure while maintaining a specified level of performance for a prolonged period.
The software should be fault tolerant, should have a low failure rate, and should be recoverable.

2. Data integrity

• Assures integrity, consistency, and correctness of the sensor data in the SRS.

3. Scalability

• Handle an increase in workload by adding resources to the system (eg, persisting measurements of high-frequency data producers).

4. Performance

• The time it takes for the SRS to accomplish a task (eg, the delay), or the number of requests the SRS completes within a given amount of time
(eg, throughput).

5. Flexibility

• The degree to which the SRS can be adapted to different configurations without having to change its software, such as the integration of new
sensor devices.

6. Usability

• Produce a straightforward software system for starting sensor measurements that works on a wide range of hardware solutions and requires only
a minimum of technical know-how.

7. Security

• Prevent unauthorized access to measured sensor data.

8. Privacy

• Controls how sensitive data of the measured individuals are viewed and used.

Software Architecture

Software Architecture: Design
The design of the SRS architecture was derived from the
specified nonfunctional requirements by attempting to fulfill
several related objectives (Table 1), thus ensuring these

objectives directly affect the implementation of the software
architecture.

To perform the actual implementation of the SRS architecture,
the main technologies and frameworks listed in Textbox 2 were
chosen.

JMIR Form Res 2023 | vol. 7 | e43092 | p. 4https://formative.jmir.org/2023/1/e43092
(page number not for citation purposes)

Single et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Listing of nonfunctional requirements, their objectives, the sensor recording software attempts to fulfill them, and detailed information about
the strategy on how to meet the corresponding objective in the software architecture’s implementation.

Implementation strategy in software architectureNonfunctional requirement and its objectives

Reliability

Prolonged runtime using fault-tolerant policies • Perform system-wide exception handling and apply reactive restart
strategies for critical program components in case of system crashes
[34]

Data integrity

High data quality • Validate all measured sensor samples before and after persisting with
the data [35]

Reproducible experiments • Have replicable deployment configuration [36]

Scalability

System performs as expected under increasing or heavy workloads • Structure the software as a decentralized system in the form of
lightweight microservices [37]

• Rely on technologies that have proven to be scalable [38]

Performance

High data throughput rates for handling a large quantity of data streams • Use a concurrent web server capable of handling multiple connections
[39]

• Persist with time-series data in an optimized database technology
that supports fast writing operations [40]

Flexibility

Easy integration of new sensor devices or third-party applications • Incorporate new sensor-data formats by adhering to the extendable
data interface [41]

• System components are divided into functional parts with high cohe-
sion and low coupling [42]

Usability

Supports a large variety of hardware systems • Rely on standard lightweight virtualization technique for the orches-
tration of microservices [43]

Streamline the installation and configuration of the software • Follow best practices for deployment strategies, specifically through
version control systems in combination with continuous integration
provided by repository hosting services [44]

Offers an intuitive method to control sensor measurements • Implement a graphical user interface designed to carry out measure-
ment and the monitoring of the data stream [45]

Security

Data protection concerns • Database is encrypted and hosted locally [46]
• Data can only be accessed through communication channels that use

network certificates [47]

Privacy

Protect privacy of measured individuals • No identifying information is stored in the database [48]

JMIR Form Res 2023 | vol. 7 | e43092 | p. 5https://formative.jmir.org/2023/1/e43092
(page number not for citation purposes)

Single et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Textbox 2. The main technologies and frameworks for the actual implementation of the sensor recording software architecture.

1. The software-virtualization platform Docker

• This virtualization platform Docker [49] offers a standardized, lightweight virtualization technique controlling the execution states of a program
(eg, starting, stopping, or restarting a program) in the form of containers leveraging the orchestration of microservices [43]. This aspect substantially
simplifies the deployment process, while the level of technical expertise required is reduced, thus improving the overall usability of the sensor
recording software [44,50]. With Docker’s ability to define restart policies for its containers, reliability can be guaranteed in the form of prolonged
runtimes [51].

2. The NoSQL database MongoDB

• The NoSQL [40] database MongoDB [52] offers fast writing operations and is thus well suited to persisting high-frequency time-series data over
a prolonged period, such as sensor recordings [40,53]. The security aspects are further enhanced by enabling MongoDB’s native encryption
functionality.

3. The reverse proxy, Nginx, in combination with the concurrent web server Node.js

• Using the combination of Nginx [54] and Node.js [55] in web development has been shown to be a reliable choice for the efficient handling of
input/output operations (eg, handling a large number of transmission control protocol sockets due to incoming sensor requests) while ensuring
performance [56,57].

4. The column-oriented data format Apache Parquet

• Data in the Apache Parquet [58] format are stored consecutively on the hard disk and are thus highly compression friendly. This compression
aspect makes Parquet particularly useful for applications that need to store and query large amounts of data (such as those generated in the analysis
of time series produced in sensors) to improve their performance [50]. This aspect makes Parquet an ideal format for exported database dumps.

Software Architecture: Implementation
To ensure that the SRS fulfills the previously specified
nonfunctional requirements, the software is divided into modular
components according to the modularity principles described
by Laplante [59]. The components and their intercommunication
are organized according to the client-server architecture.

Consequently, the SRS architecture consists of the following
three high-level components (Figure 2): the backend, as a server
representing the central resource provider; the consumers, as a
client fetching data streams from the server (eg, visualization
programs); and the producers, as a client sending data to the
server (eg, sensors, human users, or external services).

Figure 2. Schematic representation of the sensor recording software architecture and its functional components organized according to the client-server
architecture. The backend represents the server abstraction and provides resources to its clients (consumers and producers). DB: Database.

The backend is structured into functional components that each
represent a collection of services that expose internal resources
(eg, the database) to the application programming interface
(API) end points to clients (ie, data-stream interfaces for

producers and consumers). It further consists of a reverse proxy
server, a web server with multiple APIs (WebSockets [60] and
RESTful [55]), a database, and a data export service. Such
service-oriented architecture structuring has been demonstrated

JMIR Form Res 2023 | vol. 7 | e43092 | p. 6https://formative.jmir.org/2023/1/e43092
(page number not for citation purposes)

Single et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


to be particularly useful in the realm of web application
development [56]. Moreover, all of the services are run as
Docker containers and are managed via Docker Compose.

The reverse proxy, Nginx, is integrated into the backend to route
client requests and to secure all communication channels with
SSL/TLS (secure sockets layer/transport layer security)
certificates [57]. These client requests are served by a Node.js
web server. Other important tasks of this web server are the
specification of client end points, the filtering of sensor streams,
the setup of database connections, the scheduling of backup
triggers, and the validation of the data to persist in the database.
For serving client requests, the web server exposes a RESTful
and a WebSocket API. The RESTful API provides end points
for creating, deleting, or retrieving database entities over http,
while the WebSocket API provides an interface for streaming
sensor measurements to third-party applications or sending
control messages to the sensor devices (eg, for toggling or
rebooting) in near-real time. Furthermore, to foster their
development and integration into other systems, all public-facing
APIs are documented with Swagger [61]. To efficiently persist
with high-frequency sensor data, the database technology
MongoDB is used. Access to the end points is restricted using
authentication protocols (http basic authentication and API
access tokens). Data integrity constraints are guaranteed by
validating the data before writing the samples into the database.
The data export service is realized as a Python application that
is triggered by the backend to export the acquired raw data from
the database to a tabular format specified in Apache Parquet.
To meet the requirements set by local ethics boards, exported
files can be saved, optionally, to a long-term storage system
(eg, to a network-attached storage or even a cloud storage
system, such as AWS S3).

The consumer abstraction represents client applications that
depend on and consume backend resources (eg, front-end
applications) in the form of service applications. In this regard,
several front-end applications are integrated to increase the
overall usability of SRS systems. First, a graphical user interface
(UI), realized as a Vue.js [62] web application, allows users to
configure sensing devices, start and stop recordings, and dump
the database. Vue.js was chosen because it is a single-page
application framework that allows the creation of reusable
components and, thus, makes it straightforward to extend the
front-end application. Another consumer application included
is a program used to annotate events in the time-series data
assessed in a sensor recording. Next, a program to analyze the
delays in persistent sensor recordings was integrated, which
may help detect issues in the recording processes of sensing
devices. The integration of the TICK (Telegraf, InfluxDB,
Chronograf, Kapacitor) stack [63] offers further administrative
simplifications that enable the SRS system to quickly store,
visualize, and alert events in time-series data by integrating the
following programs: Telegraph, an agent for collecting and
reporting metrics; InfluxDB, a time-series database;
Chronograph, a configurable dashboard to visualize InfluxDB
data; and Kapacitor, an event-processing and alerting engine
with bindings to notification systems (eg, via SMS text message
and email). Lastly, several data processors were preimplemented

to extract specific digital measures (eg, temperature statistics)
from the exported data (eg, Apache Parquet files).

Regarding the security aspects, all the front-end applications
are protected by means of token-based authentication techniques
(eg, the OAuth2 protocol) and encrypted connections using
SSL/TLS certificates, with public API requests performed over
the https protocol.

The producer abstraction models data-producing client
applications that interact with the backend. In other words, the
producer streams data to, and receives control messages from,
the backend. Producers are either sensor devices installed in the
same network (eg, radars or LIDARs [light detection and
ranging]), external services (eg, a producer that is in a different
network, such as a commercially available cloud service), or
human users who manually enter data (eg, timestamp
annotations). A sensor system is either an adapter that
communicates with an existing sensor device and forwards
measurements to the SRS system or a driver for a sensing device
(eg, radar antenna) that integrates the SRS communication
protocols. In both cases, the end user must implement the
adapter integration and data. Consistent communication between
sensors and the backend is ensured by providing a strongly
typed payload specification via JSON schema and requiring
every sensor device to implement a specification to transmit
data packets. This specification includes the sensor type, the
structure of the sensor samples, and its expected metadata, such
as the sensor’s internet protocol address. The data flow from
any sensor to the backend is performed over a RESTful http
API, whereas the sensor control flow, which manages the state
of the sensor (such as on/off), is achieved via streaming
technologies using WebSockets. Examples of sensors that have
been integrated into the system using this interface are radar
systems to measure gait parameters and a pressure-sensing
mattress for tracking activity in bed.

The source code of the SRS is freely available on the project
website [64], along with detailed documentation resources.
These resources contain an outline of the architecture, a
step-by-step installation manual, a Docker Compose
configuration file to install and run the SRS instances, and a
tutorial that describes how to integrate a new sensor.

In what follows, 3 qualitative utility programs of the SRS system
are elaborated: a graphical UI to administer the SRS pipeline
and mark and annotate events in a live measurement, a program
to analyze delays in recorded samples, and a configurable
dashboard to monitor system resources.

Software Architecture—Event Annotation Program
To start and stop sensor recordings, a browser-based program
with a graphical UI was integrated into every SRS system. This
program allows an experimenter to manually annotate events
of interest in a synchronized manner across all incoming sensor
recordings. Two synchronized radar recordings were
continuously assessed for 15 minutes in a measurement in
November 2021 (Figure 3). The events were annotated with
labels for their measurement (M1, M2, and M3) and their
repetitions were expressed as trials (T1, T2, or T3).

JMIR Form Res 2023 | vol. 7 | e43092 | p. 7https://formative.jmir.org/2023/1/e43092
(page number not for citation purposes)

Single et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 3. A visualization of 6 walks performed by a single participant, measured by 2 Doppler radars (indicated by the green and yellow dots), together
with annotated events (ie, a correspondence between timestamp ranges, experiment, and their trial numbers).

Software Architecture: Sample Delay Analysis Program
A program was integrated into every SRS system to analyze
the delays in persistent sensor recordings. Such recordings can

be used to detect indications of variations and potential delays
in sensor streams. An example of a radar timestamp delay
distribution produced by the SRS is shown in Figure 4.

Figure 4. Visualization of a radar timestamp delay distribution, along with descriptive statistics of the measurement. (A) Green dots show the delay
per sample and brown dots show the expected value for the delay; (B) bar chart representation of the delay distribution for 800 samples.

Software Architecture: Monitoring Dashboard
The TICK stack, a framework that can be used to quickly create
dashboards on time-series data, was integrated to monitor
various hardware and network resources of SRS systems (Figure

5). This resource monitor allows the observation of (1) central
processing unit (CPU), (2) disk, and (3) RAM usage in
combination with (4) the HTML status codes of network
requests (ie, GET and POST).

JMIR Form Res 2023 | vol. 7 | e43092 | p. 8https://formative.jmir.org/2023/1/e43092
(page number not for citation purposes)

Single et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 5. Resource monitor of the server that runs a sensor recording software instance via Chronograph dashboards: (A) CPU usage, (B) RAM usage,
(C) disk usage, and (D) Nginx HTTP codes.

Field Experiments
A total of 4 SRS instances, hereafter referred to as instance 1,
instance 2, instance 3, and instance 4, were used and evaluated
in 3 observational studies. These studies will be broadly
elaborated on to highlight how the SRS system can be used and
the associated preliminary findings will be shown.

First, instance 1 was used in a study, hereafter referred to as
study 1 (n=67 for 21 days). In this study, participants had to
perform various gait-related tasks in an instrumented apartment.
The purpose of this study was to create a medical data set that
can be used to develop novel algorithms to extract gait
parameters. Second, instance 2 and instance 3 were deployed
in a study, hereafter referred to as study 2 (n=43 for 20 days),
in which the system was expanded to work as a mobile and
portable SRS to act as a mobile gait analyzer and to track
activities of daily living (ADL). The purpose of this study was
to analyze these activities in a population of healthy participants
using different sensors. Notably, the results of both studies,
study 1 and study 2, have yet not been published. Lastly,
instance 4 was used in a pilot case study, hereafter referred to
as study 3 (n=4 for 30 days), in which, Gerber et al [65]
measured ADL during a 12-hour overnight stay in an

instrumented apartment. The purpose of this use case study was
to demonstrate that the proposed system can be used to
continuously assess digital biomarkers (eg, gait parameters and
ADL) during a prolonged period and therefore represents a
reliable measuring method for conducting future clinical studies
in the apartment (eg, measure the change in motor functions in
patients with Parkinson disease or multiple sclerosis).

Study-specific demographic information, a list of installed
sensors, and the hardware specifications of each SRS instance
used in each study can be found in Table 2. All sensor systems
were assembled using consumer-grade hardware, without the
need for any connection to the internet.

To date, a variety of different sensors have been tested and
integrated into the SRS system, demonstrating the flexibility of
the sensor interface. The sensors used to generate the data sets
(Table 2) were Doppler radars, seismographs, LIDARs,
magnetic door sensors, a motion tracking camera system, a
pressure mattress for tracking activity in bed, an infrared camera,
night and day cameras, passive infrared sensors, a microphone
system, devices for measuring power consumption, and
environmental sensors (eg, temperature, humidity, and water
flow sensors). These sensors have been shown to be particularly

JMIR Form Res 2023 | vol. 7 | e43092 | p. 9https://formative.jmir.org/2023/1/e43092
(page number not for citation purposes)

Single et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


useful in biomedical research concerning the analysis of motor
and nonmotor functions [65,66] and were thus integrated into
the SRS system. The performance of the SRS was statistically
evaluated based on the data collected through deployed instances
used in the studies. Finally, to demonstrate that the SRS has a
wide area of application with respect to different hardware

configurations, the software was tested on a Raspberry Pi 4 in
combination with 3 radar sensors. This SRS instance was run
for 24 hours with its radars configured to send 1 data packet per
second from the sensors to the backend. In this proof-of-concept
test, only the error rates of incoming packets and the CPU
utilization were analyzed.

Table 2. The sensor recording software instance specifications related to the demographics, sensors, and hardware used in different studies.

Study 3Study 2Study 1Specifications

Instance 4Instance 3Instance 2Instance 1

Participants

4434367Participants, n

32.0 (2.3)34.0 (10.0)34.0 (10.0)35.0 (12.0)Age (years), mean (SD)

2181832Female, n

30202021Experiment duration in days, n

Sensors

78N/Aa14Radars, n

4225LIDARsb, n

22N/A3Seismographs, n

11N/AN/ABed pressure sensors, n

23N/AN/AN/ADoor sensors, n

6N/AN/AN/AEnvironmental sensors, n

4N/AN/AN/AWaterflow meters, n

6N/AN/A7Cameras, n

1N/AN/A1Motion tracking systems, n

5N/AN/AN/AMicrophones, n

13N/AN/AN/APower meters, n

Computer specifications

4 (6/12)3.9 (4/8)4 (9/18)3.4 (16/32)Central processing unit (GHz; number of cores/number of threads)

32323264RAM (GB)

10001001001000Network bandwidth (Mbit/s)

aN/A: data not applicable.
bLIDAR: light detection and ranging.

System Properties

Overview
The quantitative performance of the SRS architecture was
evaluated by statistically analyzing the data obtained in the field
experiments. To compute these statistics, the system properties
and associated metrics listed in the following sections were
used.

Reliability
Following the analysis techniques outlined by Nagappan [67],
the malfunctioning rate was determined by statistically analyzing
the SRS log files (error, warning, and info logs) of the web
server, the reverse proxy, and the database of the backend.
Descriptive statistics for the error rates were determined by
examining the backend logs of all instances and counting the

HTML response codes. To do this, all 4xx and 5xx status codes
were aggregated and counted as an error, while all remaining
status codes were counted as valid requests. Based on the work
of Horner and Symons [68], an acceptable error rate of 0.02%
was chosen. In addition, the continuity of measurements and
the potentially induced delay were calculated based on the
packet timestamps of persistent samples produced by a
high-frequency data producer. For this purpose, we extracted
and descriptively analyzed timestamps from corresponding log
files that were generated by a LIDAR sensor with a sampling
rate of 40 Hz.

Throughput
The rate at which data were processed within a specified period
was used as a performance indicator. This value was calculated
by counting the number of processed SRS requests within a

JMIR Form Res 2023 | vol. 7 | e43092 | p. 10https://formative.jmir.org/2023/1/e43092
(page number not for citation purposes)

Single et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


certain period using the program httperf [69]. This standardized
tool directly outputs descriptive statistics (ie, values for the
minimum, maximum, median, mean, and SD) of a performance
measurement. Throughput measurements were performed for
2 http request types: GET requests (ie, fetch data from the
backend) and POST requests (ie, send data to the backend).
Three different tests per request type and per instance were
performed. In each of these tests, http requests were sent to a
randomly selected number of end points corresponding to the
request type. Different numbers of requests were then sent at
different request rates based on the following 2 rationales: First,
every SRS instance is expected to support at least 20
concurrently running sensors sending data at 1 Hz. Second,
according to performance measurements reported by Nginx, 1
core of current consumer hardware CPUs (eg, Xeon CPU
E5-2699 v3 @ 2.30 GH) is expected to be able to handle more
than 400 connections per second [70]. Consequently, the
following test scenarios were run and statistically evaluated:
10,000 requests at a rate of 400 requests per second (test A),
2000 requests at a rate of 100 requests per second (test B), and
400 requests at a rate of 20 requests per second (test C). Each
test was repeated 20 times per instance and the average request
time was determined via descriptive statistics. Notably, if a
request time is below 0.1 seconds, users feel that the system is
reacting instantaneously [71]. Thus, the throughput
measurements were compared with this threshold and considered
tolerable if their average time per request was below this value.
Finally, a 2-sided t test (paired) was performed to compare the
throughput between GET and POST requests.

Latency
The latency of the instances was determined by measuring how
long packets took to reach their destination, also known as delay,
with the program Pingmesh [72]. For this purpose, the 4
instances were repeatedly pinged, 10 times per day for 1 week.
Each such measurement was performed for 120 seconds at a
rate of 1 sample per second. As most of the integrated sensors
communicate via Wi-Fi, the computer used to ping the instances
was connected via the same connection type to the network (ie,
it was not connected via Ethernet). To determine whether the
SRS corresponds to a low-latency system, a delay of 100 ms
was used, as this was the delay threshold for control traffic in
smart grid defined in a study by Jiang et al [73]. The system
latency was determined by aggregating the individual delays
introduced via the systems.

Usability
The usability was assessed based on the responses of 10
administrators to the System Usability Scale (SUS) questionnaire
[74] and the Post-Study System Usability Questionnaire
(PSSUQ) [75] (Multimedia Appendices 1 and 2). The SUS is
scored on a scale of 0-100, where 0 represents poor performance,
71.1 represents acceptable performance, and 100 represents
excellent performance. The score of the PSSUQ is on a Likert
scale that ranges from 1 to 7, with lower values indicating a
better test performance. An average PSSUQ score (for its overall
variable) of 2.62 or less is considered to correspond to an
acceptable test performance [76]. Prior to completing the
questionnaires, the administrators were asked to set up a new
SRS instance, integrate a sensor, and start a sensor recording.
The administrators were provided with step-by-step instructions,
an SRS installation manual, a computer with a clean Ubuntu
and Docker installation, and a radar sensor. During each test,
the time that the participants needed to complete their tasks was
recorded. In addition, after completing the test, participants
were asked to provide feedback on what could be improved to
enhance the overall user experience. The precise protocol for
the usability test can be found in the project repository [64].

Ethics Approval
The referred case studies were conducted according to the
guidelines of the Declaration of Helsinki and approved by the
Ethics Committee of the Canton of Bern, Switzerland (Kantonale
Ethik Kommission [KEK] numbers 2020-02771, 2021-00965,
and 2021-01420).

Results

Overview
This section details the statistical aspects of the analyzed system
properties and experimental findings of the SRS on a Raspberry
Pi 4. Next, quantitative findings in the form of the statistical
outcomes of the evaluated system properties (reliability,
throughput, delay, and usability) are presented. Finally, the
results of a proof-of-concept 24-hour measurement performed
with a Raspberry Pi 4 are demonstrated. A summary of our main
quantitative findings, together with reference values from the
literature, is presented in Table 3.

Table 3. A summary of our main findings on the analyzed system properties. For each system property, the measured average value, together with a
reference value from the literature, is listed. The values of all the measured system properties were within their reference ranges.

Reference value from the literatureMeasured value in experimentsSystem property

Error rate of ≤0.02% [68]Error rate of ≤0.012%Reliability

Throughput of ≤100 ms [71]Throughout of ≤60.69 msThroughout

Delay of ≤100 ms [73]Delay of ≤12.21 msLatency

SUS score of ≥71.1 [74]; PSSUQ score of ≤2.62 [76]SUSa score of ≥80; PSSUQb score of ≤1.90Usability

aSUS: System Usability Scale.
bPSSUQ: Post-Study System Usability Questionnaire.

JMIR Form Res 2023 | vol. 7 | e43092 | p. 11https://formative.jmir.org/2023/1/e43092
(page number not for citation purposes)

Single et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


System Properties: Reliability
HTML response codes were logged and analyzed for more than
420 days to determine the reliability performance (Table 4). In
total, more than 320 million requests were sent across all
instances, with an average rate of approximately 9 requests per
second. A total of 7342 errors occurred, and thus, the average
and maximum error percentages were low (0.002% and 0.012%,

respectively). Both error percentages were within the threshold
for an acceptable error rate (0.02%) [68].

During our experiments, a total of 19.8 million LIDAR packets
were processed by all instances of the SRS. Their internal
processing times are listed in Table 5. The mean package
processing time for all instances was 25.09 (SD 0.15) ms.

Table 4. Descriptive statistics of HTML status codes extracted from log messages produced by our instances over 420 days. Status codes were categorized
as valid (1xx, 2xx, and 3xx codes) or error (4xx and 5xx codes), and their percentage relative to the total number of received requests is reported.

Frequency (Hz), meanRuntime (days) (n=420.6)Errors, %Valid, %Requests, n (n=323,773,157)Instance

24.6126.10.00299.998268,174,8241

4.067.40.00199.99923,513,4982

1.3225.10.01299.98826,524,8343

31.92.00.000100.0005,560,0014

Table 5. Descriptive statistics of the LIDAR (light detection and ranging) packet processing time evaluated in different instances. Each LIDAR sends
small but highly frequent packages (40 Hz).

Time (ms), mean (SD)Packets, n (n=19,817,460)Instance

25.08 (0.15)8,227,5081

25.09 (0.15)1,603,0942

25.07 (0.17)3,830,2833

25.10 (0.12)6,156,5754

System Properties: Throughput
Test results of GET and POST throughput experiments are
shown in Figure 6. For both request types, across all
experiments, the average request time was short, ranging
between 4.72 and 8.30 ms (mean 5.98 ms, SD 1.82 ms).
Furthermore, independent of the instance and request type, on
average, as the number of requests increased, the SD of the
throughput rate increased (test A: SD 48.00 ms; test B: SD 3.84
ms; test C: SD 2.39 ms). Similarly, the average maximum
throughput rate increased (test A: maximum 60.49 ms; test B:

maximum 54.00 ms; test C: maximum 25.90 ms). Both request
types reported very similar and low average minima (GET:
minimum 3.28 ms; POST: minimum 3.29 ms). The average and
maximum request times (5.98 and 60.49 ms, respectively) were
below the threshold of an instantaneously reacting system (100
ms) [71]. For all instances, the median was very close to the
corresponding mean, with an average difference of 0.67 ms.
There was no significant difference (t480=–0.0571; P=.045) in
throughput between GET (mean 5.97 ms, SD 3.64 ms) and
POST (mean 5.99 ms, SD 3.50 ms). No packet losses were
observed during the testing.

JMIR Form Res 2023 | vol. 7 | e43092 | p. 12https://formative.jmir.org/2023/1/e43092
(page number not for citation purposes)

Single et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 6. Descriptive statistics of (A) GET and (B) POST requests. The y-axis represents the different combinations of reference instances (Instance
1 to Instance 4) and test scenarios (test A to test C). The x-axis indicates the time it took an instance to process the received request (depending on the
test scenario). Horizontal lines indicate the variance, while vertical bars indicate the mean. The median is represented by a dot, and a cross indicates
the minimum. Maximum values were omitted from the figure to improve the overall clarity, as these values were outside the plotted scale.

System Properties: Latency
The evaluation of instance latency was realized via box plot
representations of long-term delay measurements (Figure 7).
Across all instances, the average delay was low (between 9.9
and 11.6 ms, mean 10.7 ms, SD 2.0 ms). Instance 3 exhibited
the lowest delay (mean 9.55, SD 1.33 ms), and instance 4

exhibited the highest delay (mean 12.21 ms, SD 2.18 ms). The
average delay across all instances (10.88 ms) was below the
definition of a low-latency system (100 ms) [73]. Moreover,
there were no significant differences in delay between the

instances (t33,600=–1.54 × 10–15; P<.001). Finally, few outliers
were reported, and no packet losses were observed during the
testing.

Figure 7. Box plot visualization of the per-instance delay values.

System Properties: Usability
The system usability was assessed by analyzing the responses
of 10 participants to the SUS and PSSUQ (Figure 8). The mean
participant SUS score yielded an excellent (>80.3) usability
rating [74], with scores between 80.0 and 97.5 (mean 89.5, SD
4.8). The mean overall PSSUQ score (mean 1.62, SD 0.36), as
well as its system usability (mean 1.35, SD 0.27), information

quality (mean 1.80, SD 0.54), and interface quality (mean 1.90,
SD 0.63) scores attained an acceptable level (overall: <2.62)
[75,76].

According to the participants’ qualitative feedback, the
installation script was helpful and simple to use. By contrast,
the experiment UI could be made easier to use by adding colors
to functional components, such as buttons and drop-down
menus.

JMIR Form Res 2023 | vol. 7 | e43092 | p. 13https://formative.jmir.org/2023/1/e43092
(page number not for citation purposes)

Single et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 8. (A) The SUS score for each participant, with the brown line indicating the average SUS score across all participants (mean 89.5, SD 4.8). A
score of 100 represents excellent usability, while lower scores represent poor usability. Panels B to E represent the PSSUQ scores (ie, Overall, SU,
InfQ, and IntQ) for each participant, with the brown line indicating the average value. The PSSUQ scores range between 1 (best value) and 7 (worst
value). The green colored areas in the subfigures correspond to scores that are within the specified threshold values (ie, the accepted zone). InfQ:
information quality; IntQ: interface quality; PSSUQ: Post-Study System Usability Questionnaire; SU: system usability; SUS: System Usability Scale.

Field Experiments: SRS on a Raspberry Pi 4
The SRS was installed on a Raspberry Pi 4 in combination with
3 radar sensors. The resulting system was run for 24 hours. In
the measurement, only reliability aspects, along with CPU
usages, were analyzed. The system did not report any errors
during the measurement. In total, more than 250,000 packets
were processed under high load (CPU usage: mean 95%). No
packets were lost during the measurement.

Discussion

Principal Findings
In this paper, we reported the development, functional
components, and performance evaluation of a novel lightweight,
open-source, and cost-efficient software system. This system
was built to enable sensor data collection that offers both cloud
and on-premises deployment. In line with our objective, the
SRS can be reliably used to integrate multiple sensors on
consumer-grade hardware to perform offline measurements in
clinical studies. This was shown by analyzing different
performance metrics applied to various long-term measurements.

To demonstrate that the SRS helps to address technical
challenges that arise during multimodal sensor measurements
(eg, unsynchronized sensor signals), the following three utility
programs were developed and integrated: (1) a
timestamp-annotation program to mark events that are
synchronized across measurements; (2) resource monitoring
software, called the TICK stack, to alert administrators to the
presence of hardware errors related to the server, nonfunctioning
sensors, or network problems; and (3) a timestamp analyzer to
detect and understand delays in the recorded data due to
potential sensing device issues.

With respect to the quantitative findings, it was found that the
SRS system operated with an acceptable error rate while running

at a high request rate. This was determined by analyzing the
error rates of more than 320 million requests transmitted over
420 days and relying on Horner’s definition of acceptable error
rates [68]. It is noteworthy that most errors arose due to
problems in the power supply to the system caused by a power
outage that lasted several hours. Moreover, a long-term
measurement of the internal packet processing time showed a
low deviation in time. This indicates that the SRS system was
internally processing data packets at a stable rate. Those two
findings are in line with our objective, which was to make the
internal system operate reliably.

Next, the throughput performance of the system was examined.
The results demonstrate that, regardless of the request type, the
SRS was capable of efficiently functioning at a high request
rate (2000 requests per second) on consumer-grade hardware.
Based on the literature, the results meet the criteria of an
instantly responding system [71]. This means that the SRS
system can handle high-frequency data streams in real-time and
on consumer-grade hardware, which makes the system
promising for monitoring. Furthermore, for all the systems and
request types, the average request time was determined to be
close to the median request time. This is an indicator of stable
request processing, suggesting that the throughput rate was
stable over a prolonged period. This processing property leads
to the conclusion that the throughput rate of serving incoming
API requests was stable over a prolonged period.

In addition to running stably, the delay results indicate that the
SRS corresponds to a low-latency system, as defined by Jiang
et al [73], which implies that the network topology does not
affect the transmission rates between the sensors and the SRS.
Furthermore, the average SD was small, which indicates that
the latency was stable over time. Both findings imply that the
SRS did not introduce any significant delay during the sensor
recordings and, thus, did not affect the measurement process.

JMIR Form Res 2023 | vol. 7 | e43092 | p. 14https://formative.jmir.org/2023/1/e43092
(page number not for citation purposes)

Single et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


The overall usability was assessed, including through the rating
of the complexity of setting up an SRS instance and its
applicability for measurements. An SUS score indicating
excellent usability was achieved [74], suggesting that the system
is highly usable. Moreover, according to the results of the
PSSUQ, the usefulness, information quality, and interface
quality of the SRS system are at acceptable levels [75],
indicating that the UI is easy to use and exhibits helpful
information pertaining to its use. Furthermore, the results of the
2 usability tests show that, in line with the initial objective, the
overall usability of the SRS is effective, efficient, and
satisfactory. The participants particularly appreciated that the
SRS can be installed via Docker, as it simplified the installation
effort. However, a major weakness identified by the participants
was the unintuitive nature of the UI components. If this issue
is eliminated, the overall usability of the interface could be
improved.

Finally, to demonstrate the SRS’s broad integration capability,
it was operated on a Raspberry Pi 4, in combination with several
integrated sensor devices, over a period of 24 hours. During
this period, no packets were lost, and no errors were reported
in the logs. However, due to the exploratory nature of this test,
no other system properties were analyzed. Nevertheless, this
finding indicates that the SRS could be a promising software
solution with which to conduct biomedical research on
cost-efficient consumer-grade hardware as basic as a Raspberry
Pi 4.

Strengths and Limitations
The SRS system offers a simple and cost-efficient solution for
on-premises deployment that requires only minimal technical
expertise and provides high usability. The SRS may provide
numerous benefits for researchers conducting early stage
research, or working with limited resources, compared with
cloud-based solutions [23,24,27] that require on-premises
deployment and normally face economic, technical, and
regulatory challenges. This is mainly because the SRS runs
stably on a variety of consumer-grade hardware, even as basic
as that on a Raspberry Pi 4. It is also due to the fact that the
system supports a simple mechanism for integrating multiple
and diverse high-frequency data streams from various sensing
devices. The proposed system is therefore a feasible option for
long-term measurements that takes into account biomedical
research requirements, such as privacy protection. Integrating
Docker in the system may help users of the SRS replicate studies
as the utilized containers consist of replicable configurations
(ie, the source code of the executed program, the execution
order in form of a Dockerfile, and defined environment
variables). Furthermore, by providing a digest of the data stored
in the database of a particular study (eg, by exporting a database
dump or hashing the persisted data), users of the SRS are not
only able to replicate that study, but also able to reproduce it.
Additional aspects of the system enable straightforward
deployment and enhanced maintainability while easing its
operationalization (ie, integration and management). It further

promotes proper error handling, which reduces the complexity
of the run-time diagnostics used to determine the cause and
extent of errors. Consequently, this lightweight recording
software system allows researchers to focus resources on
research questions rather than on developing technology.

Although it was successful in reaching its desired objective, the
SRS system still has some limitations. For example, although
a variety of different hardware combinations were tested, the
extent to which these results can be extrapolated to low-cost
hardware (eg, ESP32 [Espressif Systems 32 Microcontroller]
microcontrollers) is not clear. From a performance perspective,
this becomes particularly challenging when integrating many
sensors, as the hardware specifications of low-cost systems may
be too low to handle a large number of incoming requests.
Furthermore, although the SRS achieved high scores for
usability, the generalizability of these results is limited by the
low number of participants. Another usability hurdle is the
integration of new sensor types, as this currently requires
adherence to interface specifications, which can be tedious.

Future Work
To expand the system for applications beyond clinical needs
and to mitigate potential scaling issues, the SRS could be
extended to scale horizontally by operating as a distributed
service in the cloud. Future studies could investigate how, and
to what extent, the SRS system could be extended to properly
scale in multiple clinical settings, in which many SRS instances
might be running simultaneously while sharing a central
database. In addition, the performance could be improved using
streaming technologies (eg, broker-based solutions). To
benchmark the system, the methods used to measure the
performance could be further improved by correlating the
measurements with more system resources (eg, by comparing
the throughput with the CPU and RAM usage). Finally, the
sensor integration could be simplified by relying on standardized
serialization mechanisms to represent structured data (eg,
Google’s Protocol Buffers). This would reduce the effort to
integrate new sensor devices even further.

Conclusion
Despite the significant potential of these new digital
technologies, adopting sensor-enhanced biomedical solutions
is not simple due to the complex and expensive nature of most
existing SRS. This paper presents a lightweight software
recording system for integrating arbitrary sensing devices on
consumer-grade hardware to perform reliable long-term
measurements. The system has significant potential to address
the economic, technical, and data regulatory challenges
associated with earlier systems, thereby enabling sensor
measurements and objective assessments in the realm of
biomedical research. Moreover, the system facilitates the testing
of sensor systems, as well as the development and validation
of algorithms for the extraction of digital measures. Overall,
this allows researchers to focus on their research questions rather
than on developing the technology needed to collect their data.

JMIR Form Res 2023 | vol. 7 | e43092 | p. 15https://formative.jmir.org/2023/1/e43092
(page number not for citation purposes)

Single et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Acknowledgments
We thank all participants and collaborators who facilitated the collection of the data sets used to evaluate the SRS system. The
work has been funded in part by the strategic funding program of the University of Bern.

Data Availability
The data sets generated during and analyzed during this study are not publicly available due to privacy and local ethical restrictions
but are available upon request.

Authors' Contributions
MS, SMG, and NS conceptualized this study. MS, SMG, and NS contributed to the study methodology. MS, PR, and LCB
performed software development. MS, ACN, LCB, and HH performed validation. MS, SMG, LCB, ACN, HH, TN, AC, RW,
PK, and KAS were responsible for formal analysis. MS, SMG, LCB, TN, AC, RW, PK, and KAS designed the study. MS and
PR developed and installed the sensor network. MS, ACN, and LCB analyzed the data. All authors contributed to the writing of
the manuscript. All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest
None declared.

Multimedia Appendix 1
SRS usability test. SRS: sensor recording software.
[PDF File (Adobe PDF File), 720 KB-Multimedia Appendix 1]

Multimedia Appendix 2
SRS usability test protocol. SRS: sensor recording software.
[PDF File (Adobe PDF File), 117 KB-Multimedia Appendix 2]

References

1. Engin M, Demirel A, Engin EZ, Fedakar M. Recent developments and trends in biomedical sensors. Measurement 2005
Mar;37(2):173-188. [doi: 10.1016/j.measurement.2004.11.002]

2. Maron J, Jones G. How sensors, devices, and biomarkers can transform precision medicine: Perspectives from a clinical
and translational science institute. Clin Ther 2018 Feb;40(2):345-348. [doi: 10.1016/j.clinthera.2018.01.004] [Medline:
29371003]

3. Birkel HS, Hartmann E. Impact of IoT challenges and risks for SCM. SCM 2019 Jan 14;24(1):39-61. [doi:
10.1108/scm-03-2018-0142]

4. Ehrenberg AJ, Khatun A, Coomans E, Betts MJ, Capraro F, Thijssen EH, et al. Relevance of biomarkers across different
neurodegenerative diseases. Alzheimers Res Ther 2020 May 13;12(1):56 [FREE Full text] [doi: 10.1186/s13195-020-00601-w]
[Medline: 32404143]

5. Vemuri P, Wiste H, Weigand S, Shaw L, Trojanowski J, Weiner M, Alzheimer's Disease Neuroimaging Initiative. MRI
and CSF biomarkers in normal, MCI, and AD subjects: predicting future clinical change. Neurology 2009 Jul
28;73(4):294-301 [FREE Full text] [doi: 10.1212/WNL.0b013e3181af79fb] [Medline: 19636049]

6. Glei D, Goldman N, Rodríguez G, Weinstein M. Beyond self-reports: Changes in biomarkers as predictors of mortality.
Popul Dev Rev 2014 Jun 01;40(2):331-360 [FREE Full text] [doi: 10.1111/j.1728-4457.2014.00676.x] [Medline: 25089065]

7. Baskaran A, Milev R, McIntyre RS. The neurobiology of the EEG biomarker as a predictor of treatment response in
depression. Neuropharmacology 2012 Sep;63(4):507-513. [doi: 10.1016/j.neuropharm.2012.04.021] [Medline: 22569197]

8. Coravos A, Khozin S, Mandl KD. Developing and adopting safe and effective digital biomarkers to improve patient
outcomes. NPJ Digit Med 2019;2(1):1-5 [FREE Full text] [doi: 10.1038/s41746-019-0090-4] [Medline: 30868107]

9. Doraiswamy PM, Narayan VA, Manji HK. Mobile and pervasive computing technologies and the future of Alzheimer's
clinical trials. NPJ Digit Med 2018;1:1 [FREE Full text] [doi: 10.1038/s41746-017-0008-y] [Medline: 31304287]

10. Lipsmeier F, Taylor KI, Postuma RB, Volkova-Volkmar E, Kilchenmann T, Mollenhauer B, et al. Reliability and validity
of the Roche PD Mobile Application for remote monitoring of early Parkinson's disease. Sci Rep 2022 Jul 15;12(1):12081
[FREE Full text] [doi: 10.1038/s41598-022-15874-4] [Medline: 35840753]

11. Kouba T, Illner V, Rusz J. Study protocol for using a smartphone application to investigate speech biomarkers of Parkinson's
disease and other synucleinopathies: SMARTSPEECH. BMJ Open 2022 Jun 30;12(6):e059871 [FREE Full text] [doi:
10.1136/bmjopen-2021-059871] [Medline: 35772829]

JMIR Form Res 2023 | vol. 7 | e43092 | p. 16https://formative.jmir.org/2023/1/e43092
(page number not for citation purposes)

Single et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=formative_v7i1e43092_app1.pdf&filename=bf940cb1f182c7bf74c564fc9da5c1c5.pdf
https://jmir.org/api/download?alt_name=formative_v7i1e43092_app1.pdf&filename=bf940cb1f182c7bf74c564fc9da5c1c5.pdf
https://jmir.org/api/download?alt_name=formative_v7i1e43092_app2.pdf&filename=c3c6568419e9b69077b37559a31cf741.pdf
https://jmir.org/api/download?alt_name=formative_v7i1e43092_app2.pdf&filename=c3c6568419e9b69077b37559a31cf741.pdf
http://dx.doi.org/10.1016/j.measurement.2004.11.002
http://dx.doi.org/10.1016/j.clinthera.2018.01.004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29371003&dopt=Abstract
http://dx.doi.org/10.1108/scm-03-2018-0142
https://alzres.biomedcentral.com/articles/10.1186/s13195-020-00601-w
http://dx.doi.org/10.1186/s13195-020-00601-w
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32404143&dopt=Abstract
https://europepmc.org/abstract/MED/19636049
http://dx.doi.org/10.1212/WNL.0b013e3181af79fb
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19636049&dopt=Abstract
https://europepmc.org/abstract/MED/25089065
http://dx.doi.org/10.1111/j.1728-4457.2014.00676.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25089065&dopt=Abstract
http://dx.doi.org/10.1016/j.neuropharm.2012.04.021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22569197&dopt=Abstract
https://doi.org/10.1038/s41746-019-0090-4
http://dx.doi.org/10.1038/s41746-019-0090-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30868107&dopt=Abstract
https://doi.org/10.1038/s41746-017-0008-y
http://dx.doi.org/10.1038/s41746-017-0008-y
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31304287&dopt=Abstract
https://doi.org/10.1038/s41598-022-15874-4
http://dx.doi.org/10.1038/s41598-022-15874-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35840753&dopt=Abstract
https://bmjopen.bmj.com/lookup/pmidlookup?view=long&pmid=35772829
http://dx.doi.org/10.1136/bmjopen-2021-059871
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35772829&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


12. Verghese J, Robbins M, Holtzer R, Zimmerman M, Wang C, Xue X, et al. Gait dysfunction in mild cognitive impairment
syndromes. J Am Geriatr Soc 2008 Jul;56(7):1244-1251 [FREE Full text] [doi: 10.1111/j.1532-5415.2008.01758.x] [Medline:
18482293]

13. Lyons BE, Austin D, Seelye A, Petersen J, Yeargers J, Riley T, et al. Pervasive computing technologies to continuously
assess Alzheimer's disease progression and intervention efficacy. Front Aging Neurosci 2015 Jun 10;7:102 [FREE Full
text] [doi: 10.3389/fnagi.2015.00102] [Medline: 26113819]

14. Ellis RJ, Ng YS, Zhu S, Tan DM, Anderson B, Schlaug G, et al. A validated smartphone-based assessment of gait and gait
variability in Parkinson's disease. PLoS One 2015;10(10):e0141694 [FREE Full text] [doi: 10.1371/journal.pone.0141694]
[Medline: 26517720]

15. da Silva VP, Oliveira BRR, Mello RGT, Moraes H, Deslandes A, Laks J. Heart rate variability indexes in dementia: A
systematic review with a quantitative analysis. Curr Alzheimer Res 2018;15(1):80-88. [doi:
10.2174/1567205014666170531082352] [Medline: 28558638]

16. Schütz N, Saner H, Rudin B, Botros A, Pais B, Santschi V, et al. Validity of pervasive computing based continuous physical
activity assessment in community-dwelling old and oldest-old. Sci Rep 2019 Jul 04;9(1):9662 [FREE Full text] [doi:
10.1038/s41598-019-45733-8] [Medline: 31273234]

17. Schütz N, Saner H, Botros A, Pais B, Santschi V, Buluschek P, et al. Contactless sleep monitoring for early detection of
health deteriorations in community-dwelling older adults: Exploratory study. JMIR Mhealth Uhealth 2021 Jun 11;9(6):e24666
[FREE Full text] [doi: 10.2196/24666] [Medline: 34114966]

18. Rantz MJ, Skubic M, Popescu M, Galambos C, Koopman RJ, Alexander GL, et al. A new paradigm of technology-enabled
‘Vital Signs’ for early detection of health change for older adults. Gerontology 2015;61(3):281-290 [FREE Full text] [doi:
10.1159/000366518] [Medline: 25428525]

19. Liu L, Stroulia E, Nikolaidis I, Miguel-Cruz A, Rincon AR. Smart homes and home health monitoring technologies for
older adults: A systematic review. Int J Med Inform 2016 Jul;91:44-59. [doi: 10.1016/j.ijmedinf.2016.04.007] [Medline:
27185508]

20. Pramanik P, Upadhyaya B, Pal S, Pal T. Chapter 1 - Internet of things, smart sensors, and pervasive systems: Enabling
connected and pervasive healthcare. In: Healthcare Data Analytics and Management. Amsterdam, The Netherlands: Elsevier;
2019:1-58.

21. Casado R, Younas M. Emerging trends and technologies in big data processing. Concurrency Computat: Pract Exper 2014
Oct 01;27(8):2078-2091 [FREE Full text] [doi: 10.1002/cpe.3398]

22. Nittel S. Real-time sensor data streams. SIGSPATIAL Special 2015 Sep 17;7(2):22-28 [FREE Full text] [doi:
10.1145/2826686.2826691]

23. Woznowski P, Burrows A, Diethe T, Fafoutis X, Hall J, Hannuna S, et al. SPHERE: A Sensor Platform for Healthcare in
a Residential Environment. In: Angelakis V, Tragos E, Pöhls HC, Kapovits A, Bassi A, editors. Designing, Developing,
and Facilitating Smart Cities. Berlin, Germany: Springer; Dec 06, 2016:315-333.

24. Beattie Z, Miller L, Almirola C, Au-Yeung W, Bernard H, Cosgrove K, et al. The Collaborative Aging Research Using
Technology initiative: An open, sharable, technology-agnostic platform for the research community. Digit Biomark
2020;4(Suppl 1):100-118 [FREE Full text] [doi: 10.1159/000512208] [Medline: 33442584]

25. Beckman P, Sankaran R, Catlett C, Ferrier N, Jacob R, Papka M. Waggle: An open sensor platform for edge computing.
New York, NY: IEEE; 2016 Presented at: 2016 IEEE SENSORS; October 30 to November 3, 2016; Orlando, FL URL:
https://ieeexplore.ieee.org/document/7808975 [doi: 10.1109/ICSENS.2016.7808975]

26. Kumar D, Jeuris S, Bardram J, Dragoni N. Mobile and wearable sensing frameworks for mHealth studies and applications:
A systematic review. ACM Trans Comput Healthc 2020 Dec 30;2(1):1-28 [FREE Full text] [doi: 10.1145/3422158]

27. Ranjan Y, Rashid Z, Stewart C, Conde P, Begale M, Verbeeck D, Hyve, RADAR-CNS Consortium. RADAR-Base: Open
source mobile health platform for collecting, monitoring, and analyzing data using sensors, wearables, and mobile devices.
JMIR Mhealth Uhealth 2019 Aug 01;7(8):e11734 [FREE Full text] [doi: 10.2196/11734] [Medline: 31373275]

28. Ferreira D, Kostakos V, Dey A. AWARE: Mobile context instrumentation framework. Front ICT 2015 Apr 20;2:6 [FREE
Full text] [doi: 10.3389/fict.2015.00006]

29. Bent B, Wang K, Grzesiak E, Jiang C, Qi Y, Jiang Y, et al. The digital biomarker discovery pipeline: An open-source
software platform for the development of digital biomarkers using mHealth and wearables data. J Clin Transl Sci 2020 Jul
14;5(1):e19 [FREE Full text] [doi: 10.1017/cts.2020.511] [Medline: 33948242]

30. Lekić M, Gardašević G. IoT sensor integration to Node-RED platform. In: International Symposium INFOTEH-JAHORINA
(INFOTEH). New York, NY: IEEE; 2018 Presented at: 17th International Symposium INFOTEH-JAHORINA (INFOTEH);
March 21-23, 2018; East Sarajevo, Bosnia and Herzegovina. [doi: 10.1109/infoteh.2018.8345544]

31. Slama D, Puhlmann F, Morrish J, Bhatnagar RM. Enterprise IoT: Strategies and Best Practices for Connected Products
and Services. Sebastopol, CA: O'Reilly Media, Inc; 2015:1-449.

32. Thierer AD. The Internet of Things and wearable technology: Addressing privacy and security concerns without derailing
innovation. Richmond Journal of Law & Technology 2015;21(2):1-118. [doi: 10.2139/ssrn.2494382]

33. Rahman M, Reza H. Systematic mapping study of non-functional requirements in big data system. In: 2020 IEEE International
Conference on Electro Information Technology (EIT). New York, NY: IEEE; 2020 Presented at: IEEE International

JMIR Form Res 2023 | vol. 7 | e43092 | p. 17https://formative.jmir.org/2023/1/e43092
(page number not for citation purposes)

Single et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

https://europepmc.org/abstract/MED/18482293
http://dx.doi.org/10.1111/j.1532-5415.2008.01758.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18482293&dopt=Abstract
https://europepmc.org/abstract/MED/26113819
https://europepmc.org/abstract/MED/26113819
http://dx.doi.org/10.3389/fnagi.2015.00102
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26113819&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0141694
http://dx.doi.org/10.1371/journal.pone.0141694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26517720&dopt=Abstract
http://dx.doi.org/10.2174/1567205014666170531082352
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28558638&dopt=Abstract
https://boris.unibe.ch/id/eprint/131815
http://dx.doi.org/10.1038/s41598-019-45733-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31273234&dopt=Abstract
https://boris.unibe.ch/id/eprint/159712
http://dx.doi.org/10.2196/24666
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34114966&dopt=Abstract
https://www.karger.com?DOI=10.1159/000366518
http://dx.doi.org/10.1159/000366518
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25428525&dopt=Abstract
http://dx.doi.org/10.1016/j.ijmedinf.2016.04.007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27185508&dopt=Abstract
https://doi.org/10.1002/cpe.3398
http://dx.doi.org/10.1002/cpe.3398
https://doi.org/10.1145/2826686.2826691
http://dx.doi.org/10.1145/2826686.2826691
https://www.karger.com?DOI=10.1159/000512208
http://dx.doi.org/10.1159/000512208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33442584&dopt=Abstract
https://ieeexplore.ieee.org/document/7808975
http://dx.doi.org/10.1109/ICSENS.2016.7808975
https://dl.acm.org/doi/abs/10.1145/3422158
http://dx.doi.org/10.1145/3422158
https://mhealth.jmir.org/2019/8/e11734/
http://dx.doi.org/10.2196/11734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31373275&dopt=Abstract
https://www.frontiersin.org/articles/10.3389/fict.2015.00006/full
https://www.frontiersin.org/articles/10.3389/fict.2015.00006/full
http://dx.doi.org/10.3389/fict.2015.00006
https://europepmc.org/abstract/MED/33948242
http://dx.doi.org/10.1017/cts.2020.511
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33948242&dopt=Abstract
http://dx.doi.org/10.1109/infoteh.2018.8345544
http://dx.doi.org/10.2139/ssrn.2494382
http://www.w3.org/Style/XSL
http://www.renderx.com/


Conference on Electro-Information Technology; July 31, 2020 to August 1, 2020; Chicago, IL p. 025. [doi:
10.1109/eit48999.2020.9208288]

34. Tikotekar A, Vallée G, Naughton T, Scott S, Leangsuksun C. Evaluation of fault-tolerant policies using simulation. In:
2007 IEEE International Conference on Cluster Computing. New York, NY: IEEE; 2007 Presented at: IEEE International
Conference on Cluster Computing; September 17-20, 2007; Austin, TX URL: https://ieeexplore.ieee.org/document/4629244
[doi: 10.1109/clustr.2007.4629244]

35. Groenewegen DM, Visser E. Integration of data validation and user interface concerns in a DSL for web applications. Softw
Syst Model 2010 Sep 7;12(1):35-52. [doi: 10.1007/s10270-010-0173-9]

36. Broman K, Cetinkaya-Rundel M, Nussbaum A, Paciorek C, Peng R, Turek D, et al. Recommendations to funding agencies
for supporting reproducible research. American Statistical Association. Alexandria, VA: American Statistical Association;
2017 Jan 18. URL: https://www.amstat.org/asa/files/pdfs/pol-reproducibleresearchrecommendations.pdf [accessed
2023-02-03]

37. Dragoni N, Lanese I, Larsen S, Mazzara M, Mustafin R, Safina L. Microservices: How to make your application scale. In:
Perspectives of System Informatics. Berlin, Germany: Springer; 2017 Presented at: 11th International Andrei P. Ershov
Informatics Conference; June 27-29, 2017; Moscow, Russia p. 95-104. [doi: 10.1007/978-3-319-74313-4_8]

38. Chieu T, Mohindra A, Karve A. Scalability and performance of web applications in a compute cloud. In: International
Conference on e-Business Engineering. New York, NY: IEEE; 2011 Presented at: 2011 IEEE 8th International Conference
on e-Business Engineering; October 19-21, 2011; Beijing, China URL: https://ieeexplore.ieee.org/document/6104635 [doi:
10.1109/icebe.2011.63]

39. Dolan S, Eliopoulos S, Hillerström D, Madhavapeddy A, Sivaramakrishnan K, White L. Concurrent system programming
with effect handlers. In: Trends in Functional Programming. Berlin, Germany: Springer; 2017 Presented at: 18th International
Symposium, TFP 2017; June 19-21, 2017; Canterbury, UK p. 98-117. [doi: 10.1007/978-3-319-89719-6_6]

40. van der Veen J, va der Waaij B, Meijer R. Sensor data storage performance: SQL or NoSQL, physical or virtual. In: 2012
IEEE Fifth International Conference on Cloud Computing. New York, NY: IEEE; 2012 Presented at: International Conference
on Cloud Computing; June 24-29, 2012; Honolulu, HI URL: https://ieeexplore.ieee.org/document/6253535 [doi:
10.1109/cloud.2012.18]

41. Ryu SH, Casati F, Skogsrud H, Benatallah B, Saint-Paul R. Supporting the dynamic evolution of Web service protocols in
service-oriented architectures. ACM Transactions on the Web 2008 May 05;2(2):1-46 [FREE Full text] [doi:
10.1145/1346337.1346241]

42. Sullivan KJ, Griswold WG, Cai Y, Hallen B. The structure and value of modularity in software design. ACM SIGSOFT
Software Engineering Notes 2001 Sep;26(5):99-108 [FREE Full text] [doi: 10.1145/503271.503224]

43. Rufino J, Alam M, Ferreira J, Rehman A, Tsang K. Orchestration of containerized microservices for IIoT using Docker.
In: 2017 IEEE International Conference on Industrial Technology (ICIT). 2017 Presented at: IEEE International Conference
on Industrial Technology (ICIT); March 22-25, 2017; Toronto, ON, Canada URL: https://ieeexplore.ieee.org/document/
7915594 [doi: 10.1109/icit.2017.7915594]

44. Duvall P, Matyas S, Glover A. Continuous integration: improving software quality and reducing risk. Boston, MA:
Addison-Wesley; 2007.

45. Brajnik G, Mizzaro S, Tasso C. Evaluating user interfaces to information retrieval systems: a case study on user support.
1996 Presented at: 19th Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval; August 18 - 22, 1996; Zurich Switzerland p. 128-136. [doi: 10.1145/243199.243249]

46. Bouganim L. Database encryption. In: Encyclopedia of Cryptography and Security. Berlin, Germany: Springer; 2009:307-312.
47. Pettersen Y. The transport layer security (TLS) multiple certificate status request extension. RFC. 2013. URL: https://www.

rfc-editor.org/rfc/rfc6961.html [accessed 2023-02-03]
48. Jain P, Gyanchandani M, Khare N. Big data privacy: a technological perspective and review. J Big Data 2016 Nov

26;3(1):1-25 [FREE Full text] [doi: 10.1186/s40537-016-0059-y]
49. Merkel D. Docker: lightweight linux containers for consistent development and deployment. Linux J 2014:1-5. [doi:

10.5555/2600239.2600241]
50. Oussous A, Benjelloun F, Lahcen AA, Belfkih S. Big data technologies: A survey. Journal of King Saud University -

Computer and Information Sciences 2018 Oct;30(4):431-448. [doi: 10.1016/j.jksuci.2017.06.001]
51. Matthias K, Kane S. Docker: Up & Running: Shipping Reliable Containers in Production. Sebastopol, CA: O'Reilly Media,

Inc; 2015.
52. Bradshaw S, Brazil E, Chodorow K. MongoDB: the definitive guide: powerful and scalable data storage. Sebastopol, CA:

O’Reilly Media, Inc; 2019.
53. Győrödi C, Győrödi R, Pecherle G, Olah A. A comparative study: MongoDB vs. MySQL. New York, NY: IEEE; 2015

Presented at: International Conference on Engineering of Modern Electric Systems (EMES); June 11-12, 2015; Oradea,
Romania p. 1-6. [doi: 10.1109/emes.2015.7158433]

54. Pramono L, Buwono R, Waskito Y. Round-robin algorithm in HAProxy and Nginx load balancing performance evaluation:
a Review. In: 2018 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI). New

JMIR Form Res 2023 | vol. 7 | e43092 | p. 18https://formative.jmir.org/2023/1/e43092
(page number not for citation purposes)

Single et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1109/eit48999.2020.9208288
https://ieeexplore.ieee.org/document/4629244
http://dx.doi.org/10.1109/clustr.2007.4629244
http://dx.doi.org/10.1007/s10270-010-0173-9
https://www.amstat.org/asa/files/pdfs/pol-reproducibleresearchrecommendations.pdf
http://dx.doi.org/10.1007/978-3-319-74313-4_8
https://ieeexplore.ieee.org/document/6104635
http://dx.doi.org/10.1109/icebe.2011.63
http://dx.doi.org/10.1007/978-3-319-89719-6_6
https://ieeexplore.ieee.org/document/6253535
http://dx.doi.org/10.1109/cloud.2012.18
https://doi.org/10.1145/1346337.1346241
http://dx.doi.org/10.1145/1346337.1346241
https://doi.org/10.1145/503271.503224
http://dx.doi.org/10.1145/503271.503224
https://ieeexplore.ieee.org/document/7915594
https://ieeexplore.ieee.org/document/7915594
http://dx.doi.org/10.1109/icit.2017.7915594
http://dx.doi.org/10.1145/243199.243249
https://www.rfc-editor.org/rfc/rfc6961.html
https://www.rfc-editor.org/rfc/rfc6961.html
https://doi.org/10.1186/s40537-016-0059-y
http://dx.doi.org/10.1186/s40537-016-0059-y
http://dx.doi.org/10.5555/2600239.2600241
http://dx.doi.org/10.1016/j.jksuci.2017.06.001
http://dx.doi.org/10.1109/emes.2015.7158433
http://www.w3.org/Style/XSL
http://www.renderx.com/


York, NY: IEEE; 2018 Presented at: International Seminar on Research of Information Technology and Intelligent Systems
(ISRITI); November 21-22, 2018; Yogyakarta, Indonesia. [doi: 10.1109/isriti.2018.8864455]

55. Richardson L, Ruby S. RESTful web services. In: Introduction to Middleware: Web Services, Object Components, and
Cloud Computing. Sebastopol, CA: O'Reilly Media, Inc; 2008.

56. Valipour M, AmirZafari B, Maleki K, Daneshpour N. A brief survey of software architecture concepts and service oriented
architecture. 2009 Presented at: 2nd IEEE International Conference on Computer Science and Information Technology;
August 8-11, 2009; Beijing, China p. 34 URL: https://ieeexplore.ieee.org/document/5235004 [doi:
10.1109/iccsit.2009.5235004]

57. Thomas S. SSL and TLS Essentials. Hoboken, NJ: Wiley; 2000.
58. Vohra D. Apache Parquet. In: Practical Hadoop Ecosystem: A Definitive Guide to Hadoop-Related Frameworks and Tools.

New York, NY: Apress; 2016:325-335.
59. Laplante PA. What Every Engineer Should Know About Software Engineering. Boca Raton, FL: CRC Press; 2007.
60. Fette I, Melnikov A. RFC 6455: The websocket protocol. RFC. 2011. URL: https://www.rfc-editor.org/info/rfc6455

[accessed 2023-02-03]
61. De B. API management. In: API Documentation. Berlin, Germany: Springer; 2017:59-80.
62. Filipova O. Learning Vue js 2. Birmingham, UK: Packt; 2016.
63. Chakraborty M, Kundan A. TICK Stack. In: Monitoring Cloud-Native Applications. New York, NY: Apress; 2021:133-186.
64. Sensor Recording Software (SRS) Project Website. Github. 2022. URL: https://simplay.github.io/srs/ [accessed 2022-09-21]
65. Gerber S, Single M, Knobel S, Schütz N, Bruhin L, Botros A, et al. An instrumented apartment to monitor human behavior:

A pilot case study in the NeuroTec loft. Sensors (Basel) 2022 Feb 20;22(4):1657 [FREE Full text] [doi: 10.3390/s22041657]
[Medline: 35214560]

66. Botros A, Gyger N, Schütz N, Single M, Nef T, Gerber SM. Contactless gait assessment in home-like environments. Sensors
(Basel) 2021 Sep 16;21(18):6205 [FREE Full text] [doi: 10.3390/s21186205] [Medline: 34577412]

67. Nagappan M. Analysis of execution log files. 2010 Presented at: ICSE '10: 32nd International Conference on Software
Engineering; May 1-8, 2010; Cape Town, South Africa. [doi: 10.1145/1810295.1810405]

68. Horner J, Symons J. Understanding error rates in software engineering: Conceptual, empirical, and experimental approaches.
Philos Technol 2019 Feb 21;32(2):363-378. [doi: 10.1007/s13347-019-00342-1]

69. Mosberger D, Jin T. httperf—a tool for measuring web server performance. ACM SIGMETRICS Performance Evaluation
Review 1998 Dec;26(3):31-37 [FREE Full text] [doi: 10.1145/306225.306235]

70. Rawdat A. Testing the performance of NGINX and NGINX Plus web servers. NGINX. 2017. URL: https://www.nginx.com/
blog/testing-the-performance-of-nginx-and-nginx-plus-web-servers/ [accessed 2022-11-14]

71. Nielsen J. Usability Engineering. Burlington, MA: Morgan Kaufmann; 1993:1-362.
72. Guo C, Yuan L, Xiang D, Dang Y, Huang R, Maltz D, et al. Pingmesh: A large-scale system for data center network latency

measurement and analysis. 2015 Presented at: SIGCOMM '15: ACM SIGCOMM 2015 Conference; August 17-21, 2015;
London, UK. [doi: 10.1145/2785956.2787496]

73. Jiang X, Shokri-Ghadikolaei H, Fodor G, Modiano E, Pang Z, Zorzi M, et al. Low-latency networking: Where latency lurks
and how to tame it. Proc IEEE 2019 Feb;107(2):280-306 [FREE Full text] [doi: 10.1109/jproc.2018.2863960]

74. Brooke J. SUS: A 'Quick and Dirty' usability scale. In: Usability Evaluation In Industry. Boca Raton, FL: CRC Press;
1996:189-194.

75. Lewis JR. Psychometric evaluation of the post-study system usability questionnaire: The PSSUQ. Proceedings of the Human
Factors Society Annual Meeting 2016 Aug 06;36(16):1259-1260 [FREE Full text] [doi: 10.1177/154193129203601617]

76. Sauro J, Lewis J. Quantifying the User Experience: Practical Statistics for User Research. Burlington, MA: Morgan
Kaufmann; Jul 2016.

Abbreviations
ADL: activities of daily living
API: application programming interface
CPU: central processing unit
ESP32: Espressif Systems 32 Microcontroller
LIDAR: light detection and ranging
mHealth: mobile health
PSSUQ: Post-Study System Usability Questionnaire
SRS: sensor recording software
SSL: secure sockets layer
SUS: System Usability Scale
TICK: Telegraf, InfluxDB, Chronograf, Kapacitor
TLS: transport layer security
UI: user interface

JMIR Form Res 2023 | vol. 7 | e43092 | p. 19https://formative.jmir.org/2023/1/e43092
(page number not for citation purposes)

Single et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1109/isriti.2018.8864455
https://ieeexplore.ieee.org/document/5235004
http://dx.doi.org/10.1109/iccsit.2009.5235004
https://www.rfc-editor.org/info/rfc6455
https://simplay.github.io/srs/
https://boris.unibe.ch/id/eprint/166038
http://dx.doi.org/10.3390/s22041657
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35214560&dopt=Abstract
https://boris.unibe.ch/id/eprint/159764
http://dx.doi.org/10.3390/s21186205
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34577412&dopt=Abstract
http://dx.doi.org/10.1145/1810295.1810405
http://dx.doi.org/10.1007/s13347-019-00342-1
https://doi.org/10.1145/306225.306235
http://dx.doi.org/10.1145/306225.306235
https://www.nginx.com/blog/testing-the-performance-of-nginx-and-nginx-plus-web-servers/
https://www.nginx.com/blog/testing-the-performance-of-nginx-and-nginx-plus-web-servers/
http://dx.doi.org/10.1145/2785956.2787496
https://ieeexplore.ieee.org/document/8452158
http://dx.doi.org/10.1109/jproc.2018.2863960
https://journals.sagepub.com/doi/10.1177/154193129203601617
http://dx.doi.org/10.1177/154193129203601617
http://www.w3.org/Style/XSL
http://www.renderx.com/


Edited by A Mavragani; submitted 30.09.22; peer-reviewed by C Baxter, V Manea; comments to author 25.10.22; revised version
received 28.11.22; accepted 03.01.23; published 17.02.23

Please cite as:
Single M, Bruhin LC, Schütz N, Naef AC, Hegi H, Reuse P, Schindler KA, Krack P, Wiest R, Chan A, Nef T, Gerber SM
Development of an Open-source and Lightweight Sensor Recording Software System for Conducting Biomedical Research: Technical
Report
JMIR Form Res 2023;7:e43092
URL: https://formative.jmir.org/2023/1/e43092
doi: 10.2196/43092
PMID:

©Michael Single, Lena C Bruhin, Narayan Schütz, Aileen C Naef, Heinz Hegi, Pascal Reuse, Kaspar A Schindler, Paul Krack,
Roland Wiest, Andrew Chan, Tobias Nef, Stephan M Gerber. Originally published in JMIR Formative Research
(https://formative.jmir.org), 17.02.2023. This is an open-access article distributed under the terms of the Creative Commons
Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete
bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license
information must be included.

JMIR Form Res 2023 | vol. 7 | e43092 | p. 20https://formative.jmir.org/2023/1/e43092
(page number not for citation purposes)

Single et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

https://formative.jmir.org/2023/1/e43092
http://dx.doi.org/10.2196/43092
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

