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Accurate spatiotemporal modeling of conditions leading to moderate and
large wildfires provides better understanding of mechanisms driving fire-
prone ecosystems and improves risk management. Here, we develop a joint
model for the occurrence intensity and the wildfire size distribution, by com-
bining extreme-value theory and point processes within a novel Bayesian hi-
erarchical model, and use it to study daily summer wildfire data for the French
Mediterranean basin during 1995–2018. The occurrence component models
wildfire ignitions as a spatiotemporal log-Gaussian Cox process. Burnt areas
are numerical marks attached to points and are considered as extreme if they
exceed a high threshold. The size component is a two-component mixture
varying in space and time that jointly models moderate and extreme fires. We
capture nonlinear influence of covariates (Fire Weather Index, forest cover)
through component-specific smooth functions which may vary with season.
We propose estimating shared random effects between model components to
reveal and interpret common drivers of different aspects of wildfire activity.
This increases parsimony and reduces estimation uncertainty, giving better
predictions. Specific stratified subsampling of zero counts is implemented to
cope with large observation vectors. We compare and validate models through
predictive scores and visual diagnostics. Our methodology provides a holis-
tic approach to explaining and predicting the drivers of wildfire activity and
associated uncertainties.

1. Introduction. Wildfires are defined as uncontrolled fires of combustible natural veg-
etation, such as trees in a forest. Their activity usually shows seasonal cycles, as several
conditions must coincide for their occurrence: the presence of combustible material as fuel,
its easy flammability resulting from weather conditions such as droughts, and a trigger. Trig-
gers include natural causes, such as lightning, but the majority of occurrences in Europe are
caused by human activity, either intentional (arson), neglectful (cigarette stubs), or accidental
(agriculture).

Wildfires represent major environmental and ecological risks worldwide. They provoke
many human casualties and substantial economic costs and can trigger extreme air pollution
episodes and important losses of biomass and biodiversity. While climate change is expected
to exacerbate their frequency and extent (Jones et al. (2020)), wildfires themselves contribute
an important fraction of global greenhouse gases that can accelerate climate change. To aid
in wildfire prevention and risk mitigation, one must identify the factors contributing to wild-
fires and predict their spatiotemporal distribution. Prediction maps of various components of
wildfire risk are relevant for the study of historical periods, for short-term forecasting, and
for long-term projections.
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The study of wildfire activity has led to a large body of statistical and machine learning
literature on methods for identifying risk factors and producing risk maps (Pereira and Turk-
man (2019), Preisler et al. (2004), Xi et al. (2019)). Most studies focus on modeling either
occurrence counts or sizes, the latter usually represented by the burnt areas of spatially and
temporally contiguous wildfire events. In occurrence modeling, the spatial or spatiotemporal
pattern of ignition points (or other representative points of separate wildfire events) can be
analyzed with point process tools (Genton et al. (2006), Opitz, Bonneu and Gabriel (2020),
Peng, Schoenberg and Woods (2005), Pereira and Turkman (2019), Serra et al. (2013), Tonini
et al. (2017), Woolford et al. (2021), Xu and Schoenberg (2011)). Often, data are avail-
able, as presence/absence or counts, over dense spatial or spatiotemporal grids or have been
transformed to such representations to facilitate modeling and to harmonize different spatial-
temporal scales of wildfire and predictor data, such as weather conditions, land cover, and
land use.

Burnt area, a key measure of wildfire impact, usually provides a good proxy for biomass
loss and greenhouse gas emissions, and it allows impacts on ecosystem services, such as
biodiversity or clean air, to be assessed. Many univariate probability distributions have been
explored for modeling fire sizes (e.g., Cui and Perera (2008), Cumming (2001), Pereira and
Turkman (2019), Schoenberg, Peng and Woods (2003)). Empirical distributions are usually
heavy-tailed, as with the wildfire data we consider in Mediterranean France, and a few ex-
treme wildfires account for a very large fraction of total burnt area. There is no consen-
sus on which distribution provides the best fit (Pereira and Turkman (2019)). Early use of
extreme-value methodology to study wildfires goes back to Moritz (1997), who analyzed
extreme wildfires through descriptive approaches. Generative approaches, based on spa-
tial models, suggested by extreme-value theory, using distributions, such as the generalized
Pareto distribution (GPD), have also been studied (e.g., approaches by De Zea Bermudez et
al. (2009), Mendes et al. (2010), Pereira and Turkman (2019), Turkman, Turkman and Pereira
(2010)).

Joint statistical analyses of wildfire occurrence and sizes have been proposed and often
use tools for marked point processes, where numerical marks represent burnt areas. Descrip-
tive approaches (e.g., Tonini et al. (2017)) characterize different regimes of wildfire activity
(i.e., numbers, sizes, spatialtemporal autocorrelation) by taking into account weather, land
cover, fire management, and environmental factors. For explanatory and predictive model-
ing, Bayesian hierarchical models are useful; they can include latent Gaussian components to
allow for observation and estimation uncertainty and capture nonlinear influences of covari-
ates. One may consider only categorical information (e.g., small and large wildfires) without
attempting to model the continuous distribution of sizes; for example, Serra et al. (2014)
construct a Bayesian spatiotemporal “hurdle” model for large wildfires. As to continuous
distributions, Ríos-Pena et al. (2018) implement MCMC inference for zero-inflated Beta-
regression to model the occurrence of wildfires in spatial units, with absence corresponding
to zero-inflation, while the positive area fraction covered by wildfires is captured through
the Beta distribution. Joseph et al. (2019) estimate separate regression models with random
effects for occurrence numbers in areal units and for sizes and study posterior predictive
distributions for block maxima of wildfire sizes. Pimont et al. (2021) developed a marked
spatiotemporal log-Gaussian Cox process model, called Firelihood, for daily data by apply-
ing the integrated nested Laplace approximation (INLA, Rue, Martino and Chopin (2009))
for Bayesian inference on most components of the model. Their distribution of wildfire sizes
over positive values is based on estimating exceedance probabilities and excess distributions
over a range of severity thresholds. Weather information is included through a nonlinear effect
of the Fire Weather Index (FWI, van Wagner (1977)), constructed to yield high correlation
with wildfire activity.
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In this work we develop the following novelties to address key shortcomings of the works
cited above. As large wildfires play a dominant and critical role for fire activity, due to the
heavy tails of burnt areas, we focus on accurate modeling of their distribution and, in partic-
ular, its spatiotemporal variation. However, models constructed using only extreme wildfires
would lead to high estimation uncertainty when inferring complex spatiotemporal structures.
We, therefore, propose the joint estimation of extreme and nonextreme wildfires where the
model borrows strength from the latter to help estimate the former; the large number of ob-
servations available for moderate fires improves the prediction of larger fires, so changes in
extreme fire activity are better accounted for.

Complex models such as Firelihood require separate estimation of the occurrence and size
model components, thus hampering inferences that exploit interactions between them. Tem-
poral stochastic structures are often restricted to the spatiotemporal variability in covariates.
In Pimont et al. (2021), simulated predictive distributions of wildfire activity for various di-
visions of the space-time domain failed to capture some very extreme events, specifically the
year 2003. Here, we increase the flexibility of the spatiotemporal structure, especially for
extremes.

Our new approach leverages a combination of marked point processes, defined over con-
tinuous space and time, and extreme-value theory to represent the mechanisms leading to
wildfires exceeding a high severity threshold for burnt areas. The point pattern of extreme
fires is viewed as a thinning of the full pattern, and we select a suitable threshold before
using the GPD model for threshold excesses.

We also advocate sharing spatial random effects that affect several model components si-
multaneously: these effects are estimated for one response variable (e.g., wildfire counts),
but we also include them with scaling coefficients in other response variables (e.g., wild-
fire size exceedances). This approach decreases uncertainty in the estimation of those re-
gression equations whose vector of observed responses carries too little information to es-
timate complex predictive structures. We will highlight the improved inferences through
sharing in our wildfire application. Besides increasing model parsimony, sharing also
provides new scientific insight by highlighting joint drivers of different wildfire compo-
nents.

The FWI quantifies the influence of weather drivers on wildfire activity and is often
mapped as an index for fire danger, for instance, by the French weather service Météo
France. Model diagnostics of Pimont et al. (2021) showed that the predictive power of FWI in
France varies across seasons, and we estimate a more sophisticated seasonal nonlinear FWI
effect.

Predictive model validation is intricate because of heavy tails and high prediction un-
certainty for individual wildfires. Customary validation scores, such as means of squared
or absolute errors, are not useful. In addition to visual diagnostics, we tackle this diffi-
culty through joint assessment of several numerical criteria, either through scores for bi-
nary data (e.g., Area under the Curve, Fawcett (2006)) to assess the exceedance behavior
over a relevant severity threshold or through comparison of probabilistic scores for continu-
ous predictions, such as the scaled Continuous Ranked Probability Score (Bolin and Wallin
(2020)).

We estimate our marked log-Gaussian Cox process in a Bayesian setting using INLA
(Illian, Sørbye and Rue (2012)) by adopting penalized complexity (PC) priors for hyper-
parameters (Simpson et al. (2017b)). Gaussian process priors follow the Matérn covari-
ance function, and we use the Stochastic Partial Differential Equation (SPDE) approach of
Lindgren, Rue and Lindström (2011) for numerically efficient Gauss–Markov approximation.
Fully Bayesian inference is out of reach, as we have several million observations of wildfire
counts, so we devise a specific subsampling scheme for zero counts that keeps a relatively
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larger proportion of observations with high FWI for which most wildfires occur. This allows
joint Bayesian inference on all components, and we ensure that our subsample sizes allow
the fitting of models on standard personal computers, in contrast to other recent approaches
(e.g., Joseph et al. (2019), Opitz, Bonneu and Gabriel (2020), Pimont et al. (2021)) requiring
high computer memory.

In the remainder of the paper, we first explore available data on wildfires and predictors in
Section 2. We provide general background on extreme-value theory and point processes and
on how to combine them in a Bayesian hierarchical model using the INLA-SPDE method,
in Section 3. The specific hierarchical structure for the joint analysis of extreme and nonex-
treme wildfires is developed in Section 4. Estimation with subsampling of pixel-days without
wildfire occurrences is detailed in Section 3.3. After a comparative analysis of models in
Section 5.1, we highlight key findings and prediction of wildfire activity components in Sec-
tions 5.3 and 6, and we conclude in Section 7.

2. Wildfire data. Since 1973, wildfires occurring in the fire-prone French Mediter-
ranean region have been recorded in the Prométhée database (www.promethee.com). Each
wildfire occurrence is reported with its fire ignition cell in a 2 × 2 km2 grid, day of detection,
and burnt area in hectare (ha). Inconsistent reporting was found for small wildfires, especially
smaller than 1 ha, and we keep only data with reported burnt area larger than 1 ha, that is,
of escaped wildfires that could not quickly be extinguished. We use the observation period
1995–2018, for which gridded weather reanalysis data (SAFRAN model of Météo France)
and information on forested area are available.

Figure 1 illustrates the heavy tails in the distribution of burnt areas and strong spatial
variability in numbers and sizes of wildfires. It also shows the contours of administrative
areas (“départements”) in the study region. Small to moderately large wildfires dominate
the pie charts for wildfire counts, while large wildfires dominate those for aggregated burnt
area. Certain spatial patterns are similar in the distribution of numbers and sizes of wildfires
(top and bottom display of Figure 1, respectively), but there are notable differences. For
example, large wildfire numbers do not always entail large aggregated burnt areas, as we
see for the Pyrénees-Orientales département in the southwest. The disparities show the need
to model spatiotemporal structures in both wildfire numbers and sizes as well as in their
interaction. Figure 2 (left panel) shows a histogram of burnt area values. The sum of burnt
areas exceeding the empirical 99%-quantile is larger than the corresponding sum for the
remaining wildfires.

The SAFRAN model provides gridded weather reanalyses at 8 km resolution. The joint in-
fluence of weather variables, such as temperature, precipitation, and wind speed on fire activ-
ity patterns is highly complex. Meteorological indices of fire danger have been constructed,
such as the widely used unitless Fire Weather Index (FWI) that was originally defined for
Canadian forests. Its values are often used for direct interpretation and fire danger mapping.
Instead, we here study its relationship to components of fire risk, such as occurrence fre-
quency and wildfire sizes. For our models we preprocess SAFRAN data to compute daily
FWI, using the cffdrs library (Wang et al. (2017)), and utilize the SAFRAN grid by ag-
gregating daily wildfire counts to its cells; Pimont et al. (2021) describe the full procedure
of computing FWI as well as justifications for using this spatial-temporal resolution. Forest
cover is another crucial explanatory variable. Around 60% of the study area has forested ar-
eas or vegetation types that ignite easily (shrubland or other natural herbaceous vegetation).
Wildfires do not propagate easily through the other available land cover types. We consider
relevant fuel material through the proportion covered by this vegetation in each SAFRAN
grid cell (and day) based on CORINE Land Cover data (CLC). CLC dynamics are captured
by linear temporal interpolation of several inventories. We refer to the resulting pixel-day
predictor as forested area (FA) in %.

http://www.promethee.com
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FIG. 1. Maps of Prométhée data aggregated to the SAFRAN grid at 8 km resolution. The pie charts in the grid
cells are based on 1 wildfire size classes with boundaries given by empirical quantile levels 0, 0.5, 0.75, 0.9,
0.95, 0.99, 1 of all burnt areas (June–October). Top display: Pie charts show relative count proportions over the
six classes and have size increasing with increasing counts. Bottom display: Pie charts show relative burnt area
proportions and have size increasing with increasing aggregated burnt area.

FIG. 2. Burnt area distribution. Left: Histogram of burnt areas (ha) in base-10-logarithm. Middle: Parameter
stability of the tail index. Right: P-values for the null hypothesis of a GPD distribution above the threshold; tick
labels on top indicate the number of fires above the thresholds.



WILDFIRE MODELING 565

3. Methods for point patterns with extreme marks.

3.1. Extreme-value theory. Given a random variable X whose distribution F satisfies
mild regularity conditions, the generalized Pareto distribution (GPD) arises asymptotically
for the positive excesses of X above a threshold increasing to x� = sup{x : F(x) < 1} (Coles
(2001)). Therefore, given a large threshold u < x�, the tail behavior of a wide class of random
variables X can be approximated as

(1) Pr(X > x + u | X > u) ≈ GPDσ,ξ (x) =
{
(1 + ξx/σ)

−1/ξ
+ ξ �= 0,

exp(−x/σ) ξ = 0,
x > 0

with shape parameter ξ ∈ R and scale parameter σ = σ(u) > 0, where a+ = max(a,0).
The shape parameter determines the rate of tail decay with slow power-law decay for
ξ > 0, exponential decay for ξ = 0, and polynomial decay toward a finite upper bound for
ξ < 0. Writing pexc = 1 − F(u) for the exceedance probability of X above u, we use (1) to
approximate the cumulative distribution function F of X above the threshold u (Davison and
Smith (1990)) as

(2) F(x) ≈ 1 − pexc GPDσ,ξ (x − u), x > u,

where ξ , σ and pexc are parameters to be estimated. We account for dependence and nonsta-
tionarity among observations by including auxiliary variables and Gaussian random effects in
σ and pexc. Nonstationarity in ξ is often hard to identify, and we, therefore, keep ξ stationary.

Based on (2), we model the conditional GPD of fire size excesses and pexc. To explore the
tail behavior of all fire sizes pooled together and to choose an appropriate threshold u, we
can use mean excess plots (see Section D of the Supplementary Material (Koh et al. (2023)))
or the following threshold stability plot of parameters, here considered for the GPD shape ξ ,
estimated by maximum likelihood for thresholds vm > · · · > v1. We use multiple statistical
tests (Northrop and Coleman (2014)) to test the null hypotheses that the data come from a
common truncated GPD on all intervals (vk, vk+1), k = 1, . . . ,m, where vm+1 = ∞. Using
m = 40 equidistant intervals of length 5 ha for fire sizes, Figure 2 provides evidence that
stability is reached above approximately the 95% quantile (79 ha), as we fail to reject the null
hypothesis ξk = · · · = ξm for intervals with vk > 79 ha and estimated shape ξ̂k ≈ 0.7.

Joseph et al. (2019) modeled fire sizes in the contiguous United States and concluded that
the GPD leads to overestimation of extreme fire sizes. However, they fitted the GPD to the full
distribution; Figure 2 shows that we would have obtained ξ̂ ≈ 1.4 for u = 1, corresponding
to extremely slow tail decay.

3.2. Mark-dependent thinning of point processes. We consider the point pattern of fire
ignitions and burnt areas as a realization of a spatiotemporal marked point process, that is, of
a random count measure N that attributes values N(B) ∈ {0,1,2, . . .} to Borel sets B ⊂ D ⊂
R

2 × R. By abuse of notation, we also refer to the number of points in D as N . We model
the intensity function λ(x) of the point process in the observation window D and denote the
expected number of points in the set B as

�(B) = EN(B) = E

N∑
i=1

1(xi ∈ B) =
∫
B

λ(x)dx.

We focus on Poisson point processes characterized by the counts N(B) ∼ Pois{�(B)}. With
two types of points, such as nonextreme and extreme points, the point pattern is a superposi-
tion of the two single-type patterns, and the intensity is a sum λ = λ1 +λ2. The points of a spe-
cific type, say type 2, are generated by thinning the full point pattern, that is, by removing the
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points of other types (here type 1) using the thinning probability p(x) = λ2(x)/λ(x), x ∈ D.
Extreme events, characterized as points xi whose magnitude mark yi exceeds a fixed high
value u(xi), are obtained by thinning the full point pattern. Given a point pattern {x1, . . . , xN },
N ≥ 1, we define variables Ei = I{yi > u(xi)} ∼ Bernoulli{p(xi)}. An independently thinned
Poisson process (i.e., Ei are independent) is again a Poisson process.

3.3. Spatiotemporal log-Gaussian Cox processes. Log-Gaussian Cox processes
(LGCPs) are Poisson processes with log-Gaussian intensity function λ(x). This random spec-
ification of the intensity function can explain spatiotemporal variability not captured by de-
terministic parameters, and provides a natural framework for the Bayesian modeling of point
processes with Gaussian process priors. Two major challenges arise for likelihood-based in-
ference in LGCPs: (i) intensity functions are conceptually defined over continuous space;
(ii) the Gaussian random effects lead to an intractable likelihood with no general closed-
form expression. Challenge (ii) requires estimation techniques to handle latent variables; see
Section 3.5. As to (i), without considering the marks, LGCPs have no general closed-form
expression for their probability densities

(3) (x1, . . . , xN) 	→ Eλ exp
(
−

∫
D

λ(x)dx

) n∏
i=1

λ(xi).

Different approximation strategies allow numerical computation of the integral
∫
D λ(x)dx for

a given intensity function. We discretize the observation window, using the SAFRAN grid,
and assume that the intensity function does not vary within pixel-day grid cells. Conditional
on λ, the number of points observed in a cell Ck , k = 1, . . . ,K , is Poisson distributed, so
estimating the LGCP corresponds to performing a (mixed) Poisson regression with log-link,

(4) Nk | λk
ind∼ Pois

(|Ck|λk

)
, log(λk) = μk, k = 1, . . . ,K,

where λk is the value of the constant intensity function in cell Ck , |Ck| is the Lebesgue
volume of the cell,

⋃K
k Ck = D and Ck1 ∩ Ck2 = ∅ if k1 �= k2. The linear predictor μk is a

sum of fixed and random effects. Likelihood-based inference for latent Gaussian processes
is often based on Laplace approximation (Tierney and Kadane (1986)). In particular, the
INLA framework assumes conditional independence of the observations, given the latent
Gaussian predictor, and is thus well suited for LGCPs, where the Poisson observations Nk

are conditionally independent, given μk (Illian, Sørbye and Rue (2012), Opitz et al. (2020)).
Other approaches for numerically approximating the integral in (3) exist and typically use
appropriately weighted sums

∑
k ωkλ(x̃k) with discretization points x̃k and weights ωk > 0,

leading to variants of Poisson and logistic regression (e.g., the Berman–Turner 1992 device);
see Baddeley et al. (2010).

3.4. Data aggregation and subsampling schemes. Spatiotemporal hierarchical modeling
is notoriously computer-intensive due to large datasets and numerical challenges with covari-
ances. The R-INLA implementation (Rue et al. (2017)) can handle up to several hundred
thousand observations. Stable inferences may require compromises with respect to the com-
plexity of the latent model and the number of observations, which jointly determine the size
and sparsity of the Gaussian precision matrices, which influence computation times, memory
requirements, and well-conditioned numerical behavior. Even stronger restrictions arise with
the use of methods, such as Markov chain Monte Carlo (MCMC), to achieve approximation
quality comparable to INLA (Taylor and Diggle (2014), van Niekerk et al. (2019)). Krainski
et al. ((2018), Section 8.4) develop strategies for LGCPs by aggregating the events to larger
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mapping units and lowering spatial-temporal resolution of random effects to decrease com-
putation times, though this impedes the modeling of structures with small spatiotemporal
scales.

Another way to cope with this issue of having too many observations is subsampling
(Baddeley et al. (2010), Baddeley et al. (2014), Baddeley and Turner (2000), Rathbun (2013),
Rathbun, Shiffman and Gwaltney (2007)), where the model is estimated using an appropri-
ately reweighted subsample of data points, which keeps the loss of information small. Since
maximum likelihood estimation is equivalent to maximizing the empirical expectation of the
log-density of observations, a subsampling scheme is appropriate, provided it ensures a faith-
ful approximation of this expectation. Subsampling in likelihood-based estimation can be
interpreted as importance sampling (Tokdar and Kass (2010)): the original sample with ob-
servation weight unity is replaced by a subsample with larger observation weights. Weighted
subsampling theory goes back to Horvitz and Thompson (1952).

The Poisson intensities λk = exp(μk) (k = 1, . . . ,K) in (4) are the parameters to be esti-
mated, and we need a subsample Nkj

with weights ωj (j = 1, . . . , J ) such that the subsample
likelihood is close to the full density (3). The sample size K exceeds 5 million, as there are
over 1000 daily-replicated spatial pixels. To enable R-INLA-based estimation, we devise a
stratified subsampling scheme to reduce the number of observations one hundredfold. Obser-
vations Nk > 0 are not subsampled since they are rare and highly informative; we keep them
with unit weights. For the zero wildfire occurrence counts, we link subsampling to Pois-
son additivity. The likelihood contribution exp(−λk)

ωk = exp(−ωkλk) with weight ωk ∈ N

is equal to the likelihood of the sum of ωk observations with count 0; the size of the initial
sample is divided by the factor ωk . The predictors (covariates, random effects) and, therefore,
the intensities λk differ between different pixel-days k in our models, so Poisson additivity
cannot be applied without additional approximations. However, the values of such predictors
may often be very similar for cells located close in space and time, so we control the loss of
information by subsampling that preserves a representative coverage of space and time.

We partition our data by years and pixels and then apply subsampling within each par-
tition. The subsample contains two observations for each year-pixel combination. We thus
obtain approximately 50,000 observations in the subsample, in line with the rule of thumb
of Baddeley et al. (2014), Baddeley, Rubak and Turner (2015) that the subsample should be
at least a factor four larger than the number of event points. The resulting models can be run
on standard desktop computers (16 Gb of memory). Within pixel-year combinations we use
nonuniform random sampling to overweight specific parts of the predictor space. For infer-
ence on the FWI-month interaction, we set different sampling probabilities for FWI values
above and below the empirical FWI-quantile at pFWI for each pixel-year. Values above the
threshold are expected to correspond to more fire-prone conditions, and we overrepresent
them by fixing sampling probabilities pSS = 0.9 for FWI values below the threshold. Large
FWI values represent only a relatively small fraction of the observations; our procedure en-
sures that the model accurately discriminates between occurrences and nonoccurrences of
fires for such large FWI values. To appropriately identify seasonal effects, we choose the
month among June–October at random. For instance, high FWI values tend to be less fre-
quent in October, but uniform subsampling of months gives them more weight. This stratifi-
cation ensures that we have approximately equal numbers of observations for each month in
the subsample. With this scheme we obtain a positive sampling probability pk > 0 for each
observation Nk in (4), and likelihood weights are ωk = 1/pk for the selected observations.
Simulation experiments (see Section E of the Supplementary Material (Koh et al. (2023)))
motivated taking (pFWI,pSS) = (0.7,0.9).
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FIG. 3. Discretization of random effects with SPDE-based Gaussian prior processes. Left: Triangulation mesh
of the study area (blue contours) for the SPDE approach. Neumann boundary conditions are set on the exterior
(black) boundary to obtain a unique solution. The finite element solution defines a Gauss–Markov random vector
with one variable in each node. Right: Histograms of FWI and FA values. The red points indicate where the spline
knots are placed.

3.5. Fully Bayesian inference using INLA-SPDE. Integrated nested Laplace approxima-
tion (INLA Lindgren and Rue (2015), Opitz (2017), Rue, Martino and Chopin (2009)) is
a Bayesian technique for fitting generalized additive models with Gaussian random effects.
It uses astutely designed deterministic approximations for accurate posterior inference on
model parameters, random effects and predictions conditional on data. INLA enables trans-
fer of information across components, appropriate uncertainty assessment and estimation of
shared effects. We implement penalized complexity priors (PC priors, Simpson et al. (2017b))
in our models to control the complexity of model components. Such priors penalize the dis-
tance (constructed using the Kullback–Leibler divergence) between the prior of a model
component and a simpler baseline at a constant rate, that is, by using an exponential prior
distribution for the distance.

Due to the large number of pixels in our problem, spatial Gaussian random effects and
their conditional distributions must be tractable in this setting. We use the Matérn covariance
function for random effects (denoted g), given as follows for two points s1 and s2:

Cov
{
g(s1), g(s2)

} = σ 221−ν(
κ‖s1 − s2‖)ν

Kν

(
κ‖s1 − s2‖)

/
(ν), σ, ν > 0

with Euclidean distance ‖ · ‖, gamma function 
, modified Bessel function of the second
kind Kν , and standard deviation and smoothness parameters σ and ν. The empirical range
at which the correlation drops to approximately 0.1 is r = √

8ν/κ . Numerically convenient
representations by approximating Gauss–Markov random fields (GMRF, characterized by
sparse precision, i.e., inverse covariance, matrices) are constructed by solving a stochastic
partial differential equation (SPDE, Krainski et al. (2018), Lindgren, Rue and Lindström
(2011)), where we fix the smoothness ν at unity. The discretization points of the triangulation
in the SPDE approach are chosen as the nodes of a finite element representation (e.g., the
triangulation of space for d = 2, or spline nodes for d = 1), which enables efficient inference
for random effects representing spatial variation (d = 2) or nonlinear functions (d = 1 for the
FWI and FA effects). Our spatial triangulation mesh in Figure 3 has 1114 nodes. It is less
dense in the extended zone around the study area to ensure that SPDE boundary conditions
have negligible influence on the study area. The four splines knots for FWI and FA are evenly
spaced throughout the feature space.

4. Point processes with moderate and extreme marks. Point processes govern the
space-time point patterns of occurrences; size processes govern the moderate-level and ex-
treme quantitative marks. We write Nit for the number of wildfire occurrences on day
t ∈ {1, . . . , n} and over the 8 km × 8 km grid cell i ∈ {1, . . . ,1143} with centroid si , and
Ci,t ⊂ D for the space-time cell with volume |Ci,t | = 64 (km2 × day). If Nit > 0, we let
Y it = (Yit,1, . . . , Yit,Nit

) ∈ (1,∞)Nit denote the corresponding quantitative marks. We write
zk(s, t) (k = 1, . . . ,K) for known deterministic covariates.
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We model data of escaped fires (> 1 ha), whose occurrence structure is captured by a re-
gression component COX defining a LGCP. A logistic regression component BIN is used to
classify fires into moderate (0) and large (1), according to their exceedance, or not above a
fixed threshold u, that is, to provide the thinning of the point pattern and leave only extreme
wildfires. Based on the statistical threshold selection procedure in Section 3.1 (see Figure 2),
we consider a fire size Yit,k to be extreme if Yit,k > 79ha (k = 1, . . . ,Nit ); that is, we take
u = 79. We write Rit = (Rit,1, . . . ,Rit,Nit

) ∈ {0,1}Nit for the vector of binary exceedance
indicators Rit,k = I(Yit,k > u). Moderate wildfire sizes Yit,k ∈ (1, u] are modeled through a
Beta regression component BETA applied to (Yit,k − 1)/(u − 1). The Beta distribution, usu-
ally parametrized by two shape parameters a, b > 0, is here parametrized through a precision
parameter φ = a + b > 0 and the mean μBETA

it = a/(a + b) ∈ (0,1) with logit-link func-
tion such that a = μBETA

it φ and b = φ(1 − μBETA
it ); it is a flexible location-shape family for

interval-valued data and can be used with INLA. For large wildfires we use the extreme-value
framework in Section 3.1 and model excesses Yit − u > 0 above u through a GPD regression
component GPD to characterize extreme wildfires. Following Opitz et al. (2018), we use a
log-link function for the median μGPD

it of the GPD.
Some hyperparameters (e.g., precision parameters of priors for fixed effects) are fixed a

priori, but those that may heavily influence the posterior model structure are estimated. The
priors are fully detailed in Section F of the Supplementary Material (Koh et al. (2023)).

4.1. Bayesian hierarchical multiresponse regression. Our modeling assumptions in Sec-
tion 3.3 give the linear COX predictor

μCOX
it = log

∫
Cit

λ(s, t)d(s, t) = logλ(si, t) + log |Cit |.

We construct the system of regression equations in a Bayesian generalized additive mixed
model (GAMM),

Nit | μCOX
it ∼ Poisson

{
exp

(
μCOX

it

)}
,

Rit,k | μBIN
it ∼ Bernoulli

{
logit−1(

μBIN
it

)}
, k = 1, . . . ,Nit ,{

Yit,k − u | Rit,k = 1,μGPD
it

} ∼ GPD
{
exp

(
μGPD

it

)
, ξ

}
,{

(Yit,k − 1)/(u − 1) | Rit,k = 0,μBETA
it

} ∼ Beta
{
logit−1(

μBETA
it

)
, φ

};
μCOMP

it =
K∑

k=1

gCOMP
k

{
zk(si, t); θCOMP, θSHR}

,

COMP ∈ {COX,BIN,GPD,BETA};
θ = (

ξ,φ, θCOX, θBIN, θGPD, θBETA, θSHR)
∼ Hyperpriors,

where terms gCOMP
k capture linear or nonlinear influence of the covariates in the correspond-

ing model component. The specifics of θ are discussed below.
The intensity function λexc of the point process of large fires satisfies λexc(si, t) ≤

λ(si, t). The exceedance probability logit−1μBIN
it = λexc(si, t)/λ(si, t) defines the indepen-

dent Bernoulli probability of the full point pattern in COX. Since λexc(si, t) = exp(μBIN
it ) ×

exp(μCOX
it )/{1+exp(μBIN

it )} and typically exp(μBIN
it ) ≈ 0, we obtain logλexc(si, t) ≈ μBIN

it +
μCOX

it .
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4.2. Sharing latent effects. For maximal flexibility we could incorporate mutually inde-
pendent spatial effects into all model components. However, models would become overly
complex, with too many spatial effects and hyperparameters to estimate and with high pos-
terior uncertainties in the spatial effects of the BIN and GPD components due to the small
number of large wildfires. We share spatial random effects between model components of the
point and size processes with a preliminary model selection procedure (see Section 5.1) that
avoids compromising the quality of model fit and predictions. We assign SPDE-based spatial
GMRF priors gCOX-BETA, gCOX-BIN and gBIN-GPD (recall Section 3.5) for the shared spatial
effects. We use superscripts to indicate the two components into which we jointly incorporate
an effect and write n to indicate the number of latent random variables for the corresponding
effect (in superscript),

gCOX-BETA(si) ∼ GP2D-SPDE(ω1), nCOX-BETA = 1114,

gCOX-BIN(si) ∼ GP2D-SPDE(ω2), nCOX-BIN = 1114,

gBIN-GPD(si) ∼ GP2D-SPDE(ω3), nBIN-GPD = 1114,

where ω1, ω2, and ω3 consist of r and σ with PC priors (Fuglstad et al. (2019)). Each
shared effect is additively included in the linear predictor of the second component and then
shared toward the first component with scaling factor β ∈ R, with superscripts to denote
the two components. We denote the vector of sharing-related hyperparameters by θSHR =
(ω1,ω2,ω3, βCOX-BETA, βCOX-BIN, βBIN-GPD) and use flat, independent zero-centered Gaus-
sian hyperpriors for the scaling factors.

Sharing allows modeling of residual spatial effect components that jointly affect multiple
model responses, such as land use at the Wildland-to-Urban interface (Stewart et al. (2007)),
where human activities intermingle with wildland vegetation. Accurate sharing improves par-
simony of the model and borrows estimation strength for random effects across model com-
ponents by simultaneously using different types of data. Expert knowledge should guide the
choice of spatial effects to be shared between specific components; shared coefficients that
differ from zero provide novel insight into the interplay of spatial structures.

4.3. Prior structure of linear predictors. We let zFWI(si, t) and zFA(si, t) denote the av-
erage FWI and FA on day t in grid cell i and by a(t) and m(t) the corresponding year and
month of day t . Writing α for the intercept and g for the other GAMM components, the prior
structure of the model component COX for escaped fire occurrences is

μCOX
it = αCOX + gCOX

1 (si) + βCOX-BETAgCOX-BETA(si)

+ βCOX-BINgCOX-BIN(si)

+ gCOX
2

{
zFA(si, t)

} + gCOX
3

{
zFWI(si, t);m(t)

}
+ gCOX

4
{
a(t)

} + gCOX
5

{
m(t)

};
gCOX

1 (si)
iid∼ N {0,1/τ1}, nCOX

1 = 1143,

gCOX
2 (•) ∼ GP1D-SPDE(φ1), nCOX

2 = 4,

gCOX
3 (•;m) ∼ GP1D-SPDE(φ2),

gCOX
3 (zFWI; •) ∼ GPRW1(1/τ2), nCOX

3 = 4 × 5 = 20,

gCOX
4 (•) ∼ GPRW1(1/τ3), nCOX

4 = 20,

gCOX
5 (•) ∼ GPRW1(1/τ4), nCOX

5 = 5;
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θCOX = {
αCOX,φ1,φ2, τ1, τ2, τ3, τ4

} ∼ Hyperpriors.

Spatial occurrence hot spots (see Section C of the Supplementary Material (Koh et al.
(2023))) may arise due to time-invariant landuse. Moreover, spatial variation may be shared
from patterns in the BETA and BIN components through the components gCOX-BETA(si) and
gCOX-BIN(si). The month and year effects, gCOX

4 and gCOX
5 , capture spatially homogeneous

temporal variation in occurrence intensities. They are assigned first-order random-walk pri-
ors GPRW1 with a sum-to-zero constraint for identifiability so, for the yearly effect and for
a = 1995, . . . ,2013,

gCOX
4 (a + 1) − gCOX

4 (a) ∼ N (0,1/τ3),

2014∑
i=1995

gCOX
4 (i) = 0.

The quadratic B-spline functions of FWI and FA are assigned priors GP1D−SPDE, constrained
to zero at the left boundary 0 and to sum to zero, respectively. Most wildfires in the region
are caused by human activity, possibly leading to a nonlinear relationship between FA and
occurrence intensity, as dense forest areas are often exposed to low human activity. We model
monthly variation of the nonlinear FWI effect through separate GP1D−SPDE-terms in g3 for
each month, linked across successive months with a GPRW1-structure in the prior model.

The regression equation used for the Bernoulli process is

μBIN
it = αBIN + gCOX-BIN(si) + βBIN-GPDgBIN-GPD(si) + gBIN

1
{
zFWI(si, t)

}
+ gBIN

2
{
zFA(si, t)

} + gBIN
3

{
a(t)

};
gBIN

k (•) ∼ GP1D-SPDE(ζ k), k = 1,2, nBIN
1 , nBIN

2 = 5,

gBIN
3 (•) ∼ GPRW1(1/τ5), nBIN

3 = 5;
θBIN = {

αBIN, ζ 1, ζ 2, τ5
} ∼ Hyperpriors.

The linear predictor of the Bernoulli probability has a simpler form than the occurrence com-
ponent but still allows the capture of specific nonlinear effects of FWI and FA. In Figure 1
we discern hot-spot areas of large fire occurrences that differ substantially from the overall
occurrence structure, and we aim to capture these residual effects through the shared spatial
effects.

The prior structure for the two mixture components of quantitative marks is

μBETA
it = αBETA + gCOX-BETA(si) + gBETA

1
{
zFWI(si, t)

} + gBETA
2

{
zFA(si, t)

}
,

μGPD
it = αGPD + gBIN-GPD(si) + gGPD

1
{
zFWI(si, t)

} + gGPD
2

{
zFA(si, t)

}
+ gGPD

3
{
a(t)

};
gBETA

k (•), gGPD
k (•) ∼ GP1D-SPDE(κk), k = 1,2, nGPD

1 , nGPD
2 , nBETA

1 , nBETA
2 = 5,

gGPD
3 (•) ∼ GPRW1(1/τ6), nGPD

3 = 5;
θMARK = {

αGPD, αBETA,κ1,κ2, τ6
} ∼ Hyperpriors.

We assigned random-walk priors to year effects, included in some of the components (COX,
BIN, GPD). In all components (BETA, BIN, COX, GPD), we model nonlinear relationships
with respect to FWI or FA.
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4.4. Alternative model specifications. We also consider size processes that do not model
the moderate-level and extreme marks separately, that is, with no mixture representation of
the size process. Similar models have been proposed in the literature (e.g., Joseph et al.
(2019)), though without the sharing of random effects. We use either the Gamma distribu-
tion for the full range of marks, Yit,k | μSIZE

it ∼ Gam{exp(μSIZE
it ), φGam}, or the Normal dis-

tribution for the logarithmically transformed marks, logYit,k | μSIZE
it ∼ N {exp(μSIZE

it ), φN },
where the distributions are parameterized by the link function μSIZE

it modeling the mean
and precision parameters φGam = exp(μSIZE

it )2/Var(Yit,k) and φN = 1/Var(logYit,k), re-
spectively. In both cases

μSIZE
it = αSIZE + gSIZE-COX(si) + gSIZE

1
{
zFWI(si, t)

} + gSIZE
2

{
zFA(si, t)

}
+ gSIZE

3
{
a(t)

} + gSIZE(si);
gSIZE

k (•) ∼ GP1D-SPDE(ιk), k = 1,2, nSIZE
1 , nSIZE

2 = 5,

gSIZE
3 (•) ∼ GPRW1(1/τ7), nSIZE

3 = 5;
θSIZE = {

αSIZE, ι1, ι2, τ7
} ∼ Hyperpriors,

where the spatial effects gSIZE-COX(si) and gSIZE(si) are controlled by Matérn parameters ω4
and ω5, similar to those in Section 4.2.

5. Results.

5.1. Model selection and comparison. Estimation was carried out using the INLA-SPDE
approach described in Section 3.5 by applying the subsampling scheme proposed in Sec-
tion 3.4. In a preliminary analysis of the regression models described in Section 4, we used
the Widely Applicable Information Criterion (WAIC, Watanabe (2010)) in a stepwise manner
to compare nested models with different components in the regression equations (e.g., linear
vs. nonlinear effects of explanatory variables) to choose their final forms.

We label the model with prior structure, detailed in Section 4.3 M1, and the model with-
out spatial effects in the size and extreme occurrence components M2. We also considered
other models from the recent wildfire modeling literature. We refer to model M2 but without
monthly variation in the FWI effect as M3 which is similar to the model in Pimont et al.
(2021). We let M4 and M5 denote the models with the point process model of M1 but with
no mixture representation of the size process for which we use the log-Normal and Gamma
distribution for the size distribution in the model structure described in Section 4.4. These
models do not differentiate between extreme and nonextreme fires, but their response dis-
tributions were found to be good modeling candidates in Joseph et al. (2019), though their
approach does not use shared random effects.

For the observed individual fires in the validation (2015–2018) periods, we generated pos-
terior predictive distributions of each model based on 500 posterior simulations. First, we
evaluated the models’ ability to predict exceedances above the empirical 90% quantile of
burnt areas using the AUC (Fawcett (2006)) and the Brier score (Brier (1950)). The severity
threshold chosen here is sufficiently high for extreme risk assessment but low enough to re-
tain enough observations to evaluate these scores with sufficient precision. As we considered
the average predictive score across all observations in the validation set, we also computed
the scaled Continuous Ranked Probability Score (sCRPS, Bolin and Wallin (2020)) which
scales each observation’s CRPS before calculating the average CRPS to account for noniden-
tical predictive distributions. For these analyses we kept the original locations of observed
fires and simulated only from the size components. By combining posterior simulations of
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TABLE 1
Comparison of models using predictive scores (averaged over n observations) calculated with data from the

validation period: sCRPS, Brier, and AUC scores for individual fires and sCRPS for the spatiotemporally
aggregated burnt areas at month-département scale, based on 500 simulations of the posterior models, with

p-values for a permutation test comparison with the best model M1. A lower score is better

Model

Score M1 M2 M3 M4 M5

Individual fires, n = 823 sCRPS 2.74 2.87 2.94 2.84 3.19
p-value – <5% <1% <5% <1%

Brierq90 0.0855 0.0868 0.0866 0.0944 0.0967
p-value – <5% 6% <1% <1%

Dép-month, n = 75 1 − AUCq90 0.3052 0.3502 0.3516 0.3184 0.3122
p-value – <5% <5% 40% 41%

sCRPS 3.55 3.62 3.64 3.62 3.58
p-value – 7% 7% 9% 39%

the occurrence and size components, we also evaluated burnt area predictions aggregated at
the month-département scale.

Table 1 shows good relative performance of M1 for all scores when evaluating wildfire
predictions on the validation period. To better grasp the uncertainty in scores, we show p-
values of a permutation test assessing the significance of negative values in the differences
of scores between M1 and the other models, based on 2000 permutations. For the sCRPS
of individual fires, the score differences are all significant at the 5% level. A general finding
is that using sophisticated structures, such as the mixture representation of size processes,
sharing and monthly variation of FWI effect, improves predictions; it further allows for the
novel scientific insights presented in Section 6.

Comparison of M1 and M2 confirms the benefits of incorporating spatial random effects
in the size model components in M1 using the sharing detailed in Section 4.2. M1 performs
better than M2, and M2 and M3 give similar predictions for wildfire sizes and their aggre-
gation. Model M1 performs better than M4 and M5, especially with respect to Brier and
sCRPS scores, though in some cases improved scores have relatively high p-values. Mod-
els M4 and M5 perform better than M2 and M3 for some scores like the AUC and sCRPS
at the month-département aggregation because of the additional sharing and spatial random
effects in the size component, though they perform worse for the other scores due to having
no components for extreme wildfires. Despite good scores of M4 and M5 on the training set
(not shown), their worse results on the validation set suggest that the log-Normal and Gamma
distributions for burnt areas do not predict the extremes in new data as well as M1 which does
not show overfitting.

5.2. Visual inspection of posterior predictive densities. We also assess the predictive be-
havior of our chosen model M1 visually. First, we assess whether the size component cor-
rectly predicts extreme wildfires for specific départements. In Section A of the Supplemen-
tary Material (Koh et al. ((2023), Figure S1)), we use simulations from the posterior model at
pixel-days, where fires have been observed to compare empirical and predicted excess prob-
abilities over high thresholds, starting at 100 ha. Predictions are generally good, since most
empirical exceedance probabilities fall within the interquantile range of simulations, except
for the départements of Var and Haute-Corse in which there is slight underestimation at very
large thresholds. These two départements have large continuous forest areas and saw unusu-
ally many large wildfires in the summer of 2017. Much of their land has acidic soils that favor
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biomass production and is covered by tall and dense shrubland, so the fires that occurred in
2017 were harder to contain due to their higher heat release. Overall, the differences in tail
behavior of fire-prone and less fire-prone regions are well captured.

Next, we compare the numbers of simulated and observed fires aggregated by year over the
study region (Supplementary Material Koh et al. ((2023), Section A, Figure S2, left display)).
Observed annual fire numbers for both test and training sets fall within the interquantile
range of simulations for more than half of the study period. M1 captures the relatively high
observed numbers of fires during 2001, 2003, and 1998 (training) and 2017 (test), while it
also accurately predicts the sharp decrease in 2018.

Lastly, we jointly evaluate the size and occurrence components of our model M1. We
aggregated simulated burnt areas by year, over the whole spatial region in Figure S2 (right
display), and over départements in Figure S3. The global time trend in observed burnt areas is
well captured in the Supplementary Material (Koh et al. (2023)), Figure S2, with interquantile
coverage of 42%. M1 captures the exceptional peak in 2003, which is poorly predicted by M4
and M5 and the Firelihood model of Pimont et al. (2021). M1 also succeeds in accurately pre-
dicting the moderately high burnt areas in 2001 and 2017, and it generally discriminates well
between fire conditions leading to small, moderate, large, and very large fire numbers. Fig-
ure S3 further shows that regional differences across départements are well captured by M1.
Overall, our model captures spatiotemporal variation and provides satisfactory regionalized
forecasts for operational purposes.

5.3. Principal results of the main model M1.

5.3.1. Covariate effects. For the COX component, Figure 4 shows that the month-
specific FWI effect varies significantly across months. For easier comparison, we have cen-
tred the curves so that the posterior mean is 0 for FWI = 0 in September. All the posterior
means increase monotonically up to FWI of 75 and then flatten for higher values, especially
at the beginning and end of the wildfire season, with a slight decrease of the curve toward the
highest FWI.

The posterior partial effect of FA on the COX component in Figure 5 indicates a “bump”-
shaped effect of FA, which is significant, based on pointwise credible intervals. High FA can
be regarded as a good proxy for low human activity, while low FA means lack of fuel. Clearly,
expected wildfire ignition numbers are not proportional to forest area.

As to temporal partial effects without spatial variation (Figure 5), the posterior year effect
suggests a significant drop in wildfire activity after 2003, potentially related to policy changes
after the exceptional 2003 events. The partial month effect (top-right display of Figure 5,
corresponding to the intercept of its combined effect with FWI in Figure 4) is lowest at the
start of the wildfire season and peaks in August.

As to the probability of occurrence of large fires (BIN), Figure 5 (bottom-middle display)
highlights a strong positive posterior effect of FWI, increasing monotonically and signifi-
cantly up to FWI values of around 75, before it dampens at very large FWI values, similar
to the COX component: large wildfires are more frequent with moderate to high FWI values.
The probability of large wildfires tends to increase with increasing FA in a grid cell (Fig-
ure 5, bottom-left display) which is reasonable because more FA fuel is available over large
areas. The pointwise credible bounds of yearly effects across the study period suggest that
the occurrence of large events was significantly higher around the peak in 2003.

The additive effects in the GPD and BETA components of the size distribution, seen in
Figures 6, show similar posterior effects of FWI and forest area for extreme and moderate
sizes. The posterior estimates imply that fires become larger when FWI increases until 60
but this effect flattens for higher FWI. Increasing FA leads to increasing wildfire size in
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both components until 50%, then reaches a plateau after. For the year effect in the extreme
component GPD, no clear trend arises, though 2003 has a significantly higher effect than
1998. The posterior mean estimate of the shape parameter ξ in the GPD component is 0.42;
this suggests that the distribution of burnt areas remain heavy-tailed after incorporating our
spatiotemporal effects into this component.

5.3.2. Sharing effects induce correlated wildfire activity components. Here, we focus
only on the spatial effects shared between model components. The 95% credible intervals
for the scaling parameters βCOX-BETA, βCOX-BIN, and βBIN-GPD do not cover 0; their pos-
terior estimates for the triplet (2.5% quantile, mean, 97.5% quantile) are (6.4,10.3,14.0),
(−3.1,−1.8,−0.9), and (0.5,1.0,1.6), respectively. The posterior mean of βCOX-BETA is
positive and that of βCOX-BIN is negative, confirming significant positive and negative shar-
ing between COX and BETA, and COX and BIN, respectively; these findings provide new
spatial insights for fire risk management described in Section 6. The posterior means for the
effective range parameters of the shared spatial fields, rCOX-BETA, rCOX-BIN and rBIN-GPD,
are 34.3 km, 26.2 km and 156.9 km, respectively. Posterior mean maps of their correspond-
ing spatial random effects are shown in Section G of the Supplementary Material (Koh et al.
(2023)).

Sharing decreases uncertainty by borrowing estimation strength between model compo-
nents. The average lengths of 95% posterior credible intervals of variables constituting the
random effect shrink by up to 30% (Figure 7) because of a higher observation-to-parameter
ratio that enables us to better capture relevant spatial signals.

To identify the hot-spot regions of spatial random effects, we study credible sets for excur-
sion regions (Bolin and Lindgren (2015)). We evaluate where the fields exceed or fall below
the thresholds u = 0.1 and −u, respectively. These thresholds approximately correspond to

FIG. 4. Posterior estimates of gCOX
3 (•;m) + gCOX

5 (m), m = 1, . . . ,5, the joint FWI-month effect, for June–Oc-
tober in the linear predictor of the point process (COX) component. The blanket of black and blue points at the
bottom of each plot shows FWI values for pixel-days with fires in any month and the specific month, respectively.
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FIG. 5. Posterior estimates of gCOX
2 (•) (FA effect, top left panel), gCOX

4 (•) (year effect, top middle panel),

gCOX
5 (•) (month effect, top right panel), gBIN

2 (•) (FA effect, bottom left panel), gBIN
1 (•) (FWI effect, bottom middle

panel) and gBIN
3 (•) (year effect, bottom right panel) in the linear predictor of the point process (COX) component

and large wildfire probability component (BIN). At the bottom of some displays, the blanket of black and red points
shows FA/FWI values for pixel-days with moderate and large fires, respectively.

FIG. 6. Panels as in Figure 5. Posterior estimates of gGPD
2 (•) (FA effect, top left), gGPD

1 (•) (FWI effect, top

middle), gGPD
3 (•) (year effect, top right), gBETA

2 (•) (FA effect, bottom left) and gBETA
1 (•) (FWI effect, bottom

right) in the linear predictor of the large wildfire size component (GPD) and moderate wildfire size component
(BETA).
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FIG. 7. Lengths of the 90% credible intervals of spatial random effect variables at the SPDE triangulation
nodes within the study area in the BIN component, based on 500 posterior simulations. Boxplots (left) and error
bar plots for the models without (top right) and with sharing (bottom right). Red error bars indicate nodes where
the intervals do not include zero.

a 10% increase and decrease, respectively, on the scale of the response when taking into ac-
count the log or logistic link. The u-excursion set with probability α, E+

u,α(X), is defined as
the largest set for which the level u is exceeded at all locations in the set with probability
1 − α. The negative u excursion set with probability α, E−

u,α(X), is defined as the largest set
for which the process remains below the level −u at all locations in the set with probabil-
ity 1 − α. This approach determines the largest set contained in the exceedance set with a
minimum probability threshold, and it assumes a parametric family for the exceedance sets.
To visualize excursion sets simultaneously for all values of α, Bolin and Lindgren (2015) in-
troduced the positive and negative excursion functions F+

u (s) = 1 − inf{α | s ∈ E+
u,α} ∈ [0,1]

and F−
u (s) = 1− inf{α | s ∈ E−

u,α} ∈ [0,1]. Figure 8 highlights several hot-spot regions for the
shared spatial effects, which we interpret with respect to wildfire management in Section 6.

6. New insights for wildfire science. Pimont et al. (2021) pointed out several critical
divergences between simulations of their model and observed wildfire activity, and they have
proposed hypotheses to explain them. The novel models developed here, especially M1, in-
clude components to estimate the sources of space-time variability conjectured by Pimont
et al. (2021), leading to a better fit and more reliable inferences and predictions. Here, we
outline the new insights.

6.1. FWI and seasonal effects. The estimated FWI effect on all wildfire components
(COX, BIN, BETA, GPD) is nonlinear with a strong increase when moving from FWI =
0 toward FWI ≈ 60–80, followed by a dampening and a slight decrease for extreme FWI
values, though with wide credible bounds. Moreover, seasonal patterns emerge in the joint

FIG. 8. Excursion functions of posterior latent fields above 0.1 and below −0.1. Plots show
max{F+

0.1(•),F−
0.1(•)} for the shared spatial random fields gCOX-BETA (left panel) and gCOX-BIN (right panel).
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FWI-month effect in the occurrence component COX. The practice of using FWI directly as
a proxy for wildfire activity, without a nonlinear and seasonally varying transfer function as
estimated here, would predict extreme wildfires badly and miss seasonally varying response
of fire activity to this index.

This nonlinear, even decreasing, response to high FWI and seasonal biases can be at-
tributed to the excessively sharp exponential response of FWI to wind speed in its upper
range and to the limited ability of the Drought Code (a subcomponent of the FWI) to re-
produce live fuel moisture dynamics in France (Ruffault et al. (2018)). In spring, vegetation
budburst produces new foliage with a high water content that is maintained until the onset of
the summer drought, typically in early July. The timing of periodic events in plant life cycles
and stomatal control under drought might also explain why dynamics of soil and vegetation
water content are unsynchronized at certain times. In our COX component we model not
only a seasonal effect but also different responses of FWI across the months. The shapes of
these monthly responses vary greatly, so seasonal variations cannot be handled solely through
separate random effects. The response in August did not exhibit any saturation in the upper
part of the FWI range, suggesting that higher values in mostly dry conditions correspond to
increased fire activity; the contribution of wind to FWI could be adequate in these already-
dry conditions. On the contrary, a flattening and notable decrease of the COX response to
FWI was observed at FWI ≈ 45–50 for relatively moist conditions in June and October. This
supports the hypotheses that the desynchronization of soil and fuel moistures caused by plant
phenology in spring could be involved, and the response of the FWI to high wind would be
inaccurate in such moist conditions. July and September, with their mixture of dry and moist
days, show intermediate response levels to very high FWI. These findings confirm a need to
develop better wildfire danger indices in the study region.

6.2. Time trends during the study period. The year 2003 was catastrophic in terms of fire
sizes and burnt area. It has a pivotal role with a decrease of occurrence numbers and sizes
afterward, as highlighted by the year component of our posterior model that captures temporal
trends not explained through weather and land-cover related predictors. In 2003, a heat wave
coincided with severe drought conditions, leading to an unusually high number of escaped
fires (>1 ha), and of fires larger than 10 ha for several weeks, whose occurrence was not
matched by very high values of FWI, due to its weaknesses outlined in Section 6.1. The drop
in the estimated yearly effect after 2003 could be due to official policy measures that have
slightly evolved after 2003, and to better prevention or suppression policies implemented by
fire managers (Pimont et al. (2021)).

The yearly effect from the BIN component should interest wildfire managers, as it shows
that the probability of observing a large fire increases toward the end of the study period after
a decade of continuous decrease; the drivers of such subtle trends estimated by our model
have not yet been identified. Our results also confirm those of Evin, Curt and Eckert (2018),
who found no clear monotonic time trend for the probability of extreme fires.

6.3. Shared spatial effects for improved regionalized predictions. The shared spatial ef-
fects shown in Section 5.3 highlight regional differences in fire size distributions and provide
quantitative interpretations of effects. They also reveal substantial regional variation in pro-
portions of moderate and extreme fires. In particular, the sharing effect with significantly
negative βCOX-BIN allows for interpretation with respect to different wildland-to-urban inter-
actions. The lowland area in the western Pyrénées-Orientales region, fairly densely populated
with a large proportion of abandoned agricultural land intermixed with urban surfaces, ap-
pears to have high occurrence intensities, but its combustible area is strongly fragmented, so
wildfires are mostly small. More fires than expected from weather/climate and forest area oc-
cur in densely populated or rural landscapes with significant human activities promoting fire
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ignitions, while landscape fragmentation and landscape management reduce the likelihood
of large fires. The COX-BETA sharing effect is highly positive in Corsica, where moder-
ately large escaped fires become larger more often than elsewhere, perhaps due to longer
arrival times of firefighters in remote Corsican forests and less frequent airborne firefighting.
Moreover, extreme fires tend to be more frequent because of large contiguous forests. Fur-
ther regional disparities in predictions are illustrated in the Supplementary Material (Koh et
al. (2023)) where the right panel of Figure S4 highlights significant differences in threshold
exceedance probabilities.

7. Conclusion. We have implemented a novel Bayesian spatiotemporal model for wild-
fire activity with specific components for extreme events, and with shared random effects
to account for stochastic dependence among components not explained by covariates. The
sophisticated structure of our fully Bayesian hierarchical model allows us to accurately dis-
entangle the effects and interactions of various observed and unobserved drivers. The use
of Gaussian random effects at high spatial resolution provides crucial benefits over purely
frequentist generalized additive models, since fine-scale spatial variation and associated un-
certainties can be identified properly.

Different sharing strategies respond to different considerations. If statistical stability is
the focus, then sharing from well-identified model components toward those less informed
by data is appropriate. If focus is on accurate inference of a specific component (e.g., ex-
tremes), then it is sensible to share effects from this component toward others. In both cases,
component-specific effects without sharing remain important and should be included as far as
data allow them to be estimated. In some applications, however, introducing common com-
ponents by sharing is the only way to incorporate spatial effects in certain response variables.
For example, had we chosen a threshold larger than 79 ha for large wildfires, we would have
had even fewer observations available for the extreme fire size component. A separate spatial
effect in this component would provide wider credible intervals than those in Figure 7 (top
right) and be of less practical use.

Our findings improve decision support in wildfire management. Spatial and temporal ran-
dom effects quantify the spatiotemporal variation in wildfire activity not explained by the
available explanatory variables, that is, FWI and Forest Area. Our shared spatial effects ex-
plain how residual spatial variability is correlated across wildfire numbers and extreme sizes
and allow us to provide maps of the significant disparities between regions. Weather forecasts,
and the derived FWI forecasts, typically delivered at the département level, are currently the
main components guiding fire detection/suppression resources and the temporary shutdown
of forest areas to the public. However, FWI maps used for fire danger rating must be inter-
preted with care because of the strongly nonlinear and seasonal FWI effect on wildfire risk
identified by our model. Moreover, the strong residual spatial effects estimated in our model
could also hint at weather effects not captured by FWI. The precise regional forecasting of
fire activity that our model can provide, especially of the expected number of fires and of the
expected number and sizes of extreme fires, thus equips wildfire managers with additional
objective criteria to aid decision-making.

Future work could better explore temporal trends (and how they vary over space) that
are due to changes in land-use practices and wildfire management, by incorporating space-
varying temporal random effects. Another extension of the model would be to include other
informative predictors selected among a large variety of land-use, land-cover, and wildfire-
management variables. This could better explain some of the spatiotemporal variation cap-
tured by the random effects of the current model. Another avenue for future models would be
to include more information related to plant physiology and to specific subcomponents of the
FWI (e.g., within the so-called Drought Code) to better explain the heterogeneous response



580 KOH, PIMONT, DUPUY AND OPITZ

of wildfires to FWI. More generally, the construction of novel indices for fire-danger rating
in the Mediterranean area remains an important task to be achieved through an appropriate
mathematical combination of components of the FWI system, other fire-danger indices, and
raw weather and land-related variables. For instance, the Fine Fuel Moisture Code (FFMC)
component of the FWI system could provide improved danger rating for the ignition of wild-
fires, though it might be less relevant for their spread in Mediterranean summer conditions
(and, therefore, for the exceedance of burnt area thresholds fixed at 1 ha or larger). An impor-
tant constraint in this task is to maintain straightforward interpretations of how input variables
contribute to new indices which excludes using black-box machine learning techniques.
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SUPPLEMENTARY MATERIAL

Supplementary Material to “Spatiotemporal wildfire modeling through point pro-
cesses with moderate and extreme marks” (DOI: 10.1214/22-AOAS1642SUPP; .zip). The
supplementary material contains the following: a PDF document containing plots for the
inspection of posterior predictive densities, plots showing regionalized predictions, kernel in-
tensity plots for the spatial intensity function of the wildfire point process, mean excess plots
for wildfire sizes, more details about the subsampling experiments, the hyperpriors used in
the model and the posterior mean estimates of the spatial effects; moreover, R code and data
files (including SAFRAN data with noise added) to reproduce the data analysis are provided.
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