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A B S T R A C T

Meeting carbon-reduction targets will require thorough consideration of climate variability and climate change
due to the increasing share of climate-sensitive renewable energy sources (RES). One of the main concerns
arises from situations of low renewable production and high demand, which can hinder the power system.
We analysed energy droughts, defined as periods of low energy production (wind plus solar generation) or
high residual load (demand minus production), in terms of two main properties: duration and severity. We
estimated the joint return periods associated with energy droughts of residual load and power production.
We showed that moderate winter energy droughts of both low renewable production and high residual load
occur every half a year, while summer events occur every 3.6 and 2.4 years (on average). As expected, the
occurrence of energy droughts tends to decrease with the degree of the severity of the energy drought, and
moderate and extreme energy droughts showed longer return periods for most countries. In general, we found
a large variability across Europe in summer, with some countries (e.g. Italy) being more sensitive to energy
droughts. Our results highlight the relevance of sharing RES during prolonged periods of low production and
high demand.
1. Introduction

A rapid decarbonisation of the energy system is required to mitigate
the effects of climate change [1]. Europe is expected to reach a climate-
neutral economy with large reductions in green house emissions to at
least 80% below 1990 levels by 2050 [2]. This ambitious plan towards
a low-carbon power system is influenced by a changing climate, not
only on the production side but also on the demand side as heating
and cooling patterns are changing as a result of rising temperatures
e.g. [3,4]. Balancing variable energy supply and demand might become
a major concern in the design of renewable power systems, due to
a strong sensitivity to weather and climate variability. In particular,
wind and solar power installed capacities have rapidly grown over
the past years [5] and they are expected to be important contributors
to the European renewable power system. However, their fluctuating
nature represents a challenge for renewable energy production as both
sources are directly dependent on weather conditions with a high
spatio-temporal variability [6–8].

As a result of the dependency of renewable energy sources (RES)
on meteorological variables that are strongly time-variable, balancing
the RES generation and energy consumption is a key concern, since
electricity demand must be continuously matched by electricity supply
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E-mail address: noelia.otero@giub.unibe.ch (N. Otero).

to avoid blackouts [6]. The residual load (or net load) is the imbalance
between RES and the energy demand (sometimes called load), and is
defined as the difference between the energy demand and the energy
production [6,9,10]. In an optimal situation, wind and solar capacities
might be adjusted to maintain balance between electricity demand and
energy production at all time-scales [6]. However, even with theoreti-
cally adequate installed capacities of wind and solar, the variability of
RES and of demand, which is highly dependent on temperature, could
result in periods of positive residual load (hereinafter referred to as
RL), during which the demand exceeds the production, or in periods of
negative RL with a surplus of RES generation [11].

The effects of RES variability and the strong dependence on weather
conditions have become the subject of recent studies that examine
periods of low production by RES [12,13]. In particular, extended
periods of low wind production, which have been termed dunkelflauten
(from the German dunkel: absence of light, and Flaute: absence of
wind [5,14] can be challenging during demand peaks [5]. While previ-
ous studies have examined the fluctuations of wind power linked to the
large-scale atmospheric circulation over Europe e.g [15,16], emerging
literature focuses on the analysis of prolonged periods of low RES
production. [13] characterised periods of low production from RES,
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referred to as ‘‘energy production droughts’’, which were identified
as consecutive days of energy production below a fixed threshold for
each RES (i.e. wind, solar and hydropower). Similarly, they identified
‘‘energy supply droughts’’ as periods of high residual load. They found a
large variability in the energy droughts between renewable sources and
the considered European regions, and showed a large decrease in the
frequency and duration of the energy droughts when the power system
used a mix of energy sources, rather than relying on just renewable
generation. Following this approach, [8] assessed the complementarity
between solar and wind power in Poland, where energy droughts
of wind power generation were more frequent than those of solar
resources. This study also highlighted that the presence of local hybrid
energy production systems (such as solar and wind) would reduce the
variability of the renewable energy production. [14] quantified the
occurrence of low onshore wind power generation in Germany using
40 years of reanalysis data. They found that low-wind-power events are
less frequent in winter than in summer, but that the maximum duration
was evenly distributed throughout the year.

Another recent study analysed the mismatch between energy supply
and demand in California and the Western Interconnect [17]. The
authors quantified the occurrence of energy droughts of renewable
production when daily wind and solar power was less than half of
the climatological mean. Recently, [18] examined the climatology and
synoptic conditions linked to extreme reductions of wind and solar
production at weekly time-scales over western North America. They
identified co-variability between wind droughts and higher than av-
erage solar power, due to the seasonal cycle and synoptic conditions,
which highlights the need for energy-sharing resources (i.e. energy
mix).

Despite the increasing attention received by the so-called energy
roughts in the recent literature, there is no clear established definition
f energy supply droughts. Furthermore, quantitative frequency analy-
es on RES droughts are limited. Energy droughts (hereinafter referred
o as ED) can be included within a multivariate framework in which
heir main characteristics, such as duration and severity, are dependent
n each other. Copulas have become very popular for multivariate
requency analyses [19,20], as they allow for the joint simulation of
ifferent univariate distribution characteristics (e.g. duration and sever-
ty). Within the energy transition context, a comprehensive frequency
nalysis of ED is particularly important for evaluating the potential
isks of power generation highly dependent on weather conditions.
hus, motivated by the successful application of copulas in meteoro-

ogical and hydrological drought analyses, here we propose a bivariate
opula-based approach to model the dependence between the two main
eatures of the ED: duration and severity.

The remainder of this paper is organised as follows. Section 2
ntroduces the data used during this study. Also in Section 2, the
nergy-conversion models are summarised. Section 3 includes the ED
efinition and a description of the copula modelling procedure. The
esults are presented in Section 4, and Section 5 concludes our study
ith a general discussion and conclusions.

. Data

We use daily time series of hourly European electricity demand,
olar and wind power at country level for 27 countries (Table S1). The
ata sets, created by [21], are a reconstruction of energy indicators
i.e. energy demand, wind and solar power), based on the ERA5 re-
nalysis product [22] that covers the period 1979–2019. This data set
orresponds to 3-hourly time series aggregated at a daily time step per
ndicator and per country.

The data is available from the Reading Research and Data Repos-
tory (http://dx.doi.org/10.17864/1947.227) and it has been used in
revious studies [9,23]. In the following section, we briefly summarise
he methods used for the weather-to-energy conversion data. Interested
eaders are referred to [9] for further details of the models construction
668

nd validation.
2.1. Energy demand

The electricity demand was reconstructed based on a multiple
linear regression model trained with observed national demand, in
giga (109) watts (GW), corresponding to two complete years (2016–
2017), extracted from the ENTSOe transparency platform [24]. The
regression model uses both weather-dependent and human-behaviour-
dependent predictors e.g. the day-of-the-week and long-term socioe-
conomic trends, [21]. The weather-dependent model parameters are
heating-degree days (HDDs) and cooling-degree days (CDDs). A
heating-degree day occurs when a country-average 2 metre tempera-
ture falls below 15.5 degrees (the threshold at which residential heating
is required) whereas a cooling-degree day occurs when a country-
average 2 metre temperature is above 22 degrees and energy is required
for residential cooling. Within the model, 2 metre temperatures are
the only weather-dependent variable that contributes to fluctuations
in demand. This style of multiple-linear regression based modelling is
common in the literature e.g. [7,13,25].

As we are mainly interested in the meteorological impacts, here
we use the weather-dependent model version that neglects the human
behavioural factors, as in [9]. Thus, in this weather-dependent model
version the predictors representing human behaviour (e.g. the weekday
and socioeconomic predictors) are neglected in order to highlight the
weather dependence further details can be found in [9].

2.2. Wind and solar power

Wind power capacity factors were obtained from a physical model
that uses bias-adjusted wind speeds (using the Global Wind Atlas
as the ‘truth) at an altitude of 100 metres above ground from the
ERA5 reanalysis [9]. Calibrated wind speeds are then passed through
a power-curve to convert to wind power capacity factors. Different
power-curves are used for different grid cells of the underlying climate
data set: three turbine classes are retained, Class 1, 2 and 3. The choice
of the turbine class per grid cell is dependent on the long-term average
wind power generation. The three different turbine curves allow the
maximum potential to be extracted from each grid-cell’s wind speeds.
Country-level wind power generation is calculated by weighting each
grid box by the amount of wind power installed there (in the reference
year 2017).

Solar power capacity factors were modelled following the empirical
formulation of [26], using 2 metre temperature and incoming surface
solar radiation as inputs. The solar power capacity factors were calcu-
lated at each grid point and then aggregated to national level assuming
a uniform distribution of solar panels across the country (as at the time
of model creation there was not available data on panel locations). Both
wind and solar power data sets captured the overall behaviour of the
national wind and solar power generation well (see [9] and references
therein for further details).

The capacity factors (expressed in %) obtained from both wind and
solar power models were used to calculate the daily national wind
and solar power production, for which we used as the baseline the
installed capacity of wind and solar corresponding to 2017 for each
country(see Supplementary Fig. S1) [9,23]. Additionally, we performed
further sensitivity analyses with differing installed capacities: doubling
and tripling the current installed capacities either for wind or solar
(alternatively) and assuming that the locations of the wind farms are
kept the same as in 2017. Results from these experiments are sum-
marised in the supplementary material. As these experiments aim to
provide further context on the impact of changing installed capacities,
for illustrative purposes only the results of a representative number
of Europe countries are shown in the supplementary material. Unless
noted, the main results presented in the following sections assume the

installed capacity of the reference year (i.e., 2017).

http://dx.doi.org/10.17864/1947.227
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Table 1
Summary of the events definition used in the study. The thresholds are defined in terms
of quantiles of the empirical distributions.

Short name Description Threshold

LWS Low wind and solar production <10th
RL Residual load (demand - wind and solar production) >90th
Demand Electricity demand >90th

3. Methods

3.1. Energy droughts: event definition

We begin our analysis by defining ED events using a threshold-level
based approach. An ED of low production is identified as an episode
or period of time during which the energy production of renewable
sources (i.e. wind and solar) is below the 10th percentile of the total
generation (also referred to here as LWS) over the period of study
1979–2019. An ED of the residual load (i.e. demand minus wind and
solar production, here also referred to as RL) occurs when the residual
load exceeds the 90th percentile of the distribution of residual load.
For comparison, we additionally analyse ED of high electricity demand,
defined as instances when the demand exceeds the 90th percentile
of the distribution of the electricity demand. Table 1 summarises the
events definition.

While the main results will focus on episodes of low renewable
production, high residual load and high demand, similar frequency
analyses were also conducted on the individual renewable energy
sources (see Section 4.1). Threshold-based approaches typically assume
independent observations, and thus, declustering extreme values is
often applied to assure independence of events. Here, energy droughts
that are separated by at least two days are treated as independent
events. Declustering events reduces the number of extreme events
compared to the original series. We used a clustering window of 2
days as a good compromise from a weather perspective, to cluster
events co-occurring with the same weather system, but also from a
modelling perspective, as we obtain a sufficient number of events for
our modelling purposes. Then, we estimate the main characteristics of
ED: (1) the duration, D (days), which is defined as the consecutive days
below or above the selected threshold values and (2) the severity, S
(GW) defined as follows:

𝑆 =
𝐷
∑

𝑖=1

|(𝐸𝑖 − 𝐸𝑡ℎ)|
𝜎

(1)

here E𝑖 is the energy quantity (i.e., production, residual load or
emand) for the days during a particular event, Eth is the threshold
alue and 𝜎 is the standard deviation of the corresponding energy
istribution (i.e., production, residual load or demand). Standardising
he severity values allows us to provide a better comparison of ED
cross countries due to the large variability, in terms of residual load,
emand and renewable production (i.e., see Fig. S1).

As shown in previous studies [9,10], peaks of energy demand
nd low production show a strong seasonal variability. Therefore,
he frequency analyses presented here are performed separately for
wo extended seasons: winter (October–March, ONDJFM) and summer
April–September, AMJJAS). Please note that the ED are defined based
n absolute threshold values (i.e. considering the entire distribution
hroughout the year), and we then perform the frequency analysis for
inter and summer.

.2. Copula analysis

Copulas [27] are flexible tools to describe the joint behaviour of
ultiple variables and have been successfully applied in frequency

nalysis, multivariate modelling, simulation and prediction [19,28].
ecently, the use of copulas has rapidly grown to examine dependence
669
tructures that exist between complex inter-correlated variables in
any different areas, including hydrology, climate science or energy

pplications [29]. This methodology has gained popularity in the con-
ext of drought analysis [20,30]. In a bivariate case, a copula is a
oint distribution function that characterises the dependence between
wo random variables independently from their marginal distribution
unctions [27]. For two random variables 𝑋 and 𝑌 with marginal

distribution functions 𝐹𝑋(x) = P(𝑋 ≤ x) and 𝐹𝑌 (y) = P(𝑌 ≤ y) respec-
ively, a copula function can be used to construct their joint cumulative
istribution function as follows

𝑋𝑌 (𝑥, 𝑦) = 𝑃 (𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦) = 𝐶(𝐹𝑋 (𝑥), 𝐹𝑌 (𝑦)) (2)

here C is the copula of the transformed random variables U = 𝐹𝑋(X)
nd V = 𝐹𝑌 (Y), with the marginals U and V being uniformly distributed
n the interval [0,1]. According to Sklar’s theorem, if the marginal
istributions are continuous, then the copula function C is unique [31].
he main advantage of using copula functions is the flexibility to model
he dependence between multiple variables with different univariate
arginal distributions. Interested readers can refer to [19,27] for more

nformation about copulas and their applications.
ED are mainly characterised by duration and severity, which are

ypically dependent on each other. Prior constructing the copula mod-
ls, we examined the strength of the relationship between the duration
nd severity in terms of the Kendall’s 𝜏 coefficient. Then, we applied the
opula analysis to model the joint distribution of the duration (D) and
he severity (S) separately for each country, season and ED from low
roduction, high residual load and high demand. The main procedure
f the copula analysis conducted here can be summarised as follows: (1)
stimating the marginal distributions of the duration and the severity;
2) selecting the most appropriate copula; (3) constructing the joint
istributions and (4) estimating the return period of both, duration and
everity exceeding a given threshold.

To model the joint distributions, it is necessary to transform the
andom variables (D and S) to uniformly distributed marginals [0,1],
hich can be accomplished by calculating the normalised ranks (non-
arametric estimation) or by modelling the marginals with parametric
istributions parametric estimation; [32]. Here, we adopted the para-
etric method and several distributions including log-normal, gamma,

xponential and GEV were tested to fit the marginal distributions of S
nd D. For simplicity, we treated the duration as a continuous variable,
imilarly to previous studies [33,34]. The Kolmogorov–Smirnov test is
elected as a goodness-of-fit test to evaluate the fit of the marginal dis-
ributions, which are estimated using maximum likelihood estimation
MLE).

After the marginal specification, the copula parameters were esti-
ated using MLE and the most appropriate copula model was selected

ased on the Aikaike information criterion AIC. The goodness-of-fit was
dditionally tested using the Cramer–von Mises test [35]. Then, the
oint distributions derived from the copula allowed us to estimate the
oint probability that a particular event will occur. Among the possible
vents used in the literature [36] that correspond to specific hazard
cenarios [37], a critical condition affecting the power system might
ccur when both the duration and the severity of the ED production or
esidual load exceed a certain value. In this case, the joint probability
f exceedances of both D and S over a fixed threshold is expressed as:

(𝐷 > 𝑑, 𝑆 > 𝑠) = 1 − 𝐹𝐷(𝑑) − 𝐹𝑆 (𝑠) + 𝐶(𝐹𝐷(𝑑), 𝐹𝑆 (𝑠)) (3)

here 𝐹𝐷 and 𝐹𝑆 are the marginal distributions of duration and sever-
ty, respectively, C is the copula expressed in Eq. (2), and d and s are
he two given thresholds.

Once the joint probability is derived from the copula, we assess
he power risks through the associated joint return period. The return
eriod is a measure of the expected recurrence interval of a hazard
vent [38], in our case, energy droughts, and can be defined as the
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Fig. 1. Frequency of ED (events per season) for each country and each ED of demand, residual load (RL) and low wind and solar production (LWS) calculated for the summer
and winter during the period of study 1979–2019 for each country. White areas within the countries of study indicate no ED.
Table 2
Classification of ED according to different threshold levels of both
duration (D) and severity (S).

Class of ED Joint probability

Moderate P(𝑑75𝑡ℎ < D ≤ 𝑑90𝑡ℎ , 𝑠75𝑡ℎ < S ≤ 𝑠90𝑡ℎ)
Severe P(𝑑90𝑡ℎ < D ≤ 𝑑95𝑡ℎ , 𝑠90𝑡ℎ < S ≤ 𝑠95𝑡ℎ )
Extreme P(D> 𝑑95𝑡ℎ, S > 𝑠95𝑡ℎ)

inverse of the expected frequency of the event. In the bivariate case,
the return period is estimated as follows:

𝑇 = 𝜏
𝑃 (𝐷 > 𝑑, 𝑆 > 𝑠)

(4)

where 𝜏 is the average inter-arrival time (in years) of successive ED
(i.e. total number of years divided by the total number of ED) and P
is the joint probability derived from the copula analysis (Eq. (3)). This
approach is commonly used to assess meteorological and hydrological
droughts [19]. Let 𝑑𝑞 and 𝑠𝑞 denote the q-th percentile of the marginal
distribution of the duration and severity, respectively. We select three
threshold values, 𝑞 = 75, 90, and 95 percentiles, to define several
classes of ED, for which the return periods were estimated. Table 2
summarises the classification of ED. Please note that the percentiles are
defined locally, i.e. for each country and season, as the copulas are ap-
plied separately for each case. We tested fixed thresholds (e.g., 2, 4 days
for the duration), but given the high variability of load and amount of
installed capacity across countries (see Fig. S1), local percentiles are
more suitable for comparing ED across the European countries.

We further examined empirically the joint return periods by count-
ing the number of events for which both S and D exceed the selected
thresholds. The empirical method is straightforward, but it requires
long time series for very extreme events, which is less of an issue when
a parametric copula approach is implemented [39].
670
4. Results

Before starting the bivariate copula analysis to model the depen-
dence between the main characteristic of ED, we examined their fre-
quency, duration and severity separately for each country and season.
In addition to the ED of low production, demand and residual load,
we further assessed the events of the individual sources (i.e. wind and
solar separately) as well as the corresponding demand-net-individual
RES: demand-net-wind, defined as the demand minus wind power, and
demand-net-solar, defined as the demand minus solar power. Thus, we
begin this section by presenting a frequency analysis of the energy
droughts, followed by the dependence analysis between duration and
severity of ED through the copula models.

4.1. Frequency analysis of ED

Fig. 1 illustrates the total number of ED per year calculated for each
country and for each ED of demand, wind and solar production and
residual load. Note that the frequency analysis is performed separately
for each season, and therefore the total number of ED corresponds to
events per season. The frequency of ED of low production is generally
larger in winter (11.4 events per year on average) than in summer
(7.6 events per year on average). However, significant variability in the
occurrence of low production events exists across the countries. While
in most countries, the occurrence of ED of low production decreases in
summer, the number of ED of low production in summer is comparable
or higher than in winter for a few countries (e.g. Poland, Norway,
Sweden, Latvia). This is explained by the small amount of installed
solar capacity in those countries (Fig. S1). Therefore the droughts of
low production are mainly driven by wind speed, which is reflected
in the large frequency of ED of wind in summer, as shown in Fig. 2
for the individual wind source. The strong seasonality of solar power
generation explains the reduced number of solar generation droughts in
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Fig. 2. Frequency of ED (events per season) for each country and each ED of individual sources: demand-net-wind, demand-net-solar, wind power and solar power, calculated for
the summer and winter during the period of study 1979–2019 for each country. White areas within the countries of study indicate no ED.
Fig. 3. Maximum duration (days) of ED of demand, residual load (RL) and low wind and solar production (LWS) calculated for the summer and winter during the period of study
1979–2019 for each country. White areas within the countries of study indicate no ED.
summer over Europe (Fig. 2). Moreover, the sensitivity analysis with an
increasing amount of solar power capacity installed (e.g., with double
and treble values with respect to the baseline scenario) showed that the
ED of low production in summer are generally reduced comparing with
the current scenario (i.e., 2017) for a number of selected countries, such
as Germany, the UK, France and Portugal (see Supplementary Fig. S2).
As the solar capacity is increased, fewer energy production droughts
occur in summer and more in winter, when the solar generation sig-
nificantly decreases due to short day length. On the contrary, when
increasing wind capacities, overall, fewer production droughts occur in
winter and more in summer (Fig. S2). Similar pattern is observed in the
ED of the residual load in summer, when the demand is typically low.
Due to the higher demand in winter, changes in the installed capacity
(particularly solar capacity) have a much smaller effect on the number
of residual load droughts (Fig. S2).

The lowest frequency of ED of demand and residual load is observed
in summer (0.81 and 1.6 events per year on average) due to the elec-
tricity demand patterns (i.e. low demand during the warmer months).
The number of ED of demand and residual load is substantially higher
671
in winter (6.37 and 11.4 events per year on average). Also in winter,
it can be observed that a higher number of ED of residual load occur
than ED of demand in some countries (e.g., Germany, UK), which can
be explained by a lower renewable production in winter. Despite the
reduced occurrence of ED of demand and residual load in summer,
a number of countries experienced more than 100 high demand and
residual load events over the 41 year period. In the case of the northern
countries, such as Denmark or Ireland, this can be attributed to the
low amount of installed capacity of solar power, which leads to a
high demand-net wind (see Fig. 2) that results in higher residual load
(driven mostly by wind production). The number of ED of demand
and residual load in the southern countries (e.g. Spain, Greece, Italy)
is associated with the increasing use of air conditioning that results
in demand peaks in summer [9,25]. Those countries also tend to
experience the longest ED of residual load (∼15 days) compared to the
rest of the countries in summer (Fig. 3). Consistently with the seasonal
patterns and with the weather dependence of both production and
demand, overall, the maximum duration of energy droughts is larger
in winter than in summer. The longest lasting ED correspond to the
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Fig. 4. Maximum duration (days) of ED of individual sources: demand-net-wind, demand-net-solar, wind power and solar power, calculated for the summer and winter during the
period of study 1979–2019 for each country. White areas within the countries of study indicate no ED.
winter demand (21.8 days on average), following by the ED of residual
load (15.6 days on average). When increasing the current installed
wind capacities, the ED of residual load are generally shorter in winter
(∼ 6 days on average when trebling the installed wind capacities),
which is in agreement with more wind power generation in winter.
With higher wind power installed capacities, the ED of residual load
are mainly driven by the amount of wind power production, which
might also explain the similar or larger durations of energy droughts in
some countries during the summer (see Fig. S3). A contrasting seasonal
pattern is found when increasing the current amount of solar installed
capacities: shorter ED of residual load are found in summer (than those
in the current scenario), while little change is observed in winter. It
is worth mentioning that the time series of the winter demand and
residual load generally show less variability compared to the time
series of wind and solar production. Moreover, as shown in Fig. 1,
ED of low production are more frequent than ED of residual load and
demand, thus we could expect longer ED of demand and residual load
and shorter ED low production. The mean duration of ED also showed
the seasonality of events, particularly in winter, when RL ED last on
average for 2.3 days, compared to ED of low production that last 1.4
days (not shown). Most European countries experience peak demands
in winter, when the renewable production is also strongly influenced
by seasonality (e.g. shorter daylight hours and reduced incoming solar
radiation resulting in decreased solar power generation) and weather
patterns e.g. persistent high-pressure systems associated with below
normal wind speed that lead to decreasing wind power generation,
[13,23]. The ED of individual sources, more specifically the ED of
solar and demand-net-solar are considerably shorter in summer than in
winter due to their seasonality (i.e. more incoming surface radiation in
summer) (Fig. 4). The longer duration events will provide the greatest
challenges for energy system balancing.

The severity of ED of demand, residual load and low production
is higher in winter in most of the central and northern European
countries (Fig. 5), which is consistent with more frequent and longer-
lasting events in winter compared to summer (Fig. 1). Similar results
are observed when examining the ED of individual sources, wind and
solar, separately (Fig. 6). The severity of wind and solar ED is generally
larger in winter, as is the severity of the demand-net-wind and the
demand-net-solar. Exceptions are found in the southern countries, such
as Italy, where the most severe ED of residual load, in terms of both
duration and severity, occur in summer, which is expected as a result
of summer peaks demand. Also in Italy, it can be observed that the
most severe demand-net-wind and the demand-net-solar events occur
in summer. As stated above, this is explained by the higher summer ED
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of demand accompanied by low wind production (Fig. 1), which result
in high demand-net wind (i.e. demand minus wind generation, see
Fig. 2). Moreover, in the case of Italy, the lower installed solar capacity
(compared to other countries) (see Fig. S1) explains more severe ED of
residual load summer, in terms of duration and severity, which high-
lights the importance of the temporal complementarity i.e., availability
of sources in time, [40] between renewable sources in regions within
an energy mix, as shown in previous studies [7,13]. Overall, for winter
ED of residual load, we notice lower severity values when increasing
the wind power capacities (relative to the baseline installed capacity
scenario), while in summer, lower severity ED of residual load occur
under a potential installed capacity scenario with higher solar installed
capacities (Fig. S4).

4.2. Bivariate return periods of ED

An important step in the copula analysis is the fitting of the marginal
distributions. Here, exponential and generalised extreme value (GEV)
distributions are identified as the most appropriate to represent the
duration and the severity for most countries for the ED corresponding to
the low production, high residual load and demand (see Supplementary
Tables S2, S3, and S4). The results from the copula selection process
indicated that the Joe copula was best suited to capture the relationship
between the duration and the severity in most cases (see Supplemen-
tary Tables S5, S6 and S7). The parameter of the copula functions
represents the dependence structure between the drought duration and
the severity. For each ED (i.e., low production, residual and demand),
we tested the strength of the relationship between the duration and
the severity through the Kendall’s 𝜏 correlation coefficients (Fig. S5).
Similarly to the copula parameters (see Tables S5, S6 and S7) that
indicate the dependence between two variables, higher correlations
between the duration and the severity were generally observed in
winter, particularly for the duration and severity corresponding to the
ED of demand and residual load, while a lower correlation was found
in summer. Higher correlation values between duration and severity
suggest that the most severe events are those that last longest, while
lower correlation values, as in summer, suggest that there are severe
events that do not last for a long time. This points out the risks
of ED in winter when European countries experience high demand.
Nevertheless, it can be noted that the dependence between D and S
is particularly strong in summer in a few countries (e.g. Italy, Greece.),
where the ED of residual load seem to be more severe than in winter,
as a result of higher summer demand (e.g., more cooling days), which
is consistent with the frequency analysis presented above.
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Fig. 5. Severity of energy droughts of demand, residual load (RL) and low wind and solar production (LWS) for the summer and winter during the period of study 1979–2019
for each country. Please note the change of the scales due to the large variability between the loads and production. The long names of the country acronyms are displayed in
table S1.
Fig. 6. Severity of energy droughts of individual sources: demand-net-wind and wind power, and demand-net-solar calculated for the summer and winter during the period of
study 1979–2019 for each country. The long names of the countries acronyms are displayed in table S1. Please note the change of the scales due to the large variability between
the demand-net quantities and the production.
Given the dependence between the drought characteristics, the joint
return periods are crucial to assess the potential risks associated with
ED. Therefore, we calculated the joint return periods corresponding
to three classes of ED (see Table 2). Furthermore, the empirical joint
return periods were estimated directly from the number of observed
events, and can be used to assess the robustness of the fitted copulas.
Fig. 7 shows the joint return periods for moderate ED for demand,
residual load and low production (Table 2). As stated in Section 3.2, the
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classification of ED is based on local percentiles due to the high vari-
ability across countries in terms of solar and wind installed capacities as
well as in terms of loads. As expected, moderate EDs are more frequent
in winter than in summer. In winter, ED of demand show slightly larger
return periods everywhere, occurring once every 0.98 years than the
ED of residual load that occur once every 0.67 years, while the ED of
low production are generally more frequent (every 0.58 years). It is
worth noting that only a few countries are affected by moderate ED
of demand and residua load in summer (Fig. 5). These events tend to
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Fig. 7. Joint return periods (T) expressed in years corresponding to moderate ED (Table 2) of demand, residual load (RL) and low wind and solar production (LWS) for both
extended seasons, summer and winter. Grey colours indicate countries where the copulas were not applied due to the limited number of ED.
occur most frequently in countries such as Italy, Greece or Denmark,
due to the summer peak demand or as a result of a low production
(e.g. low wind power generation in summer drives the ED of low
production, and thus, higher RL, in those countries with low solar
installed capacities). Similar patterns of return periods were obtained
when counting the number of moderate ED empirically(Fig. S6), which
indicates a reasonably good agreement between both methods.

Severe energy droughts (i.e. exceeding the 90th percentile of the
marginal distributions of D and S) are relatively frequent in winter (on
average, every ∼ 1.6 years) compared to summer (on average, every ∼
8–9 years)(Fig. 8). While in winter, the return periods are very similar
across Europe, we found a large variability across countries in summer.
For example, in some countries (e.g. Norway, the UK, Ireland) severe
ED of low production occur very often, every 2–3 years, compared to
countries that experience summer severe ED of low production less than
once every 10 years. Such variability in summer return periods across
countries was also found in the empirical return periods. However, we
also noticed larger differences when comparing the empirical return
periods and the return periods from the copulas than for the moderate
ED in summer (Fig. S7). The differences are likely due to bias in the
empirical estimates because the number of observed events is small.

As expected, the return periods increase with the severity of the
ED, and extreme energy droughts occur less often throughout the year
(in Fig. 9). Similarly to moderate and severe ED, extreme ED are more
frequent in winter. Overall, similar values were found for the different
countries, with slightly larger return periods of ED of residual load
(every ∼3.5 years) than ED of low production, which tend to occur
more often (every ∼2.9 years). The variability across countries in terms
of return periods notably increases in summer, particularly in the case
of low production. Some countries (e.g. the UK, Denmark) seem to ex-
perience extreme ED of low production quite often (every ∼2–4 years),
while in other countries (e.g. Switzerland, Poland) extreme ED of low
production appear to be more rare (every >30 years). The empirical
return periods obtained for winter show in general a good agreement
with the return periods derived from the copulas (Fig. S8). Larger
differences were found when comparing the summer return periods
and in general, the empirical method underestimated the frequency of
extreme ED (i.e. larger return periods). This might be explained by the
fact that the empirical approach has limitations when interest is on rare
events, as it might be the case with extreme ED [39,41].
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Overall, the sensitivity analysis with differing installed capacities
showed largest return periods for the summer ED of low production
when increasing the amount of solar power installed. For example,
countries such as Germany, Italy or France showed return periods
∼10 years when doubling the installed solar capacities and >20 years
when trebling the installed solar capacities (e.g., see return periods for
severe ED in the Supplementary Fig. S9). In contrast, a higher amount
of installed wind power lead to larger return periods in winter (Fig.
S9). In the case of winter ED of residual load, we noticed little impact
on the return periods when increasing either wind and solar capacities
(Fig. S9). This is likely due to the higher winter demand that result in
high residual load.

5. Discussion

Characterising periods of peak demand and periods of low power
generation is crucial to address energy security concerns arising from
the increasing share of renewable sources in the European energy
supply. Renewable energy sources (RES), particularly wind and solar,
are intermittent due to their strong weather dependence. Thus, the
fluctuating power generation in periods of low production and high
demand represents a major challenge for balancing energy supply and
demand. Previous studies that analysed the so-called energy droughts
e.g. [8,13,18] suggested that the complementary behaviour of existing
between wind and solar power would reduce periods of low energy pro-
duction in systems with both renewable sources compared to systems
with a single source.

A multivariate frequency analysis is essential to better understand
the relationship between the characteristics (duration and severity)
of the energy droughts, and thus to provide further insights into the
risks associated with energy droughts across European countries. We
proposed a copula-based approach to examine the relationship between
the duration and the severity of periods of low production of wind and
solar power and high demand and residual load. We examined the risks
of several types of energy droughts classified based on local percentiles
of the duration and severity. Such an energy drought analysis could be
further extended by accounting for how strongly operational planners
actually rely on a given renewable resources. This can be achieved by
considering capacity credit calculations that are used by planners as a
measure of how strongly they can rely on a renewable resource during
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Fig. 8. Joint return periods (T) expressed in years corresponding to severe ED (Table 2) of demand, residual load (RL) and low wind and solar production (LWS) for both extended
seasons, summer and winter. Grey colours indicate countries where the copulas were not applied due to the limited number of ED.
Fig. 9. Joint return periods (T) expressed in years corresponding to extreme ED (Table 2) of demand, residual load (RL) and low wind and solar production (LWS) for both
extended seasons, and winter. Grey colours indicate countries where the copulas were not applied due to the limited number of ED.
high load periods [42]. For instance, when wind exhibits a low capacity
credit, (e.g. in the order of 10%–15%) [42], an actual drought would
only occur if the resource availability falls below this capacity credit.

In contrast to the previous studies that addressed the issue of
energy droughts e.g [8,13,14], here we presented a multivariate fre-
quency analysis in order to provide a better understanding of the
energy droughts on the basis of the dependence structure of their main
features: duration and severity. Our approach is similar to the copula-
based assessments presented in the literature to analyse meteorological
droughts by using well-known meteorological drought indices, such as
standardised precipitation index or standardised precipitation evapo-
transpiration index) e.g. [19,33]. In this work, the energy droughts
were defined based on a threshold approach, and declustered to assume
independence of events. Therefore, we acknowledge that a different
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window to decluster events might have an impact on the results pre-
sented here. Overall, the clustering window could be related to the time
scale used to define the energy droughts (e.g., hourly, sub-daily, daily)
and to operational and maintenance aspects of power generation. As
daily data was used to define energy droughts, a clustering window of
2 days allowed us to investigate a sufficient number of independent
events likely associated with the same weather system.

This analysis based on daily data might potentially be extended by
investigating the links of energy droughts with large-scale atmospheric
patterns that can lead to long-lasting or more severe energy drought
events. However, future research could assess energy drought using
hourly time series, which would be particularly valuable to assess the
capacity credit of wind power generation (i.e. its ability to provide
generation during peak demand events).
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Our study assumes a baseline power scenario of solar and wind
power installed capacities representative of the present-day power sys-
tem (i.e., 2017). As stated in the introduction, wind and solar installed
capacities are rapidly growing in most of European countries. Thus, it
is expected that changing the installed capacities will have an impact
on the results presented here. The sensitivity analysis performed for
increasing installed capacities (either solar or wind) pointed out the
relevance of the temporal complementarity of renewable sources within
the same region, as a result of the strong weather dependence of the
renewable energy sources. Overall, as the wind capacity increases the
frequency of energy production droughts in winter decrease, while an
opposite seasonal behaviour is found when increasing solar capacities
that result in fewer energy production droughts in summer when solar
generation is usually higher. We showed that with a higher amount of
wind power installed the winter energy droughts of power production
would be generally less severe and generally shorter, while less severe
summer energy production droughts would occur when increasing the
solar power installed capacities. The results showed that increasing the
current amount of installed wind power would have a small impact
on the winter residual load events. This can be explained by the
percentile-based definition of energy droughts, for which high residual
load (above the 90th percentile) will still occur in winter, due to a
higher demand (compared to summer events). Nevertheless, given that
the demand patterns are expected to change under a warming climate,
an extension of this analysis should include the climate change impact
on energy droughts.

Moreover, it must be noted that the energy droughts were analysed
separately for each country, and thus, one might expect that in a fully
interconnected grid, the potential risks associated with energy droughts
will be reduced. However, further analysis are required to provide a
better assessment of the energy drought considering an interconnected
power grid. Actual impacts on the transmission grid are the logical next
step; but their analysis remains challenging at European scale because
of the required detailed knowledge of the transmission grid and of the
production infrastructure.

6. Conclusions

The main findings of this study can be summarised as follows:
Given the strong weather-dependence of renewable sources (wind

and solar), but also the demand that is greatly driven by weather
conditions, energy droughts exhibited a marked seasonal pattern, being
generally more frequent and longer lasting in winter than in summer.
Compared to winter, the number of summer energy droughts of residual
load is generally smaller across almost entire Europe, due to a gen-
eral reduced electricity demand, which leads to small demand energy
droughts during the warmer months. However, exceptions are southern
countries (e.g. Italy, Spain, Greece) that showed longer durations of
residual load droughts in summer, which can most likely be explained
by summer peak demand. Also in summer, longer episodes of high
residual load were found in some northern countries (Denmark, Nor-
way), as a result of episodes of low production of wind (which is the
main contributor to the energy production here). Moreover, using a
higher amount of wind installed capacities would reduce the severity
of winter energy droughts, while increasing solar installed capacities
would lead to less severe summer energy droughts, which highlights
the relevance of temporal complementary between renewable sources.

The dependence between the energy drought duration and severity
is clearly reflected by the copula results that showed a stronger depen-
dence in winter, particularly in the case of the demand and residual
load. We showed that moderate energy droughts are very frequent in
winter, with short return periods (e.g. moderate energy droughts of
production occur twice a season on average). The winter return periods
of both production and residual load moderate droughts were similar
across the countries, pointing out the strong relationship between the
duration and the severity of droughts. Similar results were found for
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severe and extreme winter energy droughts although the return periods
increase with the severity of the energy droughts. Our results pointout
smaller energy droughts in summer, especially from the load side,
although we observed a large variability across European countries as
a result of the different demand patterns across the regions.

In summary, the multivariate copula-analysis used here provides
new insights into the dependence structure of the main characteristics
of energy droughts, namely duration and severity, which is crucial to
estimate the potential risks of such events. The estimated joint return
periods pointed out that in winter European countries are exposed
to frequent (particularly moderate and severe) energy droughts of
both production and residual load. In summer, there is an increasing
variability across Europe and only a few countries experience frequent
energy droughts. The return periods as presented in this study can
be used as a relevant measure of the risks associated with renewable
production, but also with the demand side, which might be especially
valuable for energy planners.
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