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A B S T R A C T

Extreme precipitation events that occur in close succession can have important societal and economic
repercussions. Here we use 42 years of reanalysis data (ERA-5) to investigate the link between Euro-Atlantic
large-scale pattern of weather and climate variability and the temporal clustering of extreme rainfall events
over Europe. We implicitly model the seasonal rate of extreme occurrences as part of a Poisson General Additive
Model (GAM) using cyclic regression cubic splines. The smoothed seasonal rate of extreme rainfall occurrences
is used to (i) infer the frequency of significant temporal clustering and (ii) implicitly serves as the baseline
rate when modeling the effects of atmospheric drivers on extreme rainfall clustering. We use GAMs to model
the association between the temporal clustering of extreme rainfall events and seven predominant year-round
weather regimes in the Euro-Atlantic sector as well as a measure of synoptic-scale transient recurrent Rossby
wave packets. Sub-seasonal clustering of precipitation events is significant at all grid-points over Europe; the
proportion of extreme rainfall events that cluster in time ranges between 2% to 27%. The most relevant weather
regime is the Atlantic Trough (corresponding to NAO+ with a southward shift of the jet) explaining most of
the significant increase in clustering probability over Europe. The Greenland Blocking regime explains most
of the clustering over the Iberian Peninsula. The Scandinavian Blocking regime is associated with a significant
increase in clustering probability over the western Mediterranean, with a northwards shift in the signal to
central Europe in summer.
1. Introduction

Sub-seasonal temporal clustering of extreme precipitation events
(EPEs) can have profound societal and economic repercussions. First,
the close succession of rainfall events can increase the time for soil
moisture, rivers and lakes to return to climatological values in catch-
ments with high-retention capacity and cause devastating floods (e.g.,
Barton et al., 2016; Galarneau et al., 2012; Grams et al., 2014; Guo
et al., 2020; Huntingford et al., 2014; Lau and Kim, 2012; Martius
et al., 2013; Priestley et al., 2017; Tuel and Martius, 2021a). Second,
the short recovery time between events can overburden emergency
services and prevent proper clean-up of damages and efficient repairing
of damaged protective structures (Raymond et al., 2020). Third the
temporal clustering may generate unexpected financial implications
for the insurance/reinsurance industry (Vitolo et al., 2009) Hence, a
sequence of extreme rainfall events can amplify impacts when com-
pared with a single hazard. It is therefore a temporally compounding
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event (Zscheischler et al., 2020; Tuel and Martius, 2021a). Process un-
derstanding of the temporal clustering of EPEs is needed to assess and
mitigate associated risks and to improve predictability on sub-seasonal
time-scales.

Extratropical modes of climate variability such as the Artic Oscil-
lation (AO), the North Atlantic Oscillation (NAO), the East Atlantic
pattern (EAP) and the Scandinavian pattern (SCA) capture predomi-
nant atmospheric circulation patterns on sub-seasonal time-scales. They
have been shown to govern dry/wet conditions and heavy precipitation
frequency across wide parts of Europe (e.g. Comas-Bru and McDermott,
2014; Kenyon and Hegerl, 2010; Krichak et al., 2014; Casanueva et al.,
2014; Scaife et al., 2008). These modes of climate variability are further
related to the position and strength of the jet stream and thereby
the temporal clustering of cyclones (e.g. Mailier et al., 2006; Priestley
et al., 2017). Modes of variability have been used to investigate if
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reanalyzes (Yang and Villarini, 2019) and global climate models (Yang
and Villarini, 2021) capture temporal clustering of heavy precipitation
events across Europe. Building on the modes of variability, weather
regimes (WRs) summarize regional climate variability on timescales of
several weeks (e.g. Cassou, 2010; Ferranti et al., 2015; Grams et al.,
2017). Recently, Grams et al. (2017) presented seven WRs in the Euro-
Atlantic region designed to capture year-round, preferred states of the
large-scale atmospheric circulation.

The recurrent nature of weather situations is potentially of rele-
vance for the understanding of the temporal clustering of EPEs. For ex-
ample, synoptic-scale transient recurrent Rossby wave packets, termed
as RRWPs (Röthlisberger et al., 2019), affect persistent wet spells
over the European sector, increasing wet spell duration in western
Europe and western Russia during summer, and over eastern Europe
and the Mediterranean in winter (e.g. Ali et al., 2021). How recurrent
Rossby wave packets modulate the temporal clustering of individual
extreme events remains to be investigated. Besides recurrent weather
situations, stationary blocking anticyclones can also lead to temporal
clustering of heavy precipitation as demonstrated by Barton et al.
(2016), Lenggenhager and Martius (2019) on the Alpine south-side and
by Tuel and Martius (2022) for selected areas around the Northern
Hemisphere. Currently systematic quantification of the link between
blocks and temporal clustering of heavy precipitation in Europe is still
missing.

Temporal clustering is typically analyzed using methods that as-
sume point processes, such as the dispersion statistic (e.g. Mailier et al.,
2006; Vitolo et al., 2009; Pinto et al., 2013; Villarini et al., 2011, 2012),
Ripley’s K function (Barton et al., 2016; Tuel and Martius, 2021a,b)
or count-based approaches (Bevacqua et al., 2020; Kopp et al., 2021).
In agreement with this assumption, EPEs are here defined as events
lasting from one to several days consisting of independent point events
along the time axis. Independence is assured by grouping consecutive
extreme precipitation days into single events (Barton et al., 2016; Tuel
and Martius, 2021a,b; Kopp et al., 2021).

Previous studies have investigated the association between sub-
seasonal temporal clustering of EPEs and the time-varying effect of
large-scale atmospheric drivers in the Euro-Atlantic sector (e.g. Yang
and Villarini, 2019, 2021). In these studies, this association is modeled
using a Cox regression model, i.e. a Poisson process with a randomly
varying rate of occurrence (e.g. Cox and Isham, 1980; Smith and
Karr, 1986). Such a model has also been used to relate the temporal
clustering of flood events (Villarini et al., 2013) and EPEs across
the central United States (Mallakpour et al., 2017) to modes of cli-
mate variability. Several studies have relied on Poisson regression to
model sub-seasonal temporal clustering of extratropical cyclones over
Europe (Mailier et al., 2006; Vitolo et al., 2009), flood events in
Austria (Villarini et al., 2012) and heavy precipitation in the North
American Midwest (Villarini et al., 2011). However, these modeling
approaches assume a linear combination of parameters and cannot
parametrically account for the seasonal cycle of EPEs, which is om-
nipresent across Europe (Fig. 5). In a Cox regression model, seasonality
is implicitly accounted for in the model through the baseline hazard,
though it is not parametrically specified (Villarini et al., 2013). In
Poisson regression, seasonality can either be accounted for by including
binary indicator variables for each month (Mailier et al., 2006; Vitolo
et al., 2009, e.g.) or by fitting a separate model for each season.
A general additive model (GAM) lifts the linearity constraints; for
example, Villarini et al. (2012) assesses non-linear effects of the NAO
on the rate of occurrence of yearly flood counts using a Poisson GAM.

A GAM is essentially a Generalized Linear Model (GLM; McCullagh
and Nelder, 2019) in which the relationships between the predictor
variables and the response is specified by flexible smooth functions (re-
fer to Hastie, 2017; Wood, 2017, for technical details). The flexibility
that such a model offers has many advantages over classical GLMs.
A GAM does not impose any parametric form of the link between
2

the response and the predictor variables. This flexibility allows non-
linear relationships between the predictor variables, i.e. atmospheric
drivers, and the response, i.e. EPE counts, to be modeled. In practical
terms, it is possible to implicitly account for the seasonal cycle in EPE
counts by modeling them as a smoothly varying cyclic function, e.g. a
cyclic regression cubic spline, of time, i.e. the day of the year. As
such, it is possible to use one parsimonious model instead of separate
models for each season; parameters are better estimated and temporal
discontinuities between seasons are avoided.

In this study, we propose a novel approach to investigate sub-
seasonal temporal clustering of EPEs across Europe using 42 years of
daily precipitation data from ERA5 (Hersbach et al., 2020). This sub-
seasonal temporal clustering is defined as random spurts of activity
beyond the seasonal cycle of EPE counts, which we capture through
Poisson GAMs fitted using data from all seasons. Our model results
provide insight into the clustering frequency over Europe, i.e. to quan-
tify the significance of temporal clustering in EPEs and to identify
unique clustering episodes. Moreover, we investigate potential links
between atmospheric dynamics and temporal clustering of precipitation
extremes by inspecting the effects of seven predominant year-round
WRs (Grams et al., 2017), atmospheric blocks being implicitly captured
by the WRs, and RRWPs (Röthlisberger et al., 2019; Ali et al., 2021)
in the Euro-Atlantic sector on the temporal clustering of EPEs on
sub-seasonal time-scales. More specifically, we address the following
questions: (1) where do we find significant sub-seasonal temporal
clustering of EPEs in Europe beyond the seasonal cycle and how is it
spatially distributed? (2) If temporal clustering is detected, where and
when do the atmospheric predictors modulate temporal clustering of
EPEs, i.e. explain positive deviations from the seasonal cycle in EPE
counts?

The paper is organized as follows: the data is introduced in Sec-
tion 2. Section 3 contains methodological aspects on EPE definition,
modeling the temporal clustering using a GAM, WRs definition and
quantification of the clustering. The results and discussion are pre-
sented in Sections 4 and 5 respectively. Finally, general conclusions and
future research avenues are presented in Section 6.

2. ERA-5 data

We use European Centre for Medium-Range Weather Forecast’s
(ECMWF) latest reanalysis product, ERA-5. It is the fifth generation
atmospheric reanalysis of the global climate from ECMWF and can be
accessed publicly. We use precipitation fields from the ERA-5 reanalysis
data set at 0.5◦ horizontal resolution from 1 January 1979 to 31 Decem-
ber 2020 (Hersbach et al., 2020). ERA-5 precipitation data are available
at an hourly resolution that we aggregate to daily precipitation. ERA-5
precipitation stems from short-term numerical model forecasts and has
been shown to be in good agreement with observational data (Rivoire
et al., 2021) and capture temporal clustering of precipitation well (Tuel
and Martius, 2021b). In this study, we model the temporal clustering of
EPEs at 6140 gridpoint locations across Europe in the domain 30N-72N
and 25W-40E. We use the ERA-5 land-sea mask to restrict the analysis
only on land locations for computational efficiency and relevance in
terms of impact. For convenience, we omit February 29 from all leap
years contained in the 42 years of data.

3. Methods

3.1. Modeling the temporal clustering of extreme precipitation events

3.1.1. Definition of extreme precipitation events
We apply a Peak Over Threshold approach to select extreme rainfall

days (Coles et al., 2001). The threshold for extreme rainfall days is the
all-day 98th percentile of the local daily precipitation accumulation at
each gridpoint (Fig. 1a). This threshold is chosen based on a trade-
off between a high enough precipitation level while retaining enough
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Fig. 1. Gridpoint-based (a) all-day 98th percentile of the daily precipitation distribution and (b) total number of EPEs.
Fig. 2. Illustration of (a) a homogeneous Poisson process (dots) with constant intensity (solid line) and (b) a non-homogeneous Poisson process (dots) driven by seasonal variability
(solid line) and predictor variables (dashed line) over 730 days along the time axis.
data. An extreme precipitation event is defined as an independent point
or occurrence along the time axis and therefore runs of consecutive
exceedances, .i.e. extreme rainfall days, are declustered. We apply runs
declustering with a run length of 2 days, i.e. exceedances separated by
no more than one day belong to the same event. A run length of 2 days
has been determined based on objective statistical methods in relation
to the extremal index (Ferro and Segers, 2003; Barton et al., 2016;
Fukutome et al., 2015) and corresponds to the average time that a same
mid-latitude weather system would generate extreme precipitation a
given location (Lackmann, 2011). For events lasting longer than one
day, the date of occurrence of the event corresponds to the day of
the precipitation maximum within the event. The total number of
independent EPEs ranges from 202 to 301 across the study domain
(Fig. 1b).

3.1.2. EPEs as a non-homogeneous Poisson process
The one-dimensional Poisson process (Cox and Isham, 1980) is a

stochastic point process that is used to model the occurrence of random
points in time, i.e. events. The rate (or intensity) 𝜆 of the process is the
only parameter of this model. It indicates the average number of events
per time interval and its variance. If the intensity remains constant
through time, i.e., 𝜆 is constant, then the point process corresponds
to the homogeneous Poisson process (Fig. 2a). The non-homogeneous
Poisson process has a rate 𝜆(𝑡) that varies over time (Mailier et al.,
2006). The EPE occurrence can be modeled with this process, where
in Fig. 2b, 𝜆 is a function of (i) the annual cycle – a cyclic component
– and/or (ii) continuous predictor variables.

3.1.3. Poisson general additive model
We extract 730 counts 𝑌𝑡 of EPEs in successive 21-day

non-overlapping time intervals (indexed by 𝑡) from the 15330 day-
long binary time series of extreme rainfall exceedances. The choice
of a 21-day window allows to capture enough EPEs necessary for the
modeling step and is suitable for studying impact relevant persistent
atmospheric processes conducive the sub-seasonal clustering of EPEs
without impinging upon longer seasonal time-scales. The sensitivity
of the sub-seasonal clustering to the choice of the interval length has
been investigated in Kopp et al. (2021), Tuel and Martius (2021b)
3

and it is small. We assume that each observed count 𝑌𝑡 follows a
Poisson distribution and has a probability of occurrence given by the
probability mass distribution:

𝑃 (𝑌𝑡 = 𝑦|𝜆𝑡) =
𝑒−𝜆𝑡𝜆𝑦𝑡
𝑦!

, 𝑦 = 0, 1, 2,…

The Poisson distribution is characterized by a single rate parameter,
here 𝜆𝑡 as defined in Section 3.1.2 (Fig. 2b). Only 𝜆𝑡 needs to be
estimated to model the observed counts 𝑌𝑡. It is possible to determine 𝜆𝑡
empirically, e.g. as the averaged number of events in each time interval
as in the case of the homogeneous Poisson process (Fig. 2a). Here, we
are interested in estimating 𝜆𝑡 from eight atmospheric predictors (as
described in Section 3.2 and the day of the year, using a Poisson GAM.
For each gridpoint, we model nine Poisson GAMs grouped into two
types (Table 1). Regardless of the GAM, the model’s base structure is
identical and is composed of one term that accounts for the annual
cycle of EPEs – the day of the year, 𝑑𝑡 – and external continuous
atmospheric predictors 𝑥𝑗,𝑡, where 𝑗 is the index of the atmospheric
predictor. The effect of 𝑑𝑡 is represented as a smooth function 𝑓cyclic
using periodic/cyclic cubic regression splines. The cyclic implementa-
tion is motivated by the expectation that 𝑓cyclic needs to be temporally
continuous from one year to the next, i.e. 𝑓cyclic has the same value and
first two derivatives at its upper and lower boundaries at day 365 and
1 (e.g. Fig. 3a). The inclusion of seasonality of the EPE occurrence in
the model ensures that the atmospheric predictors explain departure
from seasonality, i.e. random spurts of activity and inactivity (see
dashed line in Fig. 2b), rather than the seasonality itself. The effects
of atmospheric predictor 𝑗 (e.g. Fig. 3b) is represented as a thin plate
regression spline in one dimension, 𝑓tp,𝑗 . Additionally, we account for
the seasonal effects of each of the atmospheric predictors by modeling
their interaction with 𝑓cyclic. In a GAM, this can be done by using
a tensor product construction of the two marginal smooth functions,
which results in a smooth 3-dimensional effect surface (e.g. Fig. 3c).
In practice, all smooth terms have to be approximated with a finite
number of basis functions. Suppose we have chosen the set of appro-
priate basis functions {𝑎1,… , 𝑎𝑛𝛼 } and {𝑏1,𝑗 ,… , 𝑏𝑛𝑗 ,𝑗}𝑗=1,…,8, such that
𝑓cyclic(𝑑𝑡) =

∑𝑛𝛼
𝑖=1 𝛼𝑖𝑎𝑖(𝑑𝑡) and 𝑓tp,𝑗 (𝑥𝑗,𝑡) =

∑𝑛𝑗
𝑘=1 𝛽𝑘,𝑗𝑏𝑘,𝑗 (𝑥𝑗,𝑡), where 𝑛𝛼 ,

𝑛 ,… , 𝑛 are the number of basis functions for the smooth terms and
1 𝑝
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Fig. 3. Example of smooth functions of a fitted Poisson GAM on the scale of the linear predictor showing (a) the cyclic smooth function of 𝑑𝑡 𝑓cyclic, (b) a smooth function of
a continuous atmospheric predictor 𝑓tp,𝑗 and (c) a tensor product interaction term between (b) and (c). Solid dark lines show the fitted functions, the gray shaded areas show
the 95% confidence intervals, the 3D surface in (c) shows the fitted values of the tensor product and the colored sectors below the 3D surface delineate seasons over which the
atmospheric predictor functions are averaged (refer to Section 3.1.4). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
Table 1
Summary of the nine GAM models used in this study. Brackets in the first column
indicate the number of models in each type. Model 1 only includes the day of the year
(𝑑𝑡) as a predictor, whereas models 2-9 also include continuous atmospheric predictors,
which are the 7 weather regimes (WRs) and the local R-metric (RRWPs).

Purpose Formula

Type 1 (1) Quantification of clustering
significance

log(𝜆𝑡) = 𝛽0 + 𝑓cyclic(𝑑𝑡)

Type 2 (8) Modeling effects of 7 WRs and
local RRWPs

log(𝜆𝑡) = 𝛽0 + 𝑓tensor,𝑗 (𝑑𝑡 , 𝑥𝑗,𝑡)

the 𝛼𝑖’s and 𝛽𝑘,𝑗 ’s are constant coefficients. Then, 𝑓tensor,𝑗 (𝑑𝑡, 𝑥𝑗,𝑡) =
∑𝑛𝛼

𝑖=1
∑𝑛𝑗

𝑘=1 𝜂𝑖,𝑘,𝑗𝑎𝑖(𝑑𝑡)𝑏𝑘,𝑗 (𝑥𝑗,𝑡), where the 𝜂𝑖,𝑘,𝑗 ’s are coefficients that need
to be estimated. Without loss of generality, if the first basis functions
𝑎1, 𝑏1,1,… , 𝑏1,8 are the unit functions (Chapter 5.6.3 of Wood, 2012),
then we can decompose 𝑓tensor,𝑗 into its main and interaction effects,
i.e.,

𝑓tensor,𝑗 (𝑑𝑡, 𝑥𝑗,𝑡) =
𝑛𝛼
∑

𝑖=1
𝜂𝑖,1,𝑗𝑎𝑖(𝑑𝑡) +

𝑛𝑗
∑

𝑘=1
𝜂1,𝑘,𝑗𝑏𝑘,𝑗 (𝑥𝑗,𝑡)

+
𝑛𝛼
∑

𝑖=2

𝑛𝑗
∑

𝑘=2
𝜂𝑖,𝑘,𝑗𝑎𝑖(𝑑𝑡)𝑏𝑘,𝑗 (𝑥𝑗,𝑡), (1)

which allows significance testing of the main and interaction effects
separately.

The Poisson GAMs (Table 1) are constructed as follows: type 1
model uses 𝑓cyclic(𝑑𝑡) as a single predictor and is used to model the
baseline climatological rate of EPE occurrence based on which the clus-
tering frequency is quantified. In addition to 𝑓cyclic(𝑑𝑡), type 2 models
uses the atmospheric predictors, i.e. weather regime indices and lon-
gitudinally averaged values of RRWPs (described in Section 3.2). The
reasoning behind using separate atmospheric GAMs is that WRs and
RRWPs share the same underlying data, which can lead to collinearity
issues, i.e. one predictor can be linearly predicted from the others
with a substantial degree of accuracy. We use one separate model for
each WR, so that each index’s effect can be easily interpreted. If the
goal were model accuracy, we could consider incorporating all WR
indices into one model instead. All predictors are standardized (mean
of 0, standard deviation of 1) before the modeling step. The optimal
smoothing parameters for the smooth terms are estimated via restricted
maximum-likelihood; we use the penalized iterative reweighted least
squares algorithm which also prevents overfitting (Wood, 2017). Note
that the atmospheric predictors may implicitly explain/absorb part of
the seasonal cycle but this aspect is not discussed. The p-values are
calculated by Wald tests with null hypotheses that the smooth function
is zero everywhere that it is defined on; low p-values indicate low
likelihood that the basis functions that make up the function are jointly
zero (Wood, 2012).
4

3.1.4. Reporting GAM effects
An effect is meaningful in a GAM if it is significantly different from

a flat zero line, i.e. anything from a linear slope to a complex wiggly
curve. To obtain a measure which is analogous to the regression slope
of a predictor in a GLM, here we use a finite differences approach
to approximate the sign and strength of a predictor’s effect (Simpson,
2022). For each atmospheric predictor, we evaluate the linear slope
at 365 equidistantly located points along the function to derive an
acceptable global estimate 𝑚 = 𝛥𝑦∕𝛥𝑥 of the first derivative of the
function. We retrieve slope values 𝑚 for each season, obtained after
adding up the main effect function with the interaction effect function
through the decomposition in Eq. (1), averaged by season (colored
sectors in Fig. 3c). Since the slopes are computed on the log scale,
we report back the exponent of the slope values, which corresponds
to a multiplicative factor (or percent change) of the expected rate 𝜆𝑡
for a one unit change (standard deviation) in the predictor variable, all
else held constant. Inference about the shape of the effect functions is
made using the effective degrees of freedom (edf) estimated from the
GAMs, which can be used as a proxy for the degree of non-linearity
in stressor-response relationships (Zuur et al., 2009). An edf of 1 is
equivalent to a linear relationship whereas an edf > 1 indicates a
non-linear relationship. Only significant main or interaction effects for
which the adjusted 𝑝-value is 0.05 or below are shown. We use the
Benjamini and Hochberg procedure (Benjamini and Hochberg, 1995)
to control for the false discovery rate (FDR). When multiple hypothesis
tests are conducted, FDR is way to identify as many significant features
as possible while incurring a relatively low proportion of false positives.

3.2. Low-frequency atmospheric predictors

3.2.1. Weather regimes
The WRs definition relies on standard approaches using

EOF-clustering to identify the seven prevailing year-round large-scale
atmospheric patterns in the Euro-Atlantic sector (for a detailed descrip-
tion of the methodology, refer to supplementary material of Grams
et al., 2017). The WRs consist of three variants of cyclonic regimes,
that is the Atlantic Trough (AT), the Zonal regime (ZO) and the
Scandinavian Trough (ScTr); moreover, four blocked regimes, namely
the Atlantic Ridge (AR), the European Blocking (EuBL), the Scandina-
vian Blocking (ScBL) and the Greenland Blocking (GL) are identified.
To that end, EOF analysis is performed on 10-day low-pass-filtered
(LPF) Z500 anomaly (Z500a), using a 90-day running mean at the
respective calendar time as reference climatology, in the domain 30N-
90N and 90W-40E. Then, K-means clustering (with 𝑘 = 7) is applied
on the seven leading EOF time series (79% of explained variance).
Prior to the EOF-clustering, the seasonal cycle in the amplitude of
the Z500a is removed to compensate for lower amplitudes in summer
compared to winter. The seven cluster mean EOF patterns are shown
in Figs. 6–13. Weather regime indices are constructed by projecting the
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Fig. 4. Significantly clustered EPEs are shown as green points for the cities of (a) Sevilla in Spain and (b) Lugano in Switzerland. Points show the distribution of all EPEs as a
function of the day of the year (x-axis) and the year (y-axis). 21-day time intervals with empirical counts of 2 and above are shown in shades of color (gray = 2, light brown = 3,
medium brown = 4 and dark brown = 5). The bottom panels show the climatological expected rate for each calendar day as modeled with the simple GAM model that includes
only the seasonal variability, see Section 3.1.3. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
instantaneous normalized Z500a in the WR patterns following Michel
and Rivière (2011); it is those indices that are used as atmospheric
predictor variables for the modeling step. A positive index reveals
strong resemblance to the cluster mean pattern, whereas a negative
index reveals a mirrored anomaly pattern.

3.2.2. Recurrent Rossby waves packets: 𝑅-metric
Additionally, we use a predictor variable that quantifies the recur-

rence of phase-locked transient Rossby waves in quick succession: the
𝑅-metric (refer to Röthlisberger et al. (2019) for technical details).
It is a simple measure of RRWPs strength derived from Hovmöller
(time-longitude) diagrams of instantaneous meridionally averaged (35◦

N–65◦ N) meridional wind at 250 hPa (V250). The 𝑅-metric is in short
the envelope of a time (15-day running mean) and wavenumber (WN)
filtered (WN = 4 to WN = 15) wave given by V250 field (Ali et al.,
2021). The metric is available for each longitude at each time step. For
our model predictor, we use daily 𝑅-metric values at each longitudinal
point corresponding to the one of the precipitation gridpoint. The 𝑅-
metric values are first averaged over a 60◦ sector centered on each
longitudinal gridpoint to account for the effects of the neighboring
gridpoints (as in Röthlisberger et al., 2019; Ali et al., 2021).

3.3. Quantification of clustering significance

In this section, we describe the approach we use to determine
the proportion of significantly clustered EPEs. Temporal clustering is
identified by comparing the empirical distribution of counts in a 21-day
disjoint time interval 𝐶21 to the fitted Poisson distribution with baseline
climatological rate. We illustrate the approach for two gripdoint loca-
tions corresponding approximately to the cities of Sevilla in Spain and
Lugano in Switzerland (refer to Fig. 4). The probability that the count
𝐶21 is equal to or greater than 𝑘 = 0, 1, 2, 3… expected events from a
Poisson distribution is, assuming that the Poisson model is appropriate:

𝑃 (𝐶21 ≥ 𝑘) = 1 −
𝑘−1
∑

𝑖=0

𝜆𝑖𝑡𝑒
−𝜆𝑡

𝑖!
(2)

where 𝜆𝑡 corresponds to the climatological expected rate of occurrence
for each calendar day (see bottom panels in Fig. 4) and is predicted
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with a type one Poisson GAM for which only 𝑓cyclic(𝑑𝑡) is used as a
predictor (refer to 1). The value of 𝜆𝑡 used to derive the probabilities
in Eq. (2) is taken on the day at the center of the respective 21-
day interval. Since 𝜆𝑡 comes with an associated uncertainty (standard
errors of the prediction), we use the upper boundary of the point-
wise confidence interval of 𝜆𝑡, more robust, instead of the fitted value
itself. For each of the 730 counts from the 21-day disjoint intervals,
we identify probabilities below the 5% threshold, thus selecting those
time intervals for which the probability of observing a specific count is
less than 5%, label the EPEs within those time intervals as significantly
clustered (only for k ≥ 2; shown as green dots in Fig. 4) and report
back the proportion of clustered EPEs with respect to all EPEs, which
corresponds to 15% and 9% for Sevilla and Lugano respectively.

The advantage of the present approach is that it allows to select
exact time periods when temporal clustering occurs and quantify its
frequency and severity after removal of the seasonal cycle in the re-
sponse. Thus, if temporal clustering is detected, then seasonality in the
EPE counts is not able to explain temporal clustering by itself which is
an indication that there must be other drivers at play. For example, with
reference to Fig. 4, the climatological expected rate of occurrence in
Lugano is highest in autumn. Nevertheless, the time interval spanning
from September 23 to October 13 1993 counts 5 EPEs, which is signifi-
cantly larger than expected on average, meaning that seasonality alone
does not explain clustering. In contrast, the time interval spanning from
September 17 to October 7 1999 counts 3 EPEs, which is a high count
but within the expected range of the climatological rate of occurrence,
thus leading to non-significantly clustered EPEs, likely explained by
seasonality.

4. Results

4.1. Estimated seasonal cycle in EPE occurrences

Fig. 5 depicts the climatological expected rate of occurrence for each
calendar day obtained with a simple GAM (model type 1) computed at
each of the 6140 gridpoints in Europe and displays the range in rate of
the estimated functions. Most locations reveal a pronounced seasonal
cycle in the occurrence of EPEs as revealed by the positive values in
the range between the minimum and maximum rate of occurrence of
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Fig. 5. Estimated seasonal cycle of EPEs at each gridpoint over Europe. The left sub-figure displays the climatological expected rate of occurrence for each calendar day (cyclic
smooth functions) computed at each gridpoint in Europe. The day of the year is shown on the 𝑥-axis and the 21-day intensity 𝜆 on the 𝑦-axis. Shown in orange (blue) are the top
50 functions in terms of largest (smallest) range in rate. The right sub-figure displays the frequency distribution of all ranges of seasonal functions for all gridpoints in Europe.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 6. Spatial distribution of the proportion of significantly clustered EPEs (in percent) at each gridpoint in Europe over the entire analysis period (a) and its relative frequency
(in percent) in the winter (b), spring (c), summer (d) and autumn (e).
the estimated functions in Fig. 5b. The European average range is 0.64,
which means that the average difference in the number of events in a
21-day period is 0.64 during the active season compared to the inactive
season. Fig. 5a reveals two general clusters, one with a cycle peaking
in summer, another one peaking during the extended winter season.
Non-significant seasonal cycles (p-values > 0.05) are found in 78 out of
6140 gridpoint locations, i.e. the estimated function is not significantly
different from a flat zero line. The top 50 curves in terms of amplitude
(shown in orange in Fig. 5a) are characterized by pronounced seasonal
differences in the climatological expected rate of occurrence, ranging
from 0 to nearly 1.3 expected events in a 21-day time period at these
particular locations.

4.2. Spatial distribution of EPE clustering

Fig. 6a depicts the spatial distribution of the proportion of EPEs
that are found significantly clustered on sub-seasonal (21-day) time-
scales at each gridpoint in Europe between 1979 and 2020. Between
2% to 27% of all EPEs cluster in time. Local extremes are found over
northern Ireland and northern Portugal where over 24% of the EPEs
significantly cluster in time. Over 21% of the EPEs significantly cluster
in time along the westernmost, northern and southern coast of Norway,
westernmost tip and southwestern coast of France, northern Portugal
and southern tip of the Iberian Peninsula. Gridpoints where more than
18% of EPEs are clustered are located along the western coasts of
Norway, Great Britain and France, as well as over the western half of
the Iberian Peninsula. Clustering frequency is generally lower inland
with however some larger values in regions north of the Black Sea,
over northeastern Germany and Hungary, where over 12%–15% of
the EPEs significantly cluster in time. Gridpoints where less than 6%
of EPEs are clustered are located over northern Sweden, Finland and
Russia, over the Baltic countries, southern parts of Poland, Austria and
France as well as over the northeastern Dinaric Alps with a European
minima of 3% and less over southwestern Serbia. EPE clustering is
characterized by seasonal variability. Most of the temporal clustering of
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EPEs present over Greece, southern Turkey, along the southern Mediter-
ranean coastline, the western coast of Norway and the northwestern
coast of France, as well as over the western half of the Iberian Peninsula
occurs in the winter (Fig. 6b). In regions with larger values located
inland, temporal clustering of EPEs tends to occur more frequently in
the summer (Fig. 6d). Clustering occurs most frequently in autumn over
Iceland, Ireland, central France, central and northern Italy, along the
eastern coast of Spain and along the coastline of the Adriatic Sea. For
Switzerland, the seasonal occurrence of EPE clustering depends on the
geographic region. While 60%–90% of the clustering occurs in autumn
in southern Switzerland, clustering affects northeastern Switzerland
mostly in spring, while the central Alps are mostly concerned in winter.

Note that the proportion of significantly clustered EPEs can vary
depending on the starting day of the counting process. Here, the largest
detectable frequency is shown.

4.3. Effects of weather regimes on EPE clustering

The univariate effects of the 7 Euro-Atlantic weather regimes on
modulating the rate of occurrence of EPEs for each season are displayed
in Figs. 7 to 13. The effects are shown as a multiplicative factor and
should be understood as the change in the expected rate of occur-
rence for a 1 standard deviation increment of the predictor variable.
A multiplicative factor greater than 1 (in shades of red), indicates
a larger than expected number of EPEs with respect to the baseline
climatological rate of occurrence and therefore a tendency towards
clustering. A multiplicative factor smaller than 1 (in shades of blue),
indicates a smaller than expected number of EPEs with respect to the
baseline climatological rate of occurrence.

With increasing AT regime (Fig. 7), the increase in the probability
of EPE clustering (in red) is strongest in northwestern France where it
is more than doubled with respect to the climatological expected rate in
winter. An increase by 20% to 50%, regionally by 50% to 100% of the
clustering probability due to AT, is seen in northwestern Iceland, over
the British Isles, the northwestern part of the Iberian Peninsula, parts
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Fig. 7. Mean LPF (10 days) Z500 anomaly (shading, every 40 geopotential meters) and mean absolute Z500 (black contours, every 50 geopotential meters) of the Atlantic Trough
(AT) weather regime (top left) and its effect (multiplicative factor) on EPE clustering for winter (top center), spring (top right), summer (bottom center) and autumn (bottom
right). Positive (negative) effects are shown in shades of red (blue) and non-significant estimates in gray shading. The bottom left inset displays whether the predictor is year-round
linear (YL; purple), year-round non-linear (YN; green) or seasonal non-linear (SN; yellow) along with proportions belonging to each class. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
Fig. 8. Same as Fig. 7 for the ZO weather regime. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
of western Europe, over southern Scandinavia and along the southern
Alpine mountain range, particularly in southern Switzerland. Moreover,
an increase by 20% to 50% is revealed over parts of northeastern
Europe. In northwestern France, the effect of AT on clustering is
characterized by seasonal variability, with a weaker increase in summer
(below 20%); elsewhere in Europe, the effect is equal across all seasons.
A decrease in the probability of EPE clustering (in blue) is seen over
southwestern Iceland, over central and northern Norway and generally
over southern Europe, particularly along the eastern flanks of the
Iberian Peninsula and Italy, as well over Greece, western Turkey and
regions to the west of the Black Sea. The decrease is characterized by
seasonal variability in central Norway where it is largest across Europe
with more than a halving of the clustering probability in winter. In
southern Europe, the decrease is mostly equal across all seasons and
corresponds to 20% to 50% of the climatological expected rate. The
log-linear relationship of the effect of AT on clustering is year-round
linear in 52%, year-round non-linear in 32% and seasonal non-linear
in 16% of all significant grid-points across Europe.

With increasing ZO regime (Fig. 8), the probability of EPE clustering
increases (in red) by 50% to 100% over northwestern regions of the
British Isles, western Norway, southwestern Sweden, the western coast
of Denmark and more locally over northern France and Finland; an in-
crease by 20% to 50% is seen over western Iceland, central Norway and
northwestern Germany. In the aforementioned locations, the effect of
7

ZO on EPE clustering is mostly equal across all seasons with the excep-
tion of central England, Germany, Denmark and Sweden, characterized
by seasonal variability and a reversed effect in summer with a decrease
in clustering probability by 20% to 50%. Moreover, the positive effect
of ZO on clustering extends further inland in winter over parts of the
British Isles and western Norway. A decrease in the probability of EPE
clustering (in blue) is seen generally over southern Europe, particularly
in the southeastern half of the Iberian Peninsula and Italy, as well over
Greece and regions to the north and west of the Black Sea. In these
regions, the decrease is mostly equal across all seasons and corresponds
to a 20% to 50% decrease (locally 50% to 100%) of the climatological
rate over parts of southern Spain and western Ukraine. Southwestern
parts of Spain and Greece are characterized by seasonal variability
with an increase in the clustering probability in summer. The log-linear
relationship of the effect of ZO on clustering is year-round linear in
51%, year-round non-linear in 27% and seasonal non-linear in 22% of
all significant grid-points across Europe.

A one standard deviation increase of the ScTr regime index (Fig. 9)
increases the probability of EPE clustering (in red) by 20% to 50%
along the northern coastline of Iceland, central Norway, most of Fin-
land and over some parts of central Europe; by 50% to 100% over
northwestern Scotland and western Norway and more than a doubling
locally over the southwestern coast of Finland in winter. The latter
shows a seasonally variable effect of the ScTr on clustering, strongest
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Fig. 9. Same as Fig. 7 for the ScTr weather regime. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 10. Same as Fig. 7 for the AR weather regime. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
in winter, weakest in summer (20% to 50%), whereas the remaining
aforementioned locations reveal equal effects across all seasons. A
decrease in the probability of EPE clustering (in blue) is seen generally
over southwestern Europe, particularly in the southeastern half of the
Iberian Peninsula, along the french Mediterranean coast of the Gulf
of Lion and southern Ireland. In these regions, the decrease is mostly
consistent throughout the year and corresponds to a 20% to 50% de-
crease (50% to 100% over the Iberian Peninsula). Southwestern Spain is
characterized by seasonal variability with a reversed effect in summer,
that is an increase of 20% to 50% in clustering probability. The log-
linear relationship of the effect of ScTr on clustering is year-round
linear in 51%, year-round non-linear in 31% and seasonal non-linear
in 18% of all significant grid-points across Europe.

With increasing AR regime (Fig. 10), the increase of the probability
of EPE clustering (in red) is strongest over central Norway, with more
than a doubling of the clustering rate in winter; this increase is char-
acterized by seasonal variability, weakest in summer (20% to 50%).
Elsewhere in Europe, the effect of AR on clustering is equal across all
seasons with an increase of the clustering probability of 20% to 50%
over the westernmost part of Iceland, over northwestern Norway and
parts of southern Europe, such as southeastern and southwestern Spain,
along the eastern flanks of the Apennine Mountains, over the Balkans,
western Turkey and in regions to the north and west of the Black Sea.
An AR regime is associated with a decrease in the probability of EPE
clustering (in blue) by 20% to 50% over eastern Iceland, the British
Isles, the northwestern quarter of the Iberian Peninsula, parts of France,
Denmark, southern Norway and Sweden as well as along the southern
Alpine foothills and locally by 50% to 100% over the eastermost part of
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Iceland, the western parts of the British Isles and southern Norway. The
log-linear relationship of the effect of AR on clustering is year-round
linear in 59%, year-round non-linear in 40% and seasonal non-linear
in 1% of all significant grid-points across Europe.

With increasing EuBL regime (Fig. 11), the increase of the prob-
ability of EPE clustering (in red) is most prominent over northern
Norway, with locally more than a doubling of the clustering rate in
winter; this increase is characterized by seasonal variability and is
weaker in the remaining seasons (50% to 100%). The EuBL regime
increases clustering probability consistently throughout the year by
50% to 100% over southwestern Iceland and by 20% to 50% over
parts of southern Europe, such as the southeastern parts of Spain,
Italy and Greece. The effect of EuBL on clustering is characterized by
seasonal variability revealing contrasting effects over most of France,
the southwestern Iberian Peninsula, north of the Dinaric Alps and in
southern Ukraine, with an increase in clustering probability by 20% to
50% in summer (50% to 100% over the Iberian Peninsula), whereas
the remaining seasons show a weaker increase or even a decrease
(particularly over France and the Iberian Peninsula; 50% to 100%).
An AR regime is associated with a decrease in the probability of
EPE clustering (in blue) over wide parts of Europe, particularly in
winter, by 20% to 50% over the British Isles, western Europe, southern
Scandinavia and northeastern Europe, and regionally by 50% to 100%
over the northwestern quarter of the Iberian Peninsula, western and
eastern France, the Netherlands, southwestern England, western and
southern Switzerland. The log-linear relationship of the effect of EuBL
on clustering is year-round linear in 40%, year-round non-linear in
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Fig. 11. Same as Fig. 7 for the EuBL weather regime. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 12. Same as Fig. 7 for the ScBL weather regime. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
36% and seasonal non-linear in 24% of all significant grid-points across
Europe.

An increasing ScBL regime (Fig. 12) is associated with an increase
in the clustering probability (in red), equal across all seasons, of 50%
to 100% over parts of the western Iberian Peninsula and along the
southern coast of Iceland, and of 20% to 50% over the southern parts
of British Isles, France and Norway. The effect of ScBL on clustering
is characterized by seasonal variability over central Europe, revealing
contrasting effects over Germany, the Benelux, Switzerland, northwest-
ern Poland, Denmark, southern Sweden and northern Scotland, with an
increase in clustering probability of up to 50% in summer, whereas the
remaining seasons show a decrease, peaking in winter by up to 100%.
Seasonal variability also concerns eastern Spain, where clustering prob-
ability increases by 50% to 100% in winter, but decrease by 20% to
50% in summer. While a decrease in the expected rate under a ScBL
regime is seen equal across all seasons over the Baltic countries (20%
to 50%), southern Finland (20% to 50%) and northwestern Norway
(50% to 100%), a seasonally varying decrease is observed over parts
of northern Scotland, southern Sweden, western Norway and Finland,
with more than a halving of the rate in the latter two. The log-linear
relationship of the effect of ScBL on clustering is year-round linear in
32%, year-round non-linear in 26% and seasonal non-linear in 42% of
all significant grid-points across Europe.

With increasing GL regime (Fig. 13), the increase of the probability
of EPE clustering (in red) is most prominent over the Iberian Penin-
sula, with a 50% to 100% increase over northwestern Portugal and a
similar increase in southern Spain in autumn and winter; the latter is
characterized by seasonal variability with a weaker increase in summer
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(up to 20%) and a reversed effect with a 20% to 50% decrease on the
Mediterranean coast. Contrasting effects are observed over central parts
of the British Isles and southern Sweden with a 50% to 100% increase
in summer, but a reversed effect in winter revealing a decrease of 20%
to 50%. A consistent throughout the year increase of 20% to 50% is
seen over western parts of Ireland and England, as well as over France,
western and southeastern Switzerland, the western coasts of Italy and
the Balkans, southeastern Sweden and eastern European regions north
of the Black Sea. The latter shows, regionally, a seasonal effect, stronger
in autumn and winter. A GL regime is associated with a decrease, equal
across all seasons, in the probability of EPE clustering (in blue) over
southwestern Iceland (20% to 50%, locally up to 50% to 100% inland)
and northwestern Norway (20% to 50%). A decrease characterized by
seasonal variability is seen over western Norway and northwestern
Scotland, by 50% to 100% in winter and spring, weaker in summer and
autumn. The log-linear relationship of the effect of GL on clustering is
year-round linear in 48%, year-round non-linear in 25% and seasonal
non-linear in 28% of all significant grid-points across Europe.

4.4. Weather regime predominance on EPE clustering

Fig. 14 displays the spatial distribution of dominant Euro-Atlantic
weather regimes that maximize clustering of extreme precipitation at
each gridpoint per season. General patterns equal across all seasons
are first described and concern over 80% of all gridpoints in the study
domain.

The AT regime exhibits to most extensive effect on clustering across
all seasons in Europe affecting most of western and northern regions
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Fig. 13. Same as Fig. 7 for the GL weather regime. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 14. Spatial distribution of dominant Euro-Atlantic weather regimes that maximize clustering of extreme precipitation at each gridpoint for winter, spring, summer and autumn.
Gridpoint locations revealing no significance for all weather regimes or a reduction of the clustering probability are shown in dark gray shading. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
such as eastern Iceland, Great Britain, France, the northwestern Iberian
Peninsula, western and southern Switzerland, Benelux, western Ger-
many, southern Scandinavia and northeastern Finland. The second
most extensive regime in Europe is the GL regime, affecting most of
the Iberian Peninsula, eastern Europe, Corsica, part of northern Italy
along the coasts of the Tyrrhenian Sea and along the southern Balkan
coastline. The EuBL is the dominant regime in the southwestern part of
Iceland, in the northern half of Norway, along the Mediterranean coasts
of the Iberian Peninsula, the eastern Balearic Islands and Sardinia,
southern Sicily, southeastern Italy and Greece. The AR regime is the
dominant regime affecting clustering over central parts of Norway, Italy
and Sardinia, as well as Ibiza, most of southeastern Europe such as
Turkey, the western parts of Greece, the Balkan countries and regions
to the wester of the Black Sea. The ScTr predominates clustering of
EPEs over parts of Scandinavia, such as northern Sweden, most of
Finland and the northern part of western Norway, as well as parts
of central Europe and to a lesser extent the northwestern coastline
of Iceland. A ZO regime affects northern Europe to a lesser extent in
that it maximizes year-round clustering probability over some parts
of northeastern Iceland, northwestern Scotland and the southern part
of western Norway. Finally, the ScBL regime is the least predominant
10
weather regime in terms of clustering of EPEs over Europe affecting the
southeastern coastline of Iceland, northern-central parts of the Iberian
Peninsula, the french Mediterranean coast of the Gulf of Lion, north-
easternmost Sicily and locally over northwestern and southeastern
Italy. Several regions exhibit seasonal variability in the predominance
of weather regime patterns. In summer, the ScBL regime becomes the
dominant flow pattern in terms of clustering over parts of Germany,
the Czech Republic, western Poland, over western France and parts
of the southern Iberian Peninsula. Also in summer, EuBL becomes
predominant in parts of the southern Iberian Peninsula and southern
France along the northern slopes of the Pyrenees. In summer, clustering
tends to be predominated by the GL regime over northwestern France.
For the latter, clustering is predominated by the ZO regime for the
northernmost region in summer and autumn only. Finally, clustering
in parts of northwestern Germany, Denmark and southwestern Sweden
is predominantly driven by ZO only in winter and spring.

4.5. Effects of recurrent transient waves on EPE clustering

Fig. 15 reveals statistically significant effects of the R-metric, i.e.
persistent and/or recurrent meridional amplification of Rossby waves
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Fig. 15. Effect (multiplicative factor) of the R-metric on EPE clustering with an FDR control of 10% (top row) and 20% (bottom row) for winter (center) and summer (right).
Positive (negative) effects are shown in shades of red (blue) and non-significant estimates in gray shading. The left inset displays whether the predictor is year-round linear (YL;
purple), year-round non-linear (YN; green) or seasonal non-linear (SN; yellow) along with proportions belonging to each class. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
over a fixed region, on the temporal clustering of EPEs. Autumn and
spring reveal very similar results than winter and summer; therefore
only the latter two are shown. The effect of the 𝑅-metric appears to
be much less pronounced than the effects of the weather regimes.
Nevertheless, coherent patterns can be observed over the northern parts
of the British Isles, the Iberian Peninsula and southeastern Europe. With
increasing 𝑅-metric values, clustering probability of EPE occurrence
tends to increase consistently throughout the year by 20% to 50% over
parts of Greece, Turkey and the Dinaric Alps. A similar increase is
observed over parts of the Iberian Peninsula in summer and autumn;
there, the effect is reversed in winter and spring with a decrease of the
clustering probability by 20% to 50%. A decrease of similar magnitude
but equal across all seasons is seen over the northern British Isles.

5. Discussion

5.1. Advantages and limitations of using a GAM

Using GAMs to model temporal clustering of EPEs has many advan-
tages. Its high flexibility allows the use of a single year-round model;
temporal inconsistencies arising at the transition from one season to
the next are avoided and uncertainty estimation is improved since
more data is available and strength can be borrowed directly from
neighboring data points in adjacent seasons. GAMs allow to tackle the
stationarity issue naturally present in most point processes such as in
EPEs by including a simple term to account for time, i.e. the day of
the year, estimated by a cyclic cubic regression spline smooth, which
tends to a straight line if there is no seasonal effect. A major drawback
that comes with increasing complexity is the loss of interpretability. For
example it is not possible to rely on a single slope parameter to report
back the sign and magnitude of a predictor’s effect.

5.2. Seasonal cycle and temporal clustering of EPEs

Accounting for the seasonal cycle in the EPE occurrence is justified
since significant year-round non-stationarity in the EPE occurrence is
identified in 99% of gridpoint locations in Europe (refer to Fig. 5).
Significantly temporally clustered EPEs can be identified at every Eu-
ropean gridpoint, ranging from 2% to 27%; this poses an inevitable
risk that needs to be taken seriously. The location and spatial extent
of the clustered EPEs coincide with findings presented by recent stud-
ies (e.g. Tuel and Martius, 2021b; Kopp et al., 2021); they concern
the southwestern Iberian Peninsula, the northwestern coast of France,
Scotland and Norway. Our approach is less conservative on the signifi-
cance assessment than compared to methods that test against simulated
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samples of homogeneous Poisson series, however allows identification
of isolated clustering episodes and therefore significant clustering is
also detected elsewhere in Europe, such as over eastern Europe.

5.3. Weather regimes explain part of clustering

The sub-seasonal variability of the North Atlantic atmospheric cir-
culation can be described as transitions between a limited number of
recurrent and quasi-stationary states, i.e. weather regimes (Ferranti
et al., 2015) and affect surface weather conditions on timescales of
several days to weeks (Grams et al., 2017). Our results reveal the impor-
tance of weather regimes in describing sub-seasonal temporal clustering
in EPEs over Europe, explaining up to 30% of the variance over the
western Iberian Peninsula and Norway, and generally over 20% in
regions exhibiting high clustering frequencies such as northwestern
Europe, as reported by the deviance explained (Fig. 16).

5.4. Implications of weather persistence on clustering

The AT affects increase in clustering probability most extensively in
Europe in all seasons, except in summer where it is equally important
as the EuBL regime, followed by the GL regime (Fig. 14). This finding
strongly suggests that clustering of EPEs over western and northern
Europe is governed by the position and strength of the polar-front jet,
which in turn controls the rate at which cyclonic low pressure sys-
tems and associated fronts elapse. Further to the point, the southward
position of the jet during the AT compared to the ZO regime reveals
that the positive phase of the NAO, most closely related to the ZO
regime (Grams et al., 2017), explains only a small part of the European
clustering as opposed to the AT regime.

The ZO mainly affects western coastal regions of northern Eu-
rope. Here, the zonal orientation of the jet is crucial for generating
EPE clustering, as emphasized by the significant effect of a high R-
metric (i.e. persistent synoptic-scale recurrence of upper-level merid-
ional flow) on decreasing clustering probability (Fig. 15).

The climatological position of the polar-front jet being shifted south-
ward during the northern hemisphere cold season is reflected in the
clustering patterns. For example, the effect of the AT is more pro-
nounced in France in winter than in summer. Moreover, the positive
feedback of ZO on clustering is shifted southward in winter exposing
also Germany and Sweden to enhanced clustering probability.

The GL regime is the second most important regime in explaining
clustering in Europe in the northern hemisphere cold season and par-
ticularly affects the Iberian Peninsula in winter. There, clustering of
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Fig. 16. Difference in deviance explained between the model using only the day of the year and (a) the WRs model (b) the R-metric model.
precipitation extremes can be attributed to a general slackening and
southward shift of the zonal flow suggesting advection of moist air
from the sub-tropical Atlantic towards western Europe. Our results also
emphasize the importance of meridional wave amplification over the
eastern Atlantic sector and the Iberian Peninsula, as revealed by large
R-metric values in Fig. 15 at these locations. This is particularly the
case in summer and autumn when, concomitant to a Greenland block,
the phase-locked downstream Rossby wave propagation reveals pre-
ferred trough formation over the eastern Atlantic sector, exposing the
Iberian Peninsula to persistent northwesterly to southwesterly upper-
level flow. Ali et al. (2021) found a significant increase in wet-spell
persistence under high R-metric values for the northern Iberian Penin-
sula in the extended summer season, which corroborates our findings.
Without being too speculative, recurrent trough formation over the
eastern Atlantic/western Europe is associated with warm and moist air
advection from the Atlantic and Mediterranean towards the Alps. In
fact as shown by Fig. 13, a GL regime significantly and considerably
increases clustering of extreme precipitation along the Jura Mountains
and eastern France, and along the southern Swiss Alps; this is a typical
spatial pattern observed during southwesterly flow situations, often as-
sociated with orographic lifting and forced convection on the windward
side of the mountainous slopes in Switzerland.

The remaining weather regimes have a more regionalized effect on
European EPE clustering. The AR regime leads to a decrease (increase)
in the clustering probability over some parts of northwestern Europe
(over northwestern Norway). The decrease can be partly attributed to
a persistent East Atlantic block forcing the polar-front jet to circumvent
it over northern Europe. The deflection of the moist jet takes a westerly
to northwesterly turn when it impinges on the western coasts of Nor-
way perpendicular to the axis of the Scandinavian Mountains favoring
clustering of EPEs, particularly in autumn and winter. Most of the EPEs
in this area are a result of orographically enhanced precipitation from
fronts embedded in North Atlantic low-pressure systems (Sandvik et al.,
2018). In response to the persistent East Atlantic ridge, the increase
in the clustering of EPEs over the Balkans and Turkey can be tied to
the downstream meridional extension of a trough/streamer towards
the eastern Mediterranean; this is supported by significant R-metric
values in these regions (Fig. 15). This upper-level anomaly may evolve
into the formation of cut-off lows and surface low-pressure systems,
wandering over the Mediterranean Sea towards the west in direction of
the southeastern flank of the Atlantic block, which could partly explain
the clustering signal along the eastern coasts of Italy, Sardinia and
Spain. In fact, Mastrantonas et al. (2021) found that Balkan and Black
Sea Lows are highly associated with EPEs over the Balkans and Turkey,
Sicilian Lows favor EPEs in locations east of the Apennines while EPEs
over eastern Sardinia and the Spanish Mediterranean coasts are tied to
Iberian Lows. These low-pressure systems associated with EPEs have
been shown to be linked to atmospheric instability over the Mediter-
ranean sector, which are particularly present in the south/southeast
flank of blocking systems (Sousa et al., 2017).

ScBL/EuBL regimes preclude clustering of EPEs over wide parts
of central and northern Europe, and affect regions directly located
below the core of the anticyclonic block and regions usually exposed
12
to moisture advection from the west now under the influence of dry
continental air advection from the east, e.g. Norwegian coast for ScBL
and Scotland for ScBL/EuBL. Cassou (2010) found an increase in the
frequency of rainfall extremes under a Scandinavian block over the
Spanish and French Mediterranean coast and along the eastern coasts
of Sardinia, Sicily and southern Italy; our results reveal similar regional
patterns in the increase of EPE clustering however during a EuBL. The
spatial patterns of increased clustering in the Mediterranean appear to
be similar as during an AR regime, but shifted to the south during
a EuBL and to the west during a ScBL, and highly resemble EPE
patterns in connection with Iberian and Sicilian Lows (Mastrantonas
et al., 2021). As for the AR regime, the polar-front jet circumvents the
western Mediterranean regions (or has a weak influence), generating a
context of weak pressure gradients, in which instable conditions favor
errant cut-off lows over the Mediterranean. Parts of central Europe
experiencing a pronounced decrease in clustering probability in winter
during a ScBL regime reveal an inverse signal, that is an increase in EPE
clustering in summer. A similar shift is observed by Lenggenhager and
Martius (2019) in the odds ratio of moderate precipitation extremes.
The associated increase in atmospheric instability (and consequently in
convective processes) to the south/southeast of the blocking center shift
northward during summer, and as a consequence, positive precipitation
anomalies also extend further north than during other seasons (Sousa
et al., 2017). A recent example are the central European floods in July
2021 during which a persistent Scandinavian Block was present over
nearly a month. The block favored the formation of a series of cut-off
lows to wander over western and central Europe, in particular the near-
stationary cut-off low-pressure system Bernd centered over Germany,
generating a succession of intense convective rainfall events.

6. Conclusions

We use Poisson GAMs to quantify sub-seasonal temporal clustering
of extreme precipitation events from 1979 to 2020 and model its
dependence to seven Euro-Atlantic weather regimes and a measure
synoptic-scale transient recurrent Rossby wave packets. Significant 21-
day clustering episodes are found at all grid-points over Europe. The
fraction of EPEs that cluster in time ranges between 2% to 27% (Fig. 6).
Temporal clustering is most frequent along the western coasts of Nor-
way, Great Britain and France as well as over the western half of the
Iberian Peninsula, where it mainly occurs during autumn and winter.

The GAMs allow us to model clustering of EPEs using one model
for the entire by accounting for seasonality in the EPEs with a cyclic
smooth function of the day of the year. The GAMs provide seasonal
estimates for each atmospheric predictor variable. Weather regimes
explain up to 30% of the temporal clustering over the western Iberian
Peninsula and on average over 20% in regions exhibiting high clus-
tering frequencies (Fig. 16). The following weather regimes are linked
to clustering of EPE in Europe (in decreasing order of importance):
the Atlantic Trough, the Greenland Blocking, the European Blocking,
the Atlantic Ridge, the Scandinavia Trough, the Zonal regime and the
Scandinavian Blocking.



Weather and Climate Extremes 38 (2022) 100518Y. Barton et al.

K
e
W
o

D

i
i

C

b
r
C
s
p
G

A

a
S
(
A
a
1

R

A

B

B

B

C

C

C

C

C
F

F

F

G

G

G

G

H
H

H

K

K

K

L

L

L

M

M

M

M

M
M

P

P

R

Future perspectives involve examining the catalogue of European
clustering episodes determined in this study in more depth. For example
by performing case studies of the most improbable clustering episodes
to gain deeper insight on the complexity and variety of processes
leading to sub-seasonal clustering of precipitation extremes. Second,
our results have demonstrated the potential of weather regimes for pre-
dicting temporal clustering of EPEs, which could be further investigated
with the use of teleconnection patterns on longer time-scales that drive
weather regimes themselves. This could be achieved by expanding the
GAMs used in this study through the addition of interaction terms. Last,
our approach can easily be transferred to other fields of application and
presents a flexible basis for the investigation of the temporal clustering
of any desired variable on various time-scales.

Code availability

https://github.com/ywbarton/GAM_temporal_clustering.git.
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