Allen, Sam; Bhend, Jonas; Martius, Olivia; Ziegel, Johanna (11 September 2022). Weighted verification tools to evaluate univariate and multivariate forecasts for high-impact weather events (arXiv). Cornell University 10.48550/arXiv.2209.04872
|
Text
2209.04872.pdf - Published Version Available under License Creative Commons: Attribution (CC-BY). Download (1MB) | Preview |
To mitigate the impacts associated with adverse weather conditions, meteorological services issue weather warnings to the general public. These warnings rely heavily on forecasts issued by underlying prediction systems. When deciding which prediction system(s) to utilise to construct warnings, it is important to compare systems in their ability to forecast the occurrence and severity of extreme weather events. However, evaluating forecasts for extreme events is known to be a challenging task. This is exacerbated further by the fact that high-impact weather often manifests as a result of several confounding features, a realisation that has led to considerable research on so-called compound weather events. Both univariate and multivariate methods are therefore required to evaluate forecasts for high-impact weather. In this paper, we discuss weighted verification tools, which allow particular outcomes to be emphasised during forecast evaluation. We review and compare different approaches to construct weighted scoring rules, both in a univariate and multivariate setting, and we leverage existing results on weighted scores to introduce weighted probability integral transform (PIT) histograms, allowing forecast calibration to be assessed conditionally on particular outcomes having occurred. To illustrate the practical benefit afforded by these weighted verification tools, they are employed in a case study to evaluate forecasts for extreme heat events issued by the Swiss Federal Office of Meteorology and Climatology (MeteoSwiss).