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The gravity field of the Solar System celestial bodies is generally estimated within the orbit determination process
of probes visiting them. Low altitude, high inclination and near circular orbits are best suited for this purpose. As
part of a global characterization effort of the Jovian moon Europa, we studied the influence of multiple orbital
parameters and configurations on the recovery of its gravity field parameters. We made use of Repetitive Ground
Track Orbits (RGTO), allowing for a proper definition of the ground track coverage on the surface of Europa,
which is essential to study the impact of this coverage. The results presented here rely on closed-loop simulations
performed using a development version of the Bernese GNSS Software with planetary geodesy capabilities. We
simulate realistic range-rate observables (2-way Doppler X-band, σ ¼ 0.10 mm/s) from the different orbits
considered over a total mission duration of 3 months. These observations are then used to reconstruct the orbit
and estimate gravity field coefficients in terms of spherical harmonic coefficients and the k2 Love number. We
systematically compare solutions based on different input orbital parameters and we quantify their impact on the
gravity field recovery process, which is of great importance for future mission designs. Our best case scenario
shows that the gravity field can be estimated up to degree and order 72 after 3 months in a circular polar orbit at
100 km over Europa's surface. Different gravity field recovery strategies are also discussed when starting with a
very poor a priori knowledge of the gravity field, as it is the case for the Galileans moons. We propose and
evaluate two approaches by either using pseudo-stochastic pulses (i.e., instantaneous velocity changes) to cope
with the large model deficiencies, or by co-estimating low-degree gravity field coefficients and orbit parameters to
bootstrap the estimation process.
1. Introduction

Europa is a privileged destination for the upcoming phase of Solar
System exploration, as clues for its habitability have been accumulating
during the past two decades. Data analysis of the Galileo mission sug-
gested that Europa's internal structure is differentiated (Anderson, 1998)
into a metallic core, a silicate mantle and a water ice-liquid outer shell. A
subsurface ocean of liquid water beneath the icy crust was subsequently
inferred from magnetometer data of the Galileo mission (Kivelson et al.,
2000). Furthermore, the geological activity of Europa was brought to
light with evidence that water plumes emerge from the surface (Roth
et al., 2014).

As part of a global characterization of Europa, the study of its gravity
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field and tides is essential to better constrain internal structure models.
Dedicated missions to Europa will help to acquire a better understanding
of this complex system, and of various interactions of Europa within the
Jovian system (Bignami et al., 2005; National Research Council, 2011).

In this sense, ESA's mission JUpiter ICy Moons Explorer (JUICE;
Grasset et al., 2013) will perform a series of fly-bys of the three outer
Galilean moons starting in 2030. However, Ganymede is the main focus
of JUICE and only 2 flybys of Europa are planned. NASA's Europa Clipper
is expected to be launched by 2024 and will perform a series of 46 flybys
of Europa starting in 2030, which is expected to largely contribute to our
knowledge of this moon (Phillips and Pappalardo, 2014). Several studies
already investigated the recovery of the low-degrees gravity field co-
efficients of Europa from flyby missions (Park et al., 2015; Mazarico
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Fig. 1. 3:118 RGTO (i ¼ 89�, h ¼ 135 km) in Europa-fixed frame. After 118
revolutions around Europa and 3 Europa days (10.65 Earth days), the probe will
follow the same track.
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et al., 2015; Verma and Margot, 2018).
However, a mission including an orbiter around Europa would enable

global and uniform mapping of the Galilean moon, as well as recovering
its gravity field and other geodetic parameters to much higher resolution
(Wu et al., 2001; Wahr et al., 2006). An orbiter would thus achieve a
more detailed characterization of the presence and the extent of the
ocean and its relation to the deeper interior. There have been several
proposed missions to send an orbiter around Europa, e.g., the Jupiter
Europa Orbiter (Clark et al., 2009), HADES (B€ottcher et al., 2009), and
the Joint Europa Mission (Blanc et al., 2020). As it will be done for JUICE
in the case of Ganymede (Cappuccio et al., 2020), a low altitude, near
polar and quasi circular orbit would be in general most beneficial to
improve our knowledge of Europa's gravity field by means of spacecraft
Doppler tracking data. However, candidate orbits have to fit all mission
science objectives and to satisfy multiple mission and instrument con-
straints. An orbit meeting all these additional requirements might be less
suited for gravity field recovery. Quantifying the accuracy to which
geodetic parameters can be recovered based on different orbits is then of
great importance for a proper orbit selection.

The purpose if this study is to systematically characterize an extensive
set of orbits around Europa with respect to their sensitivity to measuring
the gravity field and the k2 tidal Love number from the analysis of
spacecraft Doppler tracking data. To that end, we perform closed-loop
simulations in a development version of the Bernese (GNSS) Software
(BSW; Dach et al., 2015) adapted for planetary probes (Arnold et al.,
2015; Bertone et al., 2021). In particular, we produce synthetic
range-rate (Doppler) measurements from a set of reference orbits. The
data is then used for the determination of spacecraft orbit and geodetic
parameters that are compared to the ground truth to quantify the
sensitivity of different Europa-bound orbits for geodetic parameters re-
covery. This study follows the template of the Joint Europa Mission
proposal (Blanc et al., 2020) (e.g., that the spacecraft will remain in orbit
around Europa during 3 months due to the harsh environmental condi-
tions) but our conclusions would apply to the planning of any future
mission including an orbiter around Europa.

Section 2 defines the reference orbits and the different parameters
considered in this study. The force model, observables adopted in our
simulations, and the estimation process are described in Sec. 3. In Sec. 4,
we explore several orbital configurations and their impact on gravity
field determination by assuming a perfect knowledge of the a priori force
model. Finally, in Sec. 5, we propose several gravity field recovery stra-
tegies, when starting from the current limited knowledge (up to degree-2
only) of Europa's gravity field.

2. Orbit design

The orbits considered in this study are designed in the Europa-Jupiter
system. We derive a set of orbits according to parameters of interest
associated with different orientations of the orbital plane with respect to
other celestial bodies of interest, namely the Earth. In general, we
consider low altitude, high inclination and near circular orbits to provide
a global mapping of Europa to the extent possible.

2.1. Repetitive Ground Track Orbits

Repetitive Ground Track Orbits (RGTO) are beneficial for the obser-
vation of time varying phenomena on the ground, as repeated observa-
tions of a given point of the surface of the celestial body are ensured.
RGTO are commonly used for Earth observation missions and are, e.g.,
also considered for JUICE around Ganymede (Ortore et al., 2015; Bou-
tonnet and Varga, 2020).

The ground tracks of an m:R RGTO repeat after m Europan days (3.55
Earth days). Within this period the probe completes R revolutions around
Europa. This translates into

mDn ¼ RTn; (1)
2

where Dn is the nodal day of Europa, and Tn is the nodal period of the
probe. m and R are two integers prime to each other, i.e., every m Europa
days ground tracks return to the same position. The whole set of asso-
ciated orbit tracks defines a grid in the Europa-fixed reference frame (see
Fig. 1).

We limit the investigation to low altitude (100 � 200 km) and high
inclination (80�–100�) orbits, because of their relevance for gravity re-
covery and thus for mission proposals such as Blanc et al. (2020). Since at
first order, Tn is given by

Tn ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffi
a3=μE

p
; (2)

with a being the semi-major axis of the probe's orbit and μE the standard
gravitational parameter of Europa, the nodal period Tn is also bounded.
For a considered revisit time m, there is a finite number of integers R
satisfying the ground track repetition condition given by Eq. (1) (see
Table 1).

These orbits provide a homogeneous ground track coverage. We can
define the spatial resolution by the equatorial distance between the
ground tracks. We call this constant distance “cycle intertrack”, and it is
defined by

δeq ¼ 2πRE

R
; (3)

with RE being the equatorial radius of Europa (1562.6 km, Archinal et al.,
2018). This gap depends only on the number of orbit revolutions between
repetitions, noted as R. Large cycle intertracks, i.e., a lower spatial res-
olution of the ground tracks, can be detrimental to the gravity field re-
covery. Table 1 shows the cycle intertrack for different RGTO.

It is important to note that we can still study non-repetitive orbits in
the framework of RGTO if we set the repetition cycle duration to be larger
or equal to the mission duration. We analyzed such RGTO with m ¼ 26,
meaning that ground tracks would only repeat after 26 Europa days (� 3
months), equal to our target mission duration.

Using the polynomial approach detailed in Cinelli et al. (2015), we
compute a set of initial guess orbital elements (semi-major axis a, ec-
centricity e, inclination i and argument of periapsis ω), describing a given
m:R RGTO. This approach is based on the ground track repetition con-
dition given by Eq. (1). The semi-major axis a then satisfies

dTa7 þ d1a5:5 þ dKa4 þ d2a2 þ d4 ¼ 0; (4)

where dT is related to third body perturbations, d1 is related to orbit



Table 1
m:R RGTO with their altitude and cycle intertrack fulfilling the orbit re-
quirements. The two numbers in the 2nd column denote the minimum and
maximum possible values of R. A lower R corresponds to a higher altitude, and a
larger cycle intertrack (see Eq. (3)). m ¼ 1 corresponds to 3.55 Earth days
duration, and m ¼ 26 corresponds to 92.33 Earth days cycle duration.

m R Altitude Cycle intertrack (at equator)

1 38 181 km 258 km (9.5�)
40 123 km 245 km (9.0�)

2 75 197 km 131 km (4.8�)
81 109 km 121 km (4.4�)

3 113 192 km 87 km (3.2�)
122 104 km 80 km (3.0�)

26 973 199 km 10 km (0.37�)
1061 101 km 9 km (0.34�)
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characteristics, dK is related to the Keplerian motion, d2 is related to J2
effect and d4 is related to J22 effect. Equation (4) (which is Eq. (10) in
Cinelli et al., 2015) is obtained by fixing the other orbital elements (e, i,
ω), and is a function of the ratio R/m, of the physical parameters of
Europa, and of the mean motion of Europa around Jupiter.

For each pair (m, R), we solve the degree-14 polynomial equation
obtained by squaring Eq. (4) for the semi-major axis awhile fixing e, i and
ω. From the multiple solutions in our case only one falls within the range
of studied altitudes. In this study, we do not consider elliptic orbits. We
thus fix the e and ω to 0.

Equation (4) was derived by approximating third body perturbations,
so that it only provides a first guess orbit. Such orbit then needs to be
refined according to the full force model to ensure ground track repeti-
tion. In addition, the initial longitude of the ascending node,Ω, has yet to
be defined at this stage, which completes the characterization of the
geometry of the orbital plane with respect to the third body Jupiter.

2.2. Orbit refinement

In order to precisely meet the condition for ground track repetition,
we considered the Hill model (Lara and Russell, 2007) to refine our first
guess orbits. This model takes into account the influence of Europa and
Jupiter as point masses, plus the effect of the J2 and C22 gravity field
coefficients of Europa.

We define the Jupiter-Europa rotating frame with the x-axis pointing
from Jupiter to Europa, the y-axis in direction of the velocity vector of
Europa around Jupiter, and the z-axis perpendicular to the orbital plane
of Europa around Jupiter (see Fig. 2). In this frame centered around
Europa, the spacecraft equations of motion are

€xþ 2nJ � _x ¼ rxUtot; (5)

with
Fig. 2. Orbital plane of the probe (in red) at t0 and ts with respect to Jupiter and
Earth. The red dots represent crossing points with respect to Europa equatorial
plane (z0 ¼ zs ¼ 0).

3

Utot ¼ n2J
2

�
x2 þ y2

�þ UE þ UJ ; (6)
and where x ¼ (x, y, z) is the spacecraft position in the rotating frame, a
dot denotes time derivatives, a bold variable denotes a vector, nJ is the
angular velocity vector of Europa around Jupiter, nJ its magnitude, and
UE and UJ are the gravitational potentials of Europa and Jupiter,
respectively. The gravitational potential of Jupiter is then defined by

UJ ¼ n2J
2

�
3x2 � r2

�
; (7)

where r ¼ kxk. Assuming hydrostatic equilibrium for Europa
�
J2 ¼

10
3 C22

�
, its gravitational potential can be separated into two contribu-

tions: the potential due to central point mass and the degree-2 gravity
field coefficients potential Up defined so that

UE ¼ μE
r
þ Up ¼ μE

r
þ μE

r
R2
E

r2
J2
5
7x2 � 2y2 � 5z2

r2
; (8)

where μE is the standard gravitational parameter of Europa (3202.72
km3s�2, Anderson, 1998).

For convenience, we decided in the following steps to fix Ω at the
initial epoch t0 so that the initial position vector of the probe x(t0) lies on
the axis Europa-Jupiter, opposite to Jupiter, and that the initial velocity
in x-direction vanishes. In the rotating frame, the initial state vector can
then be written as Xðt0Þ ¼ ðx0; 0;0;0; _y0; _z0Þ (see Fig. 2). We subse-
quently performed a differential correction to refine the orbit to ensure
its periodicity (Russell, 2006; Pavlak, 2013) in a two-steps iterative
process described in Appendix A.

During the differential correction, the semi-major axis a can move by
a few meters from the solution of Eq. (4). The orbits are also not precisely
circular anymore, but their eccentricity remains below 0.003. One can
note that the differential correction can be adapted to refine the orbit in
more complex force models, for example by taking into account higher
degrees and orders of the Europa gravity fields model.

Once the initial state vector X(t0) is corrected, the resulting propa-
gated orbit is our reference orbit. It is important to note that these orbits do
not have a reference epoch at this point: by fixing one, we get an orbital
plane configuration with respect to the other bodies of interest in this
study (Jupiter, Earth, Sun).

2.3. Choice of inclination

The inclination of the orbit plays a crucial role in the estimation of the
gravity field. First, an induced polar gap in the ground coverage of
Europa would limit the recovery of zonal and near-zonal spherical har-
monic coefficients (van Gelderen and Koop, 1997). Additionally, the
inclination influences the evolution of the probe's orbital plane geometry
with respect to Earth due to orbit perturbation. This geometry is char-
acterized by the angle between the orbital plane of the probe and the
Earth direction (βEarth).

The βEarth angle changes during a 3 months mission, but this change
can be limited with a careful choice of the orbit inclination, in order to
precisely study the impact of βEarth on the gravity field recovery.

Neglecting the obliquity of Europa ð< 0:1�Þ and the inclination of
Europa's orbital plane with respect to the ecliptic ð< 2�Þ, βEarth is related
to the longitude of the Earth with respect to Europa in the ecliptic plane
(ΩEarth), to the longitude of the ascending node of the probe around
Europa (Ω) and to its inclination i (see Fig. 3) by

sinðβEarthÞ ¼ sinðΩ� ΩEarthÞ � sinðiÞ; (9)

where ΩEarth depends on the Solar System configuration at the mission
date. For a mission mid-2031, the time variation _ΩEarth is approximately
0.1�/day. _Ω is caused by J2 and by the influence of Jupiter as a third body
and depends on the orbital characteristics (mainly the inclination, see



Fig. 3. Geometry of the orbital plane of the probe with respect to the Earth
characterised by the βEarth angle.

Fig. 4. Distribution of the ascending orbit crossing points with respect to the
equatorial plane for a 1:40 RGTO (top) and a 3:118 RGTO (bottom). The larger
red dots denote the locations of the probe ck(k ¼ 0, 1, 2) at the start of the first
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Cinelli et al., 2015). It can be derived from the Gaussian perturbation
equation (e.g., Beutler, 2005),

_Ω ¼ r sinðuÞ
h sinðiÞ N; (10)

where r is the distance of the probe to Europa, u is the argument of
latitude of the probe, h¼ kx� _xk is the norm of the angular momentum
and N the cross-track component of the perturbing accelerations. In the
Hill model, these accelerations are the influence of Jupiter and of the
degree 2 gravity field of Europa, characterised by their potentials UJ and
UP (see Eqs. (7) and (8)) so that

N ¼ rxðUJ þ UPÞ � eN : (11)

For near polar and quasi circular orbits the time derivative of the
mean longitude of the ascending node can be expressed as

_Ω ¼ � 3
2n

 
J2n2

�
RE

a

�2

þ n2J
2

!
:cosðiÞ; (12)

with n the mean motion of the probe around Europa, a the semi-major
axis of the probe's orbit and RE the radius of Europa (see details in Ap-
pendix B). The orbits investigated in this paper result in _Ω 2 ½� 0:74;
0:74��=day. More specifically, we obtain _Ω ¼ � 0:1�=day � � _ΩE for an
88.6�-inclined orbit. This implies _βEarth ¼ 0�=day, i.e., a quasi-fixed ge-
ometry of the orbital probe plane with respect to Earth. As mentioned in
Sec. 2.2, the inclination i0 can be fixed at t0, which will be different from
the mean inclination im. The relation between i0 and im can be derived
from the Gaussian perturbation equation for the inclination i

di
dt

¼ r cosðuÞ
h

N: (13)

Similarly to _Ω (see Appendix B), the time derivative of the inclination
for near polar and quasi circular orbits can be expressed as

di
dt

¼ �4Kicos2ðuÞsinð2uJÞ; (14)

with

Ki ¼ 3
4
sinðiÞ
h

�
1
2
n2Ja

2 þ 3
5
J2n2R2

E

�
; (15)

and uJ ¼ nJt�Ω the argument of latitude of Jupiter around Europa.
4

Considering _uJ ¼ nJ � _Ω � nJ ≪ n, Eq. (14) can be integrated via the first
order perturbation calculation method (i.e., by setting Ki ¼ Kim ), which
yields

iðtÞ ¼ im þ Kim
cosð2uJÞ

nJ
; (16)

with im the mean inclination. Because the initial conditions of the probe's
orbit are fixed at ðx0;0;0;0; _y0; _z0Þ in the rotating frame (see Fig. 2), we
also have uJ(t0) ¼ 180�, providing a simple relation between the mean
inclination im and the inclination i0 at the initial time t0, such that

i0 ¼ im þ Kim

nJ
: (17)

Eq. (17) allows us to choose the mean inclination during the refinement
of the orbit detailed in Sec. 2.2. For example, in order to get a 117 km
altitude orbit with a mean inclination of 89�, the orbit design should
target an orbit with an initial inclination of 89.9�.
2.4. Scenario definition

In order to consistently compare the scientific value of each orbit, we
considered several “scenarios” from which the orbit can be propagated in
the simulation environment of the BSW using an detailed force model.

A scenario is defined as the combination of a given reference orbit
(see Sec. 2.2) and an initial location on the cycle grid at a reference
starting epoch. For practical reasons, we restrict the possible initial lo-
cations to the equatorial plane of Europa (see Fig. 2). Since an m:R RGTO
completes R orbit revolutions before overlapping, there are R distinct
ascending crossing points on the equatorial plane, as depicted in Fig. 4.

Therefore, after the orbit refinement (see Sec. 2.2) we have a list of
state vectors XðtkÞ ¼ ðxk; yk; 0; _xk; _yk; _zkÞ in the rotating frame, with k¼ 0,
…, R�1. Defining a scenario amounts to selecting one of these state
vectors with k¼ s and assigning a reference epoch to ts. This then fixes the
initial longitude of the ascending node Ω, as well as βEarth (see Fig. 3).

Once the scenario is defined, the state vector X(ts) is converted from
the rotating frame, where the force field of the Hill model is defined, to
the inertial frame. The orbit is propagated from this vector to a full
ephemeris and force model using the planetary extension of the BSW (see
Sec. 3.1). Because the orbits are designed in a simpler force model, the
ground track repetition condition is no longer precisely met. Moreover,
for longer integration times, the considerable perturbations of Jupiter
would cause a short lifetime of the mission i.e., the eccentricity will in-
crease until the orbiter crashes on the surface of Europa.

To prevent this, the spacecraft will have to undergo more or less
frequent orbit maintenance maneuvers. Our way of taking into account
three propagation arcs in the case of c0 ¼ 1.
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such maneuvers is as follows. Starting from the initial conditions at c0 we
propagate the orbit in arcs with a length of approximately one Europa
nodal day Dn (� 3:55 Earth days). For anm:R RGTO the probe orbits R/m
times during Dn.

This number is an integer only for m ¼ 1, i.e., after one Europa day
and R revolutions the probe will be at the same position on the equatorial
plane again, see Fig. 4 (top). Form 6¼ 1 the length of the propagated arc is
either shortened or increased with respect to one Europa day, implying
that the probe ends up on the equatorial plane at a (different) crossing
point c1. In Fig. 4 (bottom), the example of a 3:118 RGTO is shown,
where the first arc is propagated for 41 revolutions. Then, for the second
arc, the initial conditions at c1 from the reference orbit are used for
further propagating the orbit for an integer number of times close to R/m.
In the example of the 3:118 RGTO the second arc was chosen to have 39
revolutions to end up at the equatorial plane at the crossing point c2
(Fig. 4, bottom). We choose a new arc k to end after ⌈k ⋅ R/m⌉ revolutions
counting from c0.

This is repeated in total m times until the probe has performed a total
of R revolutions and ends at the same crossing point c0 again. This in turn
is repeated to cover the entire assumed mission duration of 3 months.
Using new initial conditions from the reference orbit for each arc gua-
rantees that the orbit remains stable and an approximate RGTO for the
entire mission duration and thus mimics an orbit maintenance maneu-
vers approximately every Europa day. Our approach will introduce orbit
discontinuities but we found them to be < 3 km, which we do not
consider critical for gravity field recovery results at our target resolution.
The accumulated velocity change over 3 months amounts to 50 m/s,
which is a realistic Δv budget (Blanc et al., 2020).

3. Simulation in the Bernese GNSS software

Each selected orbit scenario is then analyzed in the planetary exten-
sion of the Bernese GNSS Software (Dach et al., 2015; Arnold et al., 2015;
Bertone et al., 2021). First, the orbit is propagated every Europa day
starting from 1-May-2031, based on a reference force model (see Sec.
3.1), which will constitute our ground truth for later comparisons. Then,
realistic 2-way, X-band Doppler tracking measurements are generated
along the orbit (see Sec. 3.2).

These measurements are then used to reconstruct the orbit and to
estimate the gravity field in a standard multi-arc least-squares (LS) pro-
cess following the Celestial Mechanic Approach (Beutler et al., 2010), as
described in Sec. 3.3. The quality of the orbit solution is discussed in Sec.
3.4.
3.1. Force model

In a quasi inertial frame, the spacecraft equations of motion can be
written as

€r ¼ �μE
r
r3

þ f ðt; r; _r; q1;…; qdÞ; (18)

where r is the position vector of the spacecraft center of mass with respect
to the center of mass of Europa, r its absolute value, a dot denotes time
derivative and f collects all perturbation accelerations beyond the central
Table 2
Summary of accelerations included in our force model, see Eq. (18).

Acceleration Magnitud

Europa central term 1
Higher degrees of Europa gravity field 1.10–3

Jupiter-induced Tides 2.10–4

Jupiter central term 9.10–4

Higher degrees of Jupiter gravity field 7.10–5

Other Galilean moons (central terms) 1.10�8�1
Sun 7.10–10

Other planets 2.10–14

5

term (acceleration due to central point mass only). The qi, i ¼ 1, …, d,
denote the parameters used to represent different kinds of orbit pertur-
bations (e.g., empirical orbit parameters, gravity field parameters …).
Table 2 summarizes the accelerations f that we considered for orbit
propagation. The integration of the equations of motion was performed
via the collocation method described in Beutler (2005).

As part of this force model, we considered a synthetic gravity field
model for Europa, whose potential V can be decomposed in a spherical
harmonic expansion (Kaula and Street, 1967) as

Vðr; λ;φÞ ¼ μE
r
�
Xnmax
n¼2

Xn
m¼0

�
RE

r

�n

Pnmðsin φÞðCnm cos mλþ Snm sin mλÞ; (19)

where λ and φ are longitude and latitude in a Europa-fixed reference
system, Pnm are the fully normalized Legendre functions of degree n and
order m, and Cnm and Snm are the spherical harmonic coefficients.

We used the estimates of Anderson (1998) for coefficients up to de-
gree and order (d/o) 2, while higher d/o were derived from the Moon's
gravity field GRGM900C (Lemoine et al., 2014), appropriately scaled by
the squared ratio of the surface gravity of Europa and of the Moon (gi ¼
GMi=R2

i , where i stands for Europa and the Moon), up to degree and
order nmax ¼ 90. We label this synthetic reference gravity field as EUR-
GLMo in the following.

Tidal deformations induced on Europa by Jupiter change the degree-2
gravity field coefficients according to Petit and Luzum (2010) as

ΔC2m � iΔS2m ¼ k2m
5

μJ
μE

�
RE

rJ

�3

P2 mðsin φJÞe�imλJ ; (20)

where k2 m is the Love number for degree 2 and order m, rJ, λJ and φJ
denote the spherical coordinates of Jupiter in a Europa-fixed reference
system. μJ denote the gravity constant of Jupiter. In this study, we
assumed k2m ¼ k2 ¼ 0.257 (Wahr et al., 2006; Mazarico et al., 2015).

For the third-body attractions we considered the Sun, the planets and
the other Galilean moons as point masses. As the influence of Jupiter is
considerable, we also included Jupiter's zonal gravity field coefficients up
to degree 6. Non-gravitational forces were not considered in this study, as
their impact is negligible for our goals.
3.2. Synthetic Doppler observables

Commonly used 2-way X-band Doppler observables are simulated
along with the propagated orbit as measurements from Deep Space
Network (DSN, Asmar and Renzetti, 1993) stations. The observables are
computed following the formulation by Moyer (2003), under the
following conditions: minimum spacecraft elevation of 10� above the
horizon and eclipses from the Sun, Jupiter and Europa. Tropospheric and
ionospheric delays are not considered. In this study, we consider the
tracking of the 3 DSN stations (Canberra, Goldstone and Madrid) as
baseline to reduce the number of free parameters and we tested that
reducing the coverage to only one station doesn't significantly affect our
results for the scope of this work. Light times are computed considering
the Shapiro gravitational delay due to gravitational perturbation of the
Sun, Earth and Jupiter on light propagation.
e (m/s2) Source

Anderson (1998)
Anderson (1998) & synthetic field
Mazarico et al. (2015)
JUP310 (Jacobson, 2013)
JUP310 (Jacobson, 2013)

.10�6 JUP310 (Jacobson, 2013)
DE430 (Folkner et al., 2014)
DE430 (Folkner et al., 2014)



Table 3
Summary of the estimated parameters. Osculating orbital elements and k2 were
freely estimated (k20 ¼ k21 ¼ k22). The Kaula constraint was only used for part of
the solutions.

Parameter Number of parameters Constraint

Arc Total

Osculating elements 6 468 –

Pseudo-stochastic pulses � 80 6384 1 mm/s
k2 Love number – 1 –

Gravity field coefficients – 8278 Kaula (K ¼ 0.5)

Fig. 5. RMS of orbit differences for each arc in the (e1, e2, e3) frame for a 5:197
RGTO (i ¼ 89�, h ¼ 134 km, βEarth ¼ �6�, using EURGLMo as gravity field
model), with Δ ¼ k(e1, e2, e3)k.
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The computation of Doppler observables is very sensitive to numer-
ical noise. Already for the GRAIL data analysis in the BSW presented by
Bertone et al. (2021), the handling of observation epochs was treated by
separating the fractional part of the day from its integer part to increase
numerical precision with double precision (64-bit) floats. However,
when dealing with the tracking of planetary probes in the outer Solar
System, the light time between the probe and a ground antenna is
increased from a few seconds at the Moon to 30–50 min in the case of the
Jupiter system. Consequently, we computed the light times in quadruple
(128-bit) precision to avoid the occurrence of numerical errors. Results
are then treated in double precision in the rest of the code, so that the
performance is not heavily affected. In our controlled simulation envi-
ronment, we reduced the orbit fit residual Root Mean Square (RMS) error
by one order of magnitude (from 2.0� 10�3 mm/s to 1.3 � 10�4 mm/s)
by using localized quadruple precision to compute Doppler observables
when no external source of noise are introduced. Following a numerical
error model by Zannoni and Tortora (2013), we can assess an upper
bound of 1.6 � 10�3 mm/s for the numerical noise introduced by our
orbit determination software for the tracking of probes in the Jovian
system.

We then add Gaussian white noise consistent with 2-way X-band
tracking data, simulated for a total of 3 months, with σobs ¼ 0.10 mm/s
(1-way) at 60s integration time, to encompass the major relevant noise
sources (interplanetary plasma, troposphere, etc., Asmar et al., 2005).

3.3. Estimation process

Orbit and gravity field parameters are estimated following the Ce-
lestial Mechanics Approach (Beutler et al., 2010). As described in Arnold
et al. (2015) and Bertone et al. (2021), this procedure is divided into an
initial arc-wise orbit determination, followed by a generalized orbit
improvement, including both orbit and geodetic parameters.

While the simulated orbits are generated in arcs of length close to 1
Europa day (see Sec. 2.4), in the orbit reconstruction we estimate 3 sets of
initial conditions per such arc, for a total of 78 initial conditions for 26
Europa days (� 3 months). This leads to (variable) arc lengths between
27 h and 30 h. For each orbit scenario, the first two arcs have the same
length (28 h or 29 h), while the last ends at the beginning of the subse-
quent simulation arc (right after the maneuver), which makes its dura-
tion different but close to the other two arcs.

We add uncertainties with a standard deviation of σpos ¼ 50 m, σvel ¼
1 mm/s to the initial position and velocity of the a priori orbits for each
estimation arc. The equations of motion (18) are then numerically inte-
grated based on the fixed background force model detailed in Sec. 3.1.
The partial derivatives of the orbit with respect to each initial Keplerian
osculating elements are obtained by numerically integrating the varia-
tional equations, and the ones with respect to the other estimated pa-
rameters are computed by solving definite integrals as outlined in Beutler
(2005).

This allows for a least squares adjustment of arc-specific parameters
(e.g., the six initial Keplerian osculating elements) to minimize the
Doppler residuals (see Sec. 3.4). This process is repeated for at least 4
iterations, and until the relative change of RMS of Doppler residuals
between one iteration and the next is below 0.5%.

Based on the updated orbits, the equations of motion and the varia-
tional equations are once more integrated to compute the partial de-
rivatives with respect to both arc-specific and global parameters, thus
allowing us to set up the normal equation systems (NEQs) from the
Doppler observations for all parameters.

These NEQs are set up individually for each arc and then stacked for
26 Europa days. Arc-specific parameters are pre-eliminated (see, e.g.,
Dach et al., 2015) prior to NEQ stacking and the accumulated NEQ is
inverted to retrieve corrections to the global parameters.

Table 3 summarizes our set of estimated parameters, with optional
constraints. When using pseudo-stochastic pulses (instantaneous velocity
changes, see Sect. 5.1), we set them every 60 min in all 3 directions
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(radial, along-track and cross-track) and we constrained their amplitude
to 1 mm/s. We also considered a Kaula law for some solutions to
constrain gravity field coefficients to zero according to their degree n
with a variance of

σKðnÞ ¼ K
n2
: (21)

This results in tighter constraints on the high degree coefficients (which
might diverge due to the limited by data coverage) than on the low-
degree coefficients. K was empirically chosen to only prevent the high
degree gravity field coefficients from diverging, and we were careful not
to constrain the estimated parameters to their expected value.

3.4. Orbit determination quality

The arc-specific parameters are first estimated for every arc sepa-
rately using the full degree-90 gravity field (EURGLMo) as a priori in-
formation. This first orbit recovery is repeated for at least 4 iterations
until convergence is achieved. Using realistic Doppler observables
described in Sec. 3.2 to improve the a priori orbits described in Sec. 3.3
allows to reduce 2-way Doppler residuals below 5 mHz when estimating
only osculating elements, which corresponds to the applied Doppler
noise (0.1 mm/s 1-way).

The simulation environment allows us to compare the reconstructed
orbits with the true (simulated) orbits and to obtain a direct quality
measure also on the orbit level.

The orbit differences are analyzed in a frame (e1, e2, e3) related to the
line of sight from the Earth, because of its relevance when using Doppler
observations to reconstruct the orbit (Bonanno and Milani, 2002). e1 is
the unit vector from Europa to the Earth, e2 is the normalized cross
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product of e1 with the position vector of the probe with respect to Europa,
and e3 is the cross product of e1 and e2.

In this frame, the e2 direction, perpendicular to the line of sight and to
the position vector, ends up being the worst determined direction (up to
100 times worse than along e1 and e3, see Fig. 5), regardless of the
different parameters considered in Sec. 4. However, the quality of the
recovery (< 1:3 m) is still at a level acceptable for most mission goals.

Using a perfect a priori force model and estimating only the oscu-
lating orbital elements, the orbit can be recovered with a precision below
2 m. However, when co-estimating gravity field parameters, the quality
of the orbit is degraded (see Fig. 6, bottom). The main orbit differences
are still in the e2 direction, but the RMS differences increase to a
maximum of 6.3m. On the other hand, the Doppler residuals are reduced,
which is a consequence of enlarging the parameter space by estimating
gravity field parameters (see Fig. 6, top).

4. Impact on gravity field recovery

In this section, we investigate the quality of gravity field recovery for
Fig. 6. RMS of Doppler residuals (top) and orbit differences (bottom) for every
arc in the case of a 5:197 RGTO (i ¼ 89�, h ¼ 134 km, βEarth ¼ �6�). The red
curve is the result of the fit considering a perfect a priori force model, and
estimating only orbital parameters. The green curve corresponds to the esti-
mation of the orbital elements and of the gravity field parameters up to d/o 90.
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multiple orbit scenarios defined in Sec. 2.4. We carefully analyze the
influence of a set of parameters on the gravity field recovery, by isolating
each of them as much as possible from the influence of the others. For
computational time reasons, we use a perfect force model (i.e., the un-
perturbed simulated d/o 90 field) as a priori information for all our tests,
to avoid iterating on the gravity field solution. We later show (in Sec. 5)
for a chosen scenario that the gravity field can be recovered to a com-
parable level when starting from a degree-2 a priori gravity field (cor-
responding to our current knowledge), albeit for the price of more
iterations.

We use the weighted RMS of the geoid height differences with respect
to the reference gravity field as a global quality assessment. It is defined
as

ðΔgÞWRMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

φ;λcosðφÞΔg2φ;λP
φ;λcosðφÞ

s
; (22)

where Δgφ,λ is the difference of the geoid height at latitude φ and
longitude λ between a given gravity field solution and the reference
gravity field. Gravity field solutions can also be compared in terms of
difference degree amplitudes

Δn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2nþ 1

Xn
m¼0

�
ΔC2

nm þ ΔS2nm
�s
; (23)

where ΔCnm and ΔSnm are the differences of the respective spherical
harmonic coefficients. We also evaluate the error degree amplitudes,
which are obtained from Eq. (23) by replacing the coefficient differences
with the formal errors of the estimated coefficients.

In all cases presented here, the Love number k2 is co-estimated,
resulting in uncertainties < 1:3� 10�5 (< 0:005% relative to the ex-
pected signal), which would allow to distinguish between an ocean-
bearing and ocean-free Europa (Wu et al., 2001; Wahr et al., 2006).
However, we found that the different scenarios investigated in this sec-
tion only have a marginal impact on the recovery of k2, so that we will not
further discuss this parameter.
4.1. Ground tracks repetition

The repetition cycle of an RGTO directly impacts the ground surface
coverage, as mentioned in Sec. 2.1. The shorter the repetition cycle, the
larger the cycle intertrack (see Table 1), resulting in a lower the spatial
resolution of the ground tracks, which can limit the resolution of the
estimated gravity field solution.

We derive from Eq. (19) the full wavelength of a degree-n gravity field
at the equator as λE ¼ 2πRE

n . According to the Nyquist criterion, a sam-

pling of λE
2 allows to recover down to the shortest wavelength of 2πRE

n . In
other words, to avoid aliasing (Sneeuw, 2000) when estimating a
degree-n gravity field, the spatial resolution (or cycle intertrack δeq) of the
ground tracks of an m:R RGTO (see Eq. (3)), must be larger than this
minimum sampling, i.e., δeq � λE

2 . Hence, we can expect the maximum
resolvable degree nmax of a recovered gravity field from an m:R RGTO to
be given by

nmax ¼ R
2
: (24)

It can be deduced from this equation that for R� 180, we can estimate
the gravity field coefficients up to d/o 90 without any aliasing. For an
orbiter with an altitude between 100 km and 200 km, this corresponds to
m � 5. As an example, for an orbit with an altitude h close to 134 km and
βEarth � 67�, the gravity field can be estimated unconstrained up to d/o
62, for every m � 5 (see m ¼ 5 and m ¼ 26 in Fig. 7). Indeed, decreasing
the repetition rate so that the ground tracks coverage becomes denser
does not improve the quality of the gravity field solution.



Fig. 7. Dependency of recovered gravity field solutions on RGTO parameters.
The synthetic gravity field (EURGLMo) is used as a reference. Difference (solid)
and error (dashed) degree amplitudes of gravity fields recovered from m:R
RGTO. For m ¼ 1,2, a severe aliasing is visible for the entire spectrum.

Fig. 9. Synthetic gravity field (EURGLMo) used as a reference. Difference
(solid) and error (dashed) degree amplitudes of gravity field solutions recovered
from m:R RGTO with m 	 5, using a Kaula constraint.
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On the other hand, when estimating the gravity field up to d/o 90
from an m:R RGTO with R < 180, one expects an aliasing of the gravity
field solution, increasing with decreasing values of R (see m ¼ 1, 2, 3 in
Fig. 7), meaning that some frequencies of the gravity field signal become
indistinguishable. For the orbits considered in this study, aliasing is
indeed visible as soon as one tries to estimate coefficients of degree larger
than 20 � m.

A first approach to avoid aliasing would be to solve only for a gravity
field solution up to d/o 20 � m. However, this necessarily induces an
omission error, meaning that the signal from the higher degree co-
efficients (which are not estimated) leaks into the estimated gravity field
coefficients. To prevent this, one can still estimate the gravity field up a
higher degree (d/o 90 in our simulation scenario), while also con-
straining the gravity field using the Kaula law from Eq. (21). In order to
Fig. 8. Synthetic gravity field (EURGLMo) used as a reference. Difference
(solid) and error (dashed) degree amplitudes of several gravity field solutions
from a 3 : 118 RGTO. With a perfect a priori knowledge of the gravity field up to
d/o 90, the coefficients are estimated up to d/o 90 (red) or 20 � m (¼ 60,
green). Using only an a priori gravity field up to d/o 60, the coefficients are
estimated up to d/o 60 (blue), or to 90 using a Kaula constraint (magenta).
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validate this approach, we also compute an “artificial” solution, for
which the omission error is removed by estimating the gravity field up to
d/o 20 � m, but assuming a perfect knowledge of the higher degree
coefficients (green curve in Fig. 8). Fig. 8 then confirms that the Kaula-
constrained gravity field solution tends towards the “artificial” solution.

When using a Kaula constraint, the gravity field can be estimated up
to d/o 62 with m ¼ 3, 4 to the same precision than with m � 5 (Fig. 9). A
Kaula constraint also improves the solution for m 	 2, but the solution is
still degraded in the low degrees. A tighter constraint could in principle
further improve the results, but it would also bias our solution.

4.2. Earth β�angle

The angle βEarth between the orbital plane of the probe and the Earth
direction plays a significant role in gravity field recovery. When this
angle is below a certain threshold βEarth,c, the probe gets behind Europa as
seen from Earth. Then a part of the orbit is not covered by observations
collected from stations on Earth (Fig. 10).
Fig. 10. A 26:1023 RGTO with βEarth ¼ 58� will be only partially visible from
Earth, as shown in this longitudinal zoom of its ground track (φc ¼ 45�, �5� 	 λ

	 5�). The few observations between þφc and �φc are still recovered thanks to
the rotation of Europa around its rotational axis.
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For a given βEarth < βEarth,c, there exists a latitude band centered
around the equator for which the orbit is not covered on the far side of
Europa with respect to Earth. Considering a near-circular and quasi-polar
orbit, the line of sight from Earth is blocked by Europa if the probe's
latitude φ fulfills |φ| < φc, with

cos ðφcÞ cos ðβEarthÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
RE

RE þ h

�2
s

: (25)

βEarth,c can be deduced from this equation with φc ¼ 0�, and is a function
of the probe's altitude h, and the radius of Europa RE (see Fig. 11).

At worst, the probe cannot be observed from Earth for ~ 40% of the
orbit with a completely edge-on orbit (βEarth ¼ 0�) with an altitude be-
tween 100 km and 200 km. This highly affects the visible ground
coverage. On the other hand, a completely face-on orbit (βEarth ¼ 90�)
will always be visible from Earth, but it is also much less suited to probe
the gravity signal, as it will induce only relatively small velocity varia-
tions along the line of sight direction sensed by Doppler measurements.
For a 89� inclined orbit, βEarth is quasi constant during the 3 months
mission (see Sec. 2.3). A 26:1023 RGTO does not repeat in 3 months, and
with an altitude h ¼ 133 km, βEarth,c ¼ 66.8� (Eq. (25)). We considered
several initial positions of the orbital plane, i.e. several different βEarth
values, to investigate the influence of this parameter.

For |βEarth| > |βEarth,c|, a high βEarth degrades the estimation of the low
Fig. 11. Critical latitude φc for which the line of sight is blocked on the far side
of Europa with respect to Earth as a function of βEarth. Larger βEarth limit this
effect to a narrower set of latitudes around the equator.

Fig. 12. Formal errors of the freely estimated gravity field solutio
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order gravity field coefficients (zonal and near zonal) as shown in Fig. 12.
On the other hand, for |βEarth| < |βEarth,c|, the higher degrees coefficients
are not well determined (see Fig. 13), because of the reduced ground
surface coverage.

One could estimate the gravity field to a lower d/o, but this in-
troduces an omission error, as shown in Sec. 4.1. A relatively loose Kaula
constraint can be considered instead, to reduce the impact on the lower-
degree coefficients. Fig. 14 clearly shows that for all degrees, the gravity
field coefficients are better recovered from an edge-on orbit (βEarth ¼ 0�)
than from a more face-on orbit (βEarth ¼ 90�).

In conclusion, despite the reduced number of observations, a lower
βEarth improves the quality of the estimated gravity field using a Kaula
constraint, as shown in Fig. 15. On the other hand, the overall quality of
the recovered gravity field from an orbit with βEarth slightly larger than
βEarth,c (e.g., βEarth 2 [66�, 75�] for h ¼ 135 km) is only slightly deterio-
rated in comparison to the case βEarth ¼ 0�.

In a more realistic case where βEarth is not fixed, a combination of low
βEarth and βEarth close to βEarth,c would be optimal to increase the precision
of the recovered gravity field without relying on constraints to mitigate
aliasing.

4.3. Altitude

We analyzed the impact of the probe's altitude on gravity field re-
covery for 5:R RGTOs. Form� 5, the impact of ground track repetition of
the studied m:R RGTO is negligible (see Sec. 4.1), i.e., these results are
n recovered from a 26 : 1023 RGTO for several βEarth values.

Fig. 13. Difference degree amplitude of unconstrained recovered gravity field
solutions for different βEarth angles.



Fig. 14. Difference degree amplitude of recovered gravity field solutions with a
Kaula constraint (K ¼ 0.5) for different βEarth angles.

Fig. 15. Weighted RMS of geoid height differences (in red) and lower latitude
covered by the probe on the far side of Europa (in green) as a function of βEarth.
The geoid heights are computed from gravity field solutions up to d/o 60,
estimated using a Kaula constraint.

Fig. 16. Gravity field solutions for orbits with different altitudes with m ¼ 5 and
βEarth close to 69� during the 3 months of the simulated mission period. Syn-
thetic gravity field (EURGLMo) as a reference. Difference (solid) and error
(dashed) degree amplitudes.

Fig. 17. Weighted RMS of geoid height differences between the reference
gravity field (EURGLMo) and gravity field solutions for orbits with different
altitude with m ¼ 5 and βEarth close to 69�.
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valid for any m � 5. With an inclination i ¼ 89� we fixed βEarth to 69�,
which is larger than βEarth,c for h ¼ 100 km (see Fig. 11), to avoid any
aliasing due to ground coverage issues (see Sec. 4.2) for any orbit alti-
tude. We thus show only unconstrained solutions in this section.

Under these assumptions, the best gravity field solution can be ob-
tained up to d/o 70 from a 5:202 RGTO, with an altitude of h ¼ 105 km
(Fig. 16). For higher altitudes (lower values of R), high degree gravity
field coefficients cannot be properly estimated to the same extent. This
behaviour is expected and a consequence of the spherical harmonics
decomposition given by Eq. (19): the coefficients of degree n are atten-
uated by the factor

�RE
r

�n. As a result, the higher the probe is, the less
sensitive it is to the high degrees of the gravity field. For the same reason
the impact of a higher altitude orbit is not the same for all degrees, e.g.,
for R ¼ 187, at an altitude of h ¼ 194 km, gravity field coefficients can
only be estimated up to d/o 50.

Fig. 17 illustrates the global dependency of the gravity field quality
with respect to the altitude of the orbit. Because βEarth is not precisely 69�

for all these tests, the weighted RMS is not rigorously monotonous.
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Indeed, the gravity field solution is very sensitive to βEarth when being
close to βEarth,c (see Fig. 15). Nevertheless, the impact of βEarth is minor at
this scale, in comparison with the impact of the altitude.

One should also note that stronger orbital perturbations from Eu-
ropa's gravity field would be experienced from very low altitude orbits
(e.g. 100 km altitude). The number and magnitude of maneuvers needed
to maintain the orbit would be reduced with higher altitude orbits. As a
consequence, from a mission point of view, a compromise has to be
reached between the resolution of the gravity field desired and the
number of maneuvers (which impacts the number of clean observations,
and the total Δv) to ensure a sufficient lifetime of the mission.
4.4. Inclination

As mentioned in Sec. 2.4, the choice of inclination impacts the vari-
ation of the βEarth angle. For a mission in the middle of 2031, a 89�-
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inclined orbit would enable a low variation of βEarth angle. This is very
practical in the frame of this study, but it is not imperative from amission
point of view. On the contrary, the variation of the βEarth angle of a probe
on a 80�-inclined orbit would reach up to 60� in 3 months. A combination
of several orbital plane configurations with respect to Earth would
actually be beneficial to take advantage of both high and low values of
βEarth. As mentioned in Sec. 4.2, high values of βEarth enable a denser
coverage of Europa, and lower values of βEarth would improve the esti-
mation of the lower degree of the gravity field.

Variations of the βEarth angle make a proper comparison of gravity
field solutions recovered from between a polar and non-polar orbit
delicate. We decided to fix the mean value of βEarth to 70� for both orbits.
βEarth variation of the polar orbit is quite small, but in case of the 80�

inclined orbit, we set βEarth to 47� at orbit injection (Fig. 18).
The consequence of a non-polar orbit is an unobserved gap in the

polar regions of the celestial body. The probe in orbit will then be less
sensitive to the zonal and near-zonal gravity field coefficients (van Gel-
deren and Koop, 1997). In terms of gravity field recovery, this means that
the estimates of these coefficients will be degraded in comparison with
the use of a polar orbit (Fig. 19). The impact on higher order gravity field
coefficients is negligible. Some differences can also be seen in the near
sectorials of high degrees, but this is a marginal effect due to the slightly
lower altitude of the 5:196 non-polar RGTO with respect to the polar
5:197 RGTO.
Fig. 18. βEarth angle variation over 3 months for a polar orbit, starting at βEarth,0
¼ 70�, and for an 80� inclined orbit, starting at βEarth,0 ¼ 47�.

Fig. 19. Formal errors of the gravity field solution recovered from an m ¼ 5
polar RGTO (right) and from an m ¼ 5 RGTO with a 10� polar gap.
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5. Gravity field recovery strategy

Once the optimal scenario has been chosen depending on mission
goals, the gravity field can be improved from previous knowledge. In our
two step procedure, the arc-wise parameters are first iteratively esti-
mated for every arc, while fixing the global parameters (e.g., gravity field
coefficients) to their a priori value. However, the current knowledge of
Europa's gravity field is limited to the degree-2 coefficients only
(Anderson, 1998). In order for the orbit fit to converge, additional pa-
rameters are needed in addition to the initial conditions to compensate
for the significant lack of information on the a priori force model. Two
solutions are considered in this section. The first one is to use
pseudo-stochastic pulses in our estimation, and the other one is to
co-estimate in a first iteration the low-degrees coefficients of the gravity
field together with the orbital parameters. These solutions are compared
with a reference solution, computed using a perfect a priori force model
(up to d/o 90), labelled EURSOL01.

5.1. Pseudo-stochastic pulses

Pseudo-stochastic pulses are instantaneous velocity changes in pre-
defined directions (radial, along-track and cross-track) (Beutler et al.,
2010). We estimate a set of pulses every 60 min, while constraining them
to σp ¼ 1 mm/s. We use them as additional parameters to absorb
modelling errors.

With the help of these pulses, the data fit for all the arcs converged
within 8 iterations when starting with a degree-2 a priori gravity field.
The level of convergence in terms of Doppler residuals is still very far
from the precision one could expect with a better a priori force model
(Sec. 3.4), but this is to be expected from the limited knowledge of the
gravity field. The orbits are also quite far (tens of kilometers) away from
the true orbit. However, after this first step the nominal procedure can be
pursued. The global parameters are successfully estimated after stacking
the 3 months arc-wise NEQs, pre-eliminating all the arc-wise parameters
(orbital elements and pseudo-stochastic pulses) and finally solving for the
gravity field coefficients up to d/o 90.

The complete procedure is then iterated using the new gravity field as
a priori information. The arc-wise parameters (initial osculating elements
and pseudo-stochastic pulses) are not updated from one global solution to
the other. They are instead re-estimated for each arc from their initial a
priori value. Within a few iterations of the full process, the gravity field
can be estimated to the same level of precision as when starting from the
reference gravity field EURGLMo. In the first iteration, the RMS values of
the pulses in radial, along-track and cross track direction are (35, 46, 1)
mm/s. The magnitude of the pulses decreases at each iteration. They
reach the level of (1, 2, 0.1) mm/s after a few iterations, until they are not
needed anymore to help the first orbit fit to converge. At this point, pulses
are not needed anymore and we either apply tight constrains to 0 or fully
avoid estimating them in order to preserve the low-degrees of our gravity
field solution.

As mentioned in the previous sections, considering an edge-on orbit
impacts the visible ground coverage. When considering an orbit for
which no observations are lost because of occultations by Europa (i.e.
βEarth > βEarth,c), only 3 to 4 iterations are needed to achieve the level of
precision one would have when using a perfect a priori gravity field.

However, when considering an edge-on orbit, more iterations can be
needed to converge. This is due to the reduced visible ground coverage.
As an example, 5 more iterations are needed for a nearly edge-on orbit
(see Fig. 20a) than for an orbit with βEarth ¼ βEarth,c. The effect of the
reduced observed ground coverage can already be seen in the first iter-
ation. The coefficients with a degree larger than 40 are not well esti-
mated, which is in agreement with the results in Sec. 4.2.

Here again, one could use a loose Kaula constraint to improve the
gravity field solution after the first iteration. However, the convergence is
still quite slow, even if the gravity field solution improves with respect to
a free solution.



Fig. 20. Difference degree amplitude of gravity field solutions estimated up to
d/o 90 using pulses in the first iterations, and either reintroducing all gravity
field parameters at every iteration (a) or reintroducing the gravity field pa-
rameters only up to d/o 40 for the first two iterations (b).
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An increase in convergence speed can be obtained by estimating
gravity field coefficients up to d/o 90 but re-introducing the estimated
gravity field solutions only up to d/o 40 as a priori for the following
iteration (see Fig. 20b). Doing this for the first 2 iterations, within a total
of 5 iterations, the gravity field parameters converge to the same level of
precision than when using a perfect a priori gravity field.

One drawback of this approach is that estimating pulses every 60 min
during 3 months significantly increases the total number of parameters to
be estimated to 15131 parameters (1.73 times more, see Table 3). Here,
pulses are only considered as a useful tool to temporarily compensate for
force model deficiencies.
Fig. 21. Synthetic gravity field (EURGLMo) as a reference. Difference (solid)
and error (dashed) degree amplitudes of gravity field solution recovered from
m:R RGTO with m � 5, without pulses and with an increasing number of esti-
mated gravity field coefficients.
5.2. Co-estimation of the low-degrees gravity coefficients

Another solution is to estimate only the low-degree gravity field
12
coefficients along with the orbital elements in one common adjustment.
Contrary to our nominal procedure, the orbital elements are thus never
estimated alone. Normal equations systems (NEQs) including both orbit
and gravity field parameters are set up for each arc but not solved, i.e., we
do not compute an intermediate arc-wise orbit-only fit. The arc-wise
NEQs are then stacked, the orbit parameters are again pre-eliminated,
and the 3-months NEQ is inverted to compute the gravity field solution.

Estimating gravity field coefficients up to d/o 20 results in a total of
8746 parameters, which is approximately half the 17024 parameters
estimated when employing pseudo-stochastic pulses, as detailed in Sec.
5.1.

With this method, one can estimate a reasonable medium-degree
gravity field solution, in a single iteration, without using pulses (see
Fig. 21). After this first iteration, the nominal procedure can be resumed
until convergence: a first estimation of local parameters in an arc-wise fit,
and then stacking all the NEQs to solve for a global orbit and gravity field
solution.
5.3. Comparison

The two methods presented in sections 5.1 and 5.2 converge to the
same level towards the gravity field reference solution EURSOL01, which
is computed using a perfect a priori force model, as shown in the previous
sections. Because of the larger number of parameters, the use of pulses
increases the total processing time. The differences are presented in
Table 4.

In the very first iteration, one can see that pulses are more efficient in
reducing the RMS of Doppler residuals (Fig. 22 left). This is to be ex-
pected due of the higher number of parameters to absorb model de-
ficiencies. On the other hand, the differences with respect to the true
orbits are larger when estimating pulses than when co-estimating gravity
field coefficients (Fig. 22 right). Re-injecting only the gravity field up to
d/o 40 when using pulses markedly increases the convergence speed.

One can also note that when not estimating pulses anymore (6th
iteration for (A) and 4th iteration for (B)) the Doppler residuals can
temporarily increase, but then decrease even faster in the next iterations.
This is not the case for the orbit differences: the RMS does not increase
and the convergence is also faster after the pulses are not estimated
anymore.

It is important to emphasize that both methods converge to the same



Table 4
Number of iterations and computation time for all 3 methods for a 3-months d/o
90 gravity field recovery, starting with a d/o 2 a priori gravity field, considering
that arc fits can be processed in parallel or not.

Method Number of iterations Time

seq. par.

Pulses (A) 11 66h12 5h10
Pulses (B) (remove d/o � 40) 8 44h50 3h33
Low-degree co-estimation 8 39h17 2h26

Fig. 22. RMS of Doppler residuals (top) and orbit differences (bottom) with
respect to iteration number for different methods. Pulses (A) refers to the use of
pulses (up to 5th iteration) and to consistently re-inject the 90-degree gravity
field solution for each iteration. Pulses (B) refers to re-injecting only coefficients
up to d/o 40 and using pulses until the 3rd iteration. The dashed line represent
the RMS reached when using a perfect a priori gravity field.
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level of precision toward the reference solution EURSOL01. Convergence
seems nevertheless faster when co-estimating the low-degree coefficients
in the first iteration.
13
6. Conclusions and discussion

Our study offers an overview of the relative influence of a set of orbit
parameters on the quality of gravity field recovery from a low altitude
near-polar circular orbit based on Doppler tracking from Earth. In this
respect, we developed a toolbox to design Repetitive Ground Tracks
Orbits with various orbital characteristics, and we used it to investigate
the effect of several orbit configurations and scenarios on the recovery of
orbit and geodetic parameters. These orbits allow for a proper charac-
terization of the ground track coverage, and can also be adapted to non-
repetitive orbits by choosing a repetition period longer than the mission
duration. In this paper, we considered the case of the Galilean moon
Europa, but the method could be applied to other celestial bodies in the
Solar System. After detailing our simulation framework for the probe's
orbit and Doppler observables, we described our approach to the deter-
mination of orbit and geodetic parameters, and we discussed the quality
of the retrieved orbits. When considering a white noise with an ampli-
tude of 0.10 mm/s at 60 s integration time for the simulated Doppler
data, the orbit of a probe orbiting Europa on a polar orbit can be
recovered with a precision < 2 m when using a perfect a priori gravity
field model. However, when co-estimating gravity field coefficients the
orbit quality is slightly degraded, as expected.

We investigated the impact of a set of orbital parameters (ground
tracks coverage, βEarth�angle, altitude, and inclination) on the gravity
field recovery by isolating each of them to the extent possible. The results
concerning the altitude and inclination confirm our expectations and
validate our procedure. A low altitude orbit is beneficial to gravity field
recovery, especially for high-degree coefficients. This has to be balanced
with the operational preference for higher altitude orbits requiring less
orbit maintenance. Also, a non-polar orbit will result in a polar gap with a
negative impact on the zonal coefficients, as it is to be expected.

The number of Europa days until which the orbit ground tracks repeat
also plays an important role on coverage and resolution. A high number
of ground track overlaps can induce large gaps between the ground
tracks, which result in a severe aliasing of the gravity field signal when
estimating it to a high degree. However, when estimating a d/o 90
Europan gravity field, any orbit whose ground tracks repeat after 5
Europa days or more, will be equivalent to a non-repetitive orbit.

Furthermore, we analyzed the impact of the angle βEarth between the
probe's orbital plane and the Earth direction. While an edge-on orbit is
beneficial to estimate low degree gravity field coefficients (Doppler
tracking is mostly sensitive along the Earth-probe direction), it also limits
the fraction of the probe's orbit visible from Earth. This results in a
reduced ground coverage and in aliasing at high degrees of the gravity
field, which can be partially regularised by, e.g., a weak Kaula rule con-
straining. A combination between orbits with a low βEarth angle and more
face-on orbits (allowing for a full coverage, but making Doppler less
sensitive to orbital changes) is thus recommended to compute an accu-
rate gravity field solution while minimizing regularization.

A common issue in the outer Solar System is our very limited current
knowledge of planetary gravity fields, often limited to the bulk mass or to
a few coefficients. This leads to very large Doppler residuals and to po-
tential non-linearities and convergence issues. We compared two
different strategies to estimate a full solution for Europa's gravity field
when starting from the current a priori knowledge, which is limited to
degree 2. One solution is to introduce pseudo-stochastic pulses to
compensate for model deficiencies, and to check that their amplitude
decreases after each iteration. We also tested co-estimating additional
low-degree gravity field coefficients, to gradually reduce Doppler re-
siduals before opening up the full parameter space. Both strategies lead to
the same satisfactory accuracy in the recovery of the gravity field used in
our simulations. One notable advantage of co-estimating low-degree
coefficients is the reduced number of estimated parameters and reaching
convergence with less iterations (which results in a reduced computation
time).
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Our results illustrate how decisive the orbit choice can be for the
recovery of the gravity field of a celestial body. We offer operative in-
dications to inform preliminary mission design and for the subsequent
mission specific analysis, usually a compromise betweenmultiple science
objectives and mission constraints. Some aspects were neglected in this
study, such as non-gravitational accelerations, or a detailed observation
schedule of the ground stations, which could be investigated by future
works. Additional measurements could further improve orbit determi-
nation such as those provided by an on-board accelerometer or by a laser
altimeter.
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Appendix A. Differential correction

Our differential correction procedure is adapted from Russell (2006) and Pavlak (2013). The equations of motion of the Hill model provided by Eq.
(5) are invariant under the transformation t → �t, y → �y, z → �z. Indeed when applying this transformation, we obtain

x1 ¼ ðx1; y1; z1Þ ¼ ðx0; �y0;�z0Þ
_x1 ¼ ð _x1; _y1; _z1Þ ¼ ð� _x0; _y0; _z0Þ
€x1 ¼

�
€x1; €y1; €z1

� ¼ �€x0; �€y0;�€z0
�

It means that the trajectory of a probe starting at xðt0Þ ¼ ðx0; y0; z0Þ is a 180� rotation around the x-axis of a backward integrated trajectory of a probe
starting at ðx0;�y0;�z0Þ. This property is called axi-symmetry (around the x-axis).

Because of this symmetry, if an orbit starts on the x-axis, and if the orbit is perpendicular to the x-axis, i.e.,

xðt0Þ ¼ ðx0; 0; 0Þ
_xðt0Þ ¼ ð0; _y0; _z0Þ; (A.1)

the resulting propagated orbit and its image (180� rotation around the x-axis) will form one continuous trajectory. Enforcing the condition

yT ¼ zT ¼ _xT ¼ 0 (A.2)

ensures that the trajectory crosses perpendicularly the x-axis at t ¼ T. Then, the trajectory and its image will result in an orbit which closes after 2T.
We consequently decided to look for such axi-symmetricm:R Repetitive Ground Tracks Orbits, with the initial conditions (A.1). In order to find these

orbits, we perform a differential correction, which we then derive by means of the Newton-Raphson method. Let us define the free variable Y as

Y ¼

0
BB@

x0
_y0
_z0
T

1
CCA; (A.3)

and the function F(Y) as

FðYÞ ¼
0
@ yT

zT
_xT

1
A; (A.4)

where yT, zT, _xT are obtained by propagating (A.1) to t ¼ T. The constraint (A.2) can then be enforced by F(Y) ¼ 0, which can be solved iteratively, so
that for every iteration k we get

F
�
Yk
� ¼ �DF

�
Yk
� � δYk ; (A.5)

http://www.id.unibe.ch/hpc
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with

δY ¼

0
BB@

δx0
δ_y0
δ_z0
δT

1
CCA (A.6)

and

DFðYÞ ¼ ∂F
∂Y

¼

0
BBBBBBBBBB@

∂y
∂x0

∂y
∂ _y0

∂y
∂ _z0

∂y
∂T

∂z
∂x0

∂z
∂ _y0

∂z
∂ _z0

∂z
∂T

∂ _x
∂x0

∂ _x
∂ _y0

∂ _x
∂ _z0

∂ _x
∂T

1
CCCCCCCCCCA

¼

0
BB@

Φ21 Φ25 Φ26 _yT

Φ31 Φ35 Φ36 _zT

Φ41 Φ45 Φ46 €xT

1
CCA;

(A.7)

with Φ(t, t0) the state transition matrix (STM), which maps an initial perturbation of ðxðt0Þ; _xðt0ÞÞ at t0 to the resulting perturbation at t, such that

Φðt; t0Þ ¼

0
BBBBBBBBBBBBBBBBBBBBBBBB@

∂x
∂x0

∂x
∂y0

∂x
∂z0

∂x
∂ _x0

∂x
∂ _y0

∂x
∂ _z0

∂y
∂x0

∂y
∂y0

∂y
∂z0

∂y
∂ _x0

∂y
∂ _y0

∂y
∂ _z0

∂z
∂x0

∂z
∂y0

∂z
∂z0

∂z
∂ _x0

∂z
∂ _y0

∂z
∂ _z0

∂ _x
∂x0

∂ _x
∂y0

∂ _x
∂z0

∂ _x
∂ _x0

∂ _x
∂ _y0

∂ _x
∂ _z0

∂ _y
∂x0

∂ _y
∂y0

∂ _y
∂z0

∂ _y
∂ _x0

∂ _y
∂ _y0

∂ _y
∂ _z0

∂ _z
∂x0

∂ _z
∂y0

∂ _z
∂z0

∂ _z
∂ _x0

∂ _z
∂ _y0

∂ _z
∂ _z0

1
CCCCCCCCCCCCCCCCCCCCCCCCA

:

The latter is integrated along the orbit with the initial condition Φ(t0, t0) ¼ I6. Equation (A.5) is under-determined. We decided to add a constraint by
fixing the inclination i0 at t0. Using Eq. (A.1) the inclination can be written as

tanði0Þ ¼ _z0
_y0 þ nJx0

; (A.8)

where nJ is the mean motion of Europa around Jupiter. We can already apply this constraint to Eq. (A.5), but we rather first reduce the problem. We fix
the half-period T by numerically integrating the trajectory until the orbit crosses R times the equatorial plane at t ¼ T, enforcing then the constraint
zT ¼ 0. Introducing zT ¼ 0 into Eq. (A.5) and considering (A.6) and (A.7) then yields

zT ¼ Φ31δxþΦ35δ _y0 þΦ36δ _z0 þ _zTδT ¼! 0 ;

so that

δT ¼ � 1
_zT
ðΦ31δxþΦ35δ _y0 þΦ36δ_z0Þ:

We can rewrite Eq. (A.5), omitting the k indices, with a reduced function

F

ðYÞ ¼

 
yT

_xT

!
¼ �

0
@ Φ21 Φ25 Φ26

Φ41 Φ45 Φ46

!
� 1

_zT

0
@ _yT

€xT

1
AðΦ31 Φ35 Φ36 Þ

1
A
0
BB@

δx0

δ _y0

δ _z0

1
CCA: (A.9)
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We then reduce the number of free variables by using Eq. (A.8) to compute _y0 such that

_y0 ¼ _z0 cotði0Þ � nJx0 : (A.10)

By introducing Eq. (A.10) into Eq. (A.9), we finally get

F

ðYÞ ¼ �A � δY
 ; (A.11)

with

A ¼
�
Φ21 Φ26

Φ41 Φ46

�
þ
�
Φ25

Φ45

�
ð�nJ cotði0Þ Þ � 1

_zT

 
_yT
€xT

! 
ðΦ31 Φ36 Þ þΦ35ð�nJ cotði0Þ Þ

!
;

and the correction to the reduced free variable vector ~Y

δY


¼
�
δx0
δ _z0

�
:

To summarize, at every iteration the orbit and the STM are propagated until the orbit crosses the equatorial plane R times, defining the half-period T.
The resulting Φ(T, t0), _xðTÞ and €xðTÞ are used to compute corrections on x0 and _z0 based on Eq. (A.11), while _y0 is recomputed using Eq. (A.10). This
procedure is repeated until convergence to the desired level.

Appendix B. Evolution of the orbital elements

In this appendix, we derive the evolution over time of the inclination i and of the longitude of the ascending node Ω. We use the Gaussian
perturbation equations (Beutler, 2005) to express their time derivatives as a function of the forces perturbing the Keplerian motion. In our case, the
perturbing forces are the third-body attraction of Jupiter, and the force induced by the degree-2 gravity field of Europa. The derivatives of both the
inclination and the longitude of the ascending node only depend on the cross-track direction of these perturbing forces, such that

di
dt

¼ r cos i
h

ðNJ þ NPÞ
dΩ
dt

¼ r sin u
h sin i

ðNJ þ NPÞ;
(B.1)

with

NJ ¼ rxðUJÞloc � eN
NP ¼rxðUPÞloc � eN ;

where loc indicates the “local orbital frame” (i.e., Radial, Tangential, Normal). The potential UJ and UP in the rotating frame rot are then given by Eq. (7)
and by Eq. (8) rewritten as

UJ ¼ 3x2 � r2

2
n2J

Up ¼ μE
r

R2
E

r2
J2
5
gðxrotÞ
r2

;

(B.2)

with

xrot ¼ ðx; y; zÞ
gðxrotÞ ¼ 7x2 � 2y2 � 5z2 :

Appendix B.1. Relation between the rotating frame, the inertial frame and the local orbital frame

Let us neglect the obliquity of Europa ð< 0:1�Þ and the inclination of Europa's orbital plane with respect to the ecliptic ð< 2�Þ. The rotating frame is
then obtained by a rotation around the z-axis from the inertial frame. Assuming that at epoch t ¼ 0, Europa and Jupiter lie on the x-axis of the inertial
frame, we can write

xrot ¼ R3ðnJ tÞ � xin;

where xrot and xin are the components of the position vectors in the rotating frame and in the inertial frame, and Ri(θ) is the 3 � 3 matrix representing a
16
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rotation about the i-th coordinate axis by an angle θ.
Additionally, the transformation between the inertial frame and the local orbital frame can be written as

xloc ¼ R3ðuÞ �R1ðiÞ �R3ðΩÞ � xin;

which yields

xloc ¼ Rtotðu; i; uJÞ � xrot (B.3)

with Rtot(u, i, uJ) ¼ R3(u) ⋅R1(i) ⋅R3(�uJ) and uJ ¼ nJt�Ω.
Once the gradients of the potentials are computed in the rotating frame, they need to be converted to the local orbital frame, so that

rxðUJ þ UPÞloc ¼ Rtot ðu; i; uJÞ �rxðUJ þ UPÞrot :

Additionally, it follows from Eq. (B.3) that xrot is

x ¼ rðcos u cos uJ þ sin u cos i sin uJÞ
y ¼ rð � cos u sin uJ þ sin u cos i cos uJÞ
z ¼ rðsin u sin iÞ:

(B.4)

Appendix B.2. The perturbing accelerations

In the rotating frame, the accelerations due to the third body and to the degree-2 gravity field are respectively

rxUJ ¼ n2J

0
BB@

2x

�y

�z

1
CCA

rxUP ¼ �μE
r2

R2
E

r2
J2
5

0
BBBBBBBBBBB@

x
r

�
5gðx; y; zÞ

r2
� 14

�

y
r

�
5gðx; y; zÞ

r2
þ 4

�

z
r

�
5gðx; y; zÞ

r2
þ 10

�

1
CCCCCCCCCCCA
:

(B.5)

In the local orbital frame of the probe around Europa, the cross-track components of these accelerations are computed using Eqs. (B.3) and (B.4) in Eq.
(B.5), so that

NJ ¼ �NJ;0 sin i ð3 cos u sin 2uJ þ 3 sin u cos i ð1� cos 2uJÞ Þ
NP ¼ �NP;0 sin i ð3 cos u sin 2uJ þ sin u cos i ð5� 3 cos 2uJÞ Þ; (B.6)

with

NJ;0 ¼ 1
2
n2Jr

NP;0 ¼ 3
5
μE
r2

R2
E

r2
J2:

In the case of near-circular orbits, r � a and n2a3 ¼ μE, which gives

NJ;0 ¼ 1
2
n2Ja

NP;0 ¼ 3
5
n2
R2
E

a
J2:

Appendix B.3. Expression of the derivatives

The cross track component of all the perturbing forces considered here is obtained by summing NJ and NP from Eq. (B.6), so that
17
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NJ þ NP ¼ �sin i ð3ðNJ;0 þ NP;0Þcos u sin 2uJ þ sin u cos i ðð3NJ;0 þ 5NP;0Þ � 3ðNJ;0 þ NP;0Þcos 2uJ Þ;
and which we can finally substitute into Eq. (B.1). For near-polar orbits (cos i � 0), the time-derivative of the inclination (B.1) is then

di
dt

¼ �4Kicos2u sin 2uJ ; (B.7)

with

Ki ¼ 3
4
r sin i
h

ðNJ;0 þ NP;0Þ

¼ 3
4
sin i
h

�
1
2
n2Ja

2 þ 3
5
n2R2

EJ2

�
:

Similarly, the time-derivative of the longitude of the ascending node can be written as

dΩ
dt

¼ �r
h

�
3ðNJ;0 þ NP;0Þsinu cosu sin 2uJ þsin2u cos i ðð3NJ;0 þ 5NP;0Þ � 3ðNJ;0 þ NP;0Þcos 2uJ Þ

�

The argument of latitude of the probe u and the argument of latitude of Jupiter around Europa uJ are respectively Tn-periodic and Dn-periodic. If we
consider a m:R RGTO, we can use the periodicity condition Eq. (1), to isolate the secular term relevant for the long term evolution as

�
dΩ
dt

�
secular

¼ 1
RTn

Z RTn

0

dΩ
dt

dt

¼ � a
2h

ð3NJ;0 þ 5NP;0Þcos i

¼ � 3
2n

 
1
2
n2J þ n2

�
RE

a

�2

J2

!
cos i:

(B.8)
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